Evaluation of Water Quality Standards in Watershed Streams Using the Protocols of the DEC/DEP MOU, Addendum E

New York City Water Supply

Report for 2012

Prepared by: Bureau of Water Supply Watershed Water Quality Science & Research Report Dated October 2013

1. Introduction

In September 1997, the New York State Department of Environmental Conservation (DEC) and the New York City Department of Environmental Protection (DEP) finalized a Memorandum of Understanding (MOU) governing several aspects of enforcement protocols in the New York City water supply watersheds. Addendum E of the MOU describes a series of methods to examine routine stream sampling data collected by DEP's Division of Watershed Water Quality Operations to evaluate water quality. According to Addendum E, DEP will submit reports describing the results of this analysis along with any other documentation of water quality concerns (*e.g.*, exceedances of TMDLs, results of non-routine special sampling efforts, biomonitoring information).

2. Data Analysis Description

Fecal and total coliform bacteria, pH, total phosphorus, dissolved oxygen, total ammonia, and nitratenitrite are the analytes routinely examined by these protocols. However, according to Addendum E, any constituent listed in 6 NYCRR §703 can be included in this analysis. The means of the analytes were calculated for each site, and compared to the stream water quality guidance values listed in Table I of Addendum E, which is reproduced here as Table 1. Values below detection were converted to one-half the detection limit for the purpose of calculating mean values. Mean coliform concentrations were calculated in the log system. Coliform values listed as "too numerous to count" in the dataset were not used in the summary statistics for each sampling site because they could not be converted into a numerical value. To calculate the compliance of streams with the Addendum E pH standards ($6.5 \le pH \le 8.5$) this protocol converts pH values to hydrogen ion concentrations, calculates the mean, and compares the mean to the pH standards also expressed as hydrogen ion concentrations (*i.e.*, $0.31623 \ge [H^+] \ge 0.0031623$).

ici Quality Outdalice values used to t	compare routine stream monitoring data.
Parameter	Guidance Value
pH fecal coliform bacteria total coliform bacteria total phosphorus dissolved oxygen total ammonia (NH ₃ +NH ₄ -N) nitrate-nitrite (NO ₃ +NO ₂ -N)	$\begin{array}{l} 6.5 \leq pH \leq 8.5 \\ \leq 200 \ CFU \ 100ml^{-1} \\ \leq 2400 \ CFU \ 100ml^{-1} \\ \leq 50 \ \mu g \ L^{-1} \\ \geq 6 \ mg \ L^{-1} \\ \leq 2 \ mg \ L^{-1} \\ \leq 10 \ mg \ L^{-1} \end{array}$

Table 1. Water Quality Guidance Values used to compare routine stream monitoring data.

Summary statistics for all sites for the year 2012 can be found in Appendix A. Maps showing routine stream sample sites, surface discharging WWTPs, and stream biomonitoring sites are included as Appendix B. Table 2 lists the 49 sites with contraventions of water quality standards out of the 117 sites analyzed. The 6 sites at which mean concentrations contravened the Table 1 guidance values are noted in the third column of Table 2.

Most of the sites in Table 2 are there not because their mean concentrations actually contravened the Table 1 guidance values, but because there were more than two contraventions of the spike concentration values at

the site. A spike is defined in the Addendum as "...an ambient water quality concentration found to be above the [guidance] value by three standard deviations of the...mean at a given site." The concept of the spike concentration is important because most loading from non-point sources occurs during rainfall events. Since the routine samples are collected on a fixed frequency basis, average values from the routine sampling data may not reveal sites that occasionally receive excessive non-point loading. Such sites could be considered for special investigation. If there are a total of more than two spikes at a site, they are listed in the fourth column of Table 2. If the number of samples taken at a site during the sample period was unusually high (>30) or low (<10), it is so noted in the table.

If a reservoir is listed as phosphorus restricted ("P-restricted") as of this report's time frame, it is so noted in Table 2. DEC removed Cannonsville Reservoir from the list of phosphorus restricted reservoirs in 2002, and added Bog Brook Reservoir and New Croton Reservoir in 2002 and 2004 respectively. One phosphorus restricted reservoir in the Croton System, Bog Brook Reservoir, is not listed in Table 2 because, for 2012, it had no stream sites meeting the criteria for inclusion.

Addendum E also specifies the application of a t-test to examine differences in concentrations of the seven constituents listed in Table 1 between sampling sites that are paired above and below selected wastewater treatment plant (WWTP) discharges. This test looks at the difference between the upstream and downstream concentrations, subtracts an allowable amount of increase (one half of the guidance value or one standard unit in the case of pH) and determines if the result is statistically less than zero at the 95% confidence level. The null hypothesis for this test is that the difference is greater than or equal to zero, that is, that the plant is increasing in-stream concentrations above an allowable amount. To reject the null hypothesis, and so conclude that the plant is not increasing in-stream concentrations above an allowable amount, the t-statistic must fall within the lower tail (or the upper tail in the case of alkaline pH and dissolved oxygen). The results of this analysis are listed in Table 3.

The second column of Table 3 lists those analytes for which the WWTP was found by this test to be a significant source, and whose mean concentrations at the downstream sampling site contravene the water quality guidelines listed in Table 1. WWTPs with entries in this column may be considered sources of water quality problems.

The third column of Table 3 lists those analytes for which the WWTP was found by this test to be a significant source, but whose mean concentrations at the downstream site do not contravene the Table 1 guidelines. For these analytes, the WWTP can be considered to be a significant source, but not a significant problem.

New York State does not have a numeric water quality standard for phosphorus. In the past, DEP has used the DEC phosphorus guidance value of $20 \ \mu g \ L^{-1}$ when determining Phosphorus Restricted Basins and the Phase I TMDLs. The Phase II TMDLs, which were approved by EPA in October 2000, incorporate a site-specific guidance value of 15 $\mu g \ L^{-1}$ for source water reservoirs (New Croton, Cross River, Croton Falls, Kensico, West Branch, Rondout and Ashokan), and apply the existing New York State guidance value of 20 $\mu g \ L^{-1}$ for upstream reservoirs. For this stream water analysis, a 50 $\mu g \ L^{-1}$ guidance value is used. This value, intended to protect downstream impoundments from eutrophication, was taken from the Federal Water Quality Criteria "Gold Book", and has been accepted by New York State.

3. Discussion

For the year 2012, 1,798 samples from 117 stream sample sites were analyzed. Of these, 49 sites are listed in Table 2. As in previous Addendum E water quality reports, most of the sites listed in Table 2 are there because of intermittently high concentrations ("spikes") of coliform bacteria, from sources other than WWTPs. See "Likely sources" in Table 2.)

Regarding pollutants from WWTPs, Addendum E analysis since 1997 has shown that sites downstream of WWTPs have often had excess total phosphorus (TP) concentrations. For 2012, however, only one stream sample site had a mean TP>50 μ g L⁻¹ and it is not located downstream of a WWTP. This low number continues to indicate a significant reduction in phosphorus loading in general, and in particular from WWTPs.

Previous Addendum E reports have shown by t-test analysis that, as each plant has been upgraded, it is no longer a source of unacceptably high levels of phosphorus, and is therefore no longer listed for phosphorus in the second column of Table 3. For 2012, of the 11 WWTPs analyzed by this method all plants have been upgraded. Yorktown Heights WWTP was the last to be upgraded, and is no longer listed in the second column of Table 3. For the third year in a row since the report was started there are no entries in Table 3, another sign of improved water quality.

Addendum E reports for 1998 through 2011 reported that stream sample sites with mean TP>50 μ g L⁻¹ often exhibited a significant correlation between phosphorus and turbidity measurements (Spearman's correlation analysis, at p<0.1). In 2012, there was only one site with mean TP>50 μ g L⁻¹ and with sufficient turbidity data required to perform the analysis (listed in Table 2). Five sites exhibited a significant correlation between phosphorus and turbidity measurements, which is a slight increase from three sites in 2011. Due to improved water quality and changes to the sampling schedule the number of sites still available for this analysis is low. However, the TP/turbidity correlation continues to suggest that management strategies, such as stormwater retrofit and whole farm planning that reduce turbidity and/or suspended solids also mitigate non-point source TP loading.

It should be noted that seventeen sites had no contraventions of water quality standards and are not listed in Table 2. However, all were assessed as being slightly impaired using biomonitoring protocols. They are:

- Esopus Creek, site no. 255: '12 slightly impaired. Catskill System
- AEAWDL (site no. 227) Esopus Creek: '06, '12 slightly impaired. Catskill System
- E16I (site no. 213) Esopus Creek: '12 slightly impaired. Catskill System
- E5 (site no. 215) Esopus Creek: '12 slightly impaired. Catskill System
- SCL (site no. 217) Stony Clove: '12 slightly impaired. Catskill System
- S10 (site no. 206) Batavia Kill: '08, '09, '10, '12 slightly impaired. Catskill System
- S3 (site no. 202) Schoharie Creek: '12 slightly impaired. Catskill System
- S4 (site no. 216) Schoharie Creek: '12 slightly impaired. Catskill System
- S5I (site no. 204) Schoharie Creek: '06, '08, '12 slightly impaired. Catskill System
- West Kill, site 258: '12 slightly impaired. Catskill System
- West Kill, site 259: '12 slightly impaired. Catskill System
- BELLEGIG (site no. 229) Giggle Hollow: '11, '12 slightly impaired. Catskill System
- WSPB (site no. 304) West Branch Delaware River: '06, '08, '12 slightly impaired. Delaware System
- EDRB (site no. 321) East Branch Delaware River: '12 slightly impaired. Delaware System

- NK4 (site no. 307) Aden Brook: '08, '10, '12 slightly impaired. Delaware System
- RDOA (site no. 310) Rondout Creek: '12 slightly impaired. Delaware System
- ANGLE5 (site no. 102) Angle Fly Brook: '07, '08, '09, '12 slightly impaired. Southern Basins of the Croton Watershed

In the Catskill and Delaware Systems, the sites that had extremely low sample numbers in 2011 all had sufficient organisms present in the sample in 2012 to generate the 100-count subsample required by the SBU protocols. Even though subsample numbers returned to normal, however, an unusually high percentage of sites in both these systems was rated as impaired in 2012. In the Catskill System, 13 sites (61.9%) were rated slightly impaired, while only 8 assessed as non-impaired. In the Delaware System, the percentage was lower, but still almost half (5 of 11, (45.5%)) were designated as slightly impaired.

Of the 18 impaired sites, one, Site 206, was clearly still recovering from the severe scour caused by the 2011 storms, with all metrics well below the historical average. For the other sites, however, the source of impairment was not so clear-cut. One possible cause is suggested by the NBI-P metric, which was high at most impaired sites. This metric, an indicator of nutrient enrichment in streams, was introduced by the New York State Stream Biomonitoring Unit in 2012. Another metric whose depressed scores in 2012 contributed greatly to the many impaired results was Percent Model Affinity. Low PMA values, often accompanied by low total taxa counts, were widespread, occurring at 17of the 18 impaired sites and at some non-impaired sites as well. PMA is a measure of what is considered the typical composition of a macroinvertebrate community in New York State streams, so low scores indicate a departure from this model, and often the dominance of one group over the others. In almost all cases, the dominant group in 2012 was the family Hydropsychidae, the net-spinning caddisflies. It is not clear what factor or factors were responsible for the high proportion of hydropsychids, but it is possible that this group was able to tolerate the exceedingly high flows of Tropical Storms Irene and Lee (which occurred in 2011) better than other macroinvertebrate taxa.

Reservoir basin	Reservoir basin Site contravened contravened contravened		Number of samples contravening spike threshold	Likely sources	Notes	
East-of-Hudson						
Kensico	E10		4-fecal coli.; 5-total coli.	highway runoff; wildlife	Site not sampled for nutrients.	
	E11		3-fecal coli.; 1-total coli.	urban runoff; wildlife		
	E9		3-fecal coli.; 3-total coli.	urban runoff; wildlife	Site not sampled for nutrients.	
	MB-1		7-fecal coli.; 2-total coli.	urban runoff; wildlife		
	N5-1	TP	4-fecal coli.; 4-total coli.	urban runoff; wildlife	Significant TP/turbidity correlation. Benthic monitoring '97: slightly impaired.	
	N12		3-fecal coli.; 4-total coli.	urban runoff; wildlife		
	WHIP		2-fecal coli.; 4-total coli.	urban runoff; wildlife	Benthic monitoring '05, '09 - slightly impaired.	
	BG9		2-fecal coli.; 1-total coli.	urban runoff; wildlife		
New Croton (P-restricted)	HUNTER1		3-fecal coli.; 5-total coli.	urban runoff; wildlife	Significant TP/turbidity correlation. Benthic monitoring '00, '01, '02, '03, '04, '05, '06, '07, '08, '09, '10, '12 - slightly impaired.	

Reservoir basin	Site	Mean contravened water quality guidelines	Number of samples contravening spike threshold	Likely sources	Notes
New Croton (P-restricted)	CORNELL1		4-fecal coli.; 5-total coli.	urban runoff; wildlife	Site sampled for bact. only.
	CATHY7		3-fecal coli.; 2-total coli.	urban runoff; wildlife; construction site	Site sampled for bact. only. Benthic monitoring '05, '06 - slightly impaired.
	FRENCH5		1-fecal coli.; 5-total coli.	urban runoff; wildlife	Site sampled for bact. only.
	COLABAUGH1		2-fecal coli.; 3-total coli.	urban runoff; wildlife	Site sampled for bact. only.
	ILLINGTON1		2-fecal coli.; 2-total coli.	urban runoff; wildlife	Site sampled for bact. only.
	KITCHAWAN1		2-fecal coli.; 2-total coli.	urban runoff; wildlife	Site sampled for bact. only.
	NCBAILEY1		1-fecal coli.; 4-total coli.	urban runoff; wildlife	Site sampled for bact. only. Benthic monitoring '05, '06 - slightly impaired.
	PURDY1		3-fecal coli.; 2-total coli.	urban runoff; wildlife	Site sampled for bact. only.
	SAWMILL1		2-fecal coli.; 0-total coli.	urban runoff; wildlife	Site sampled for bact. only. Benthic monitoring '05 - slightly impaired.
	GEDNEY3		3-fecal coli.; 1-total coli.	urban runoff; wildlife	Site sampled for bact. only.
	WHITE2		1-fecal coli.; 4-total coli.	urban runoff; wildlife	Site sampled for bact. only.

Reservoir basin Site Mean water quality guidelines		Number of samples contravening spike threshold	Likely sources	Notes	
New Croton (P-restricted)	KISCO3		3-fecal coli.; 4-total coli.	urban runoff; wildlife	Significant TP/turbidity correlation. Benthic monitoring '95, '96, '01, '06 - slightly impaired.
	HMILL7		4-fecal coli.; 3-total coli.	urban runoff; wildlife	Located above Yorktown Heights WWTP. Benthic monitoring: '94, '98, '99, '07, '08, '09, '10 –slightly impaired; '95, '00, '04, '06, '11 –moderately impaired.
	HMILL4		5-fecal coli.; 6-total coli.	municipal WWTP; urban runoff, wildlife	Located below Yorktown Heights WWTP. Benthic monitoring: '94, '98, '06, '08 – moderately impaired; '95, '99, '00, '07 – severely impaired; '09, '10, '11 -slightly impaired.
Muscoot (P-restricted)	MUSCOOT5	5	3-fecal coli.; 4-total coli.	municipal WWTP; urban runoff; wildlife	Located below Yorktown Heights WWTP. Benthic monitoring: '95- moderately impaired; '96, '99, '01, '06, '12 – slightly impaired.
	PLUM2		0-fecal coli.; 2-total coli.	urban runoff; wildlife	Benthic monitoring: '98 – moderately impaired; '99, '00, '04, '12 – slightly impaired.

Reservoir basin	Site	Mean contravened water quality guidelines	Number of samples contravening spike threshold	Likely sources	Notes
Muscoot (P-restricted)	STONE5		5-fecal coli.; 4-total coli.	WWTP; urban runoff; wildlife	Downstream from WWTP on Broad Brook; Significant TP/turbidity correlation. Benthic monitoring upstream: '97, '98, '01, '02, '04, '05, '06, '07, '08, '10, '11, '12 - slightly impaired;
	HOLLY12		2-fecal coli.; 1-total coli.	urban runoff; wildlife	Small no.of samples. Site located in Town of Southeast, on Holly stream.
Cross River	CROSS2		1-fecal coli.; 2-total coli.	wildlife	Site located in Ward Pound Reservation (county park). Benthic monitoring '12 - slightly impaired.
Amawalk (P-restricted)	MUSCOOT 10		6-fecal coli.; 6-total coli.	urban runoff; wildlife	Significant TP/turbidity correlation. Benthic monitoring '06 – slightly impaired. '12 – moderately impaired.
Titicus (P-restricted)	TITICUS3		3-fecal coli.; 4-total coli.	urban runoff; wildlife	
Croton Falls (P-restricted)	MIKE2		6-fecal coli.; 8-total coli	municipal WWTP; wildlife, agriculture	Located below Carmel #2 WWTP; Benthic monitoring '99, '00, '05, '10 – slightly impaired.

Reservoir basin	Site	Mean contravened water quality guidelines	Number of samples contravening spike threshold	Likely sources	Notes
Middle Branch (P-restricted)	MIDBR3		4-fecal coli.; 3-total coli.	urban runoff; wildlife	Benthic monitoring upstream: '00, '01, '10 – slightly impaired.
East Branch (P-restricted)	EASTBR		3-fecal coli.; 4-total coli.	urban runoff; wildlife	Benthic monitoring '06, '08, '09, '10, '11, '12 – slightly impaired.
	HH7		1-fecal coli.; 4-total coli.	urban runoff; wildlife	Large no.of samples: n=40.
	MUDTRIB1		4-fecal coli.; 3-total coli.	urban runoff, wildlife; WWTPs	Located below Patterson V. and Cornwall Meadows WWTPs. Site sampled for bact. only.
	BB5		3-fecal coli.; 4-total coli.	urban runoff; wildlife	Benthic monitoring: '94, '95, '98, '99, '00, '01, '02, '03, '05, '08, '10 - slightly impaired. '04 – moderately impaired. Site sampled for bact. only.
West Branch	GYPSYTRL1		0-fecal coli.; 1-total coli.	urban runoff; wildlife	Benthic monitoring: '00, '01, '09 – slightly impaired.
	LONGPD1		3-fecal coli.; 1-total coli.	urban runoff; wildlife	Benthic monitoring: '00, '03, '10 - slightly impaired.
	HORSEPD12		1-fecal coli.; 1-total coli.	urban runoff; wildlife	Benthic monitoring: '10, '11, '12 - slightly impaired.
	WESTBR7		1-fecal coli.; 0-total coli.	urban runoff; wildlife	

Reservoir basin	Mean Site contravened water quality guidelines		Number of samples contravening spike threshold	Likely sources	Notes
	LEETOWN3		2-fecal coli.; 1-total coli.	urban runoff; wildlife	
Catskill District					
Esopus	AEHG	pH (acid)	1-рН	acid precipitation	Benthic monitoring: '12 - slightly impaired.
Schoharie	SSHG	pH (acid)		acid precipitation	
Delaware District					
Cannonsville	C-7		1-fecal coli.	urban runoff; agriculture; wildlife.	
	CLDG		2-fecal coli.	urban runoff; wildlife	
	WDHOA		2-fecal coli.	urban runoff; wildlife	Benthic monitoring: '12 - slightly impaired.
Neversink	NK6	pH (acid)		acid precipitation	
	NCG	pH (acid)		acid precipitation	Benthic monitoring '11 – slightly impaired.
Rondout	RRHG	pH (acid)	1-рН	acid precipitation	Benthic monitoring '06 – slightly impaired.

Table 3. WWTPs shown by t-tests of upstream/downstream sampling to be sources of contraventions of water quality standards at the downstream site for 2012.

WWTP (and upstream/downstream sample sites)	Parameters excessively contributed to by WWTP, and the mean at downstream site contravenes Table 1 guidelines.	Parameters excessively contributed to by WWTP, but the mean at downstream site does not contravene Table 1 guidelines.
Yorktown Heights (HMILL7 / HMILL4)	none	none
Margaretville (PMSA / PMSB)	"	"
Pine Hill (E3 / E15)	"	"
Grand Gorge (S8 / S9)	"	"
Tannersville (S1 / S2)	"	"
Hobart (WDHOM / WDHOB)	"	"
Delhi (DTPA / DTPB)	"	"
Walton (WSPA / WSPB)	"	"
Mountainside (DCDA / DCDB) (Subsurface Industrial Discharge)	"	"
Grahamsville (RGA / RGB)	"	"
Roxbury Run (EDRA / EDRB)	"	"
Stamford (WDSTM / WDSTB)	"	"

APPENDIX A. SUMMARY STATISTICS FOR EACH SAMPLING SITE FOR 2012.

	site	Hq (fecal coliform CFU 100ml ⁻¹)	total coliform (CFU 100ml ⁻ⁱ	total phosphorus) (µg l ⁻¹)	dissolved oxygen (mg l ⁻¹)	ammonia	nitrate- nitrite (mg l ⁻¹)					
Eas	East-of-Hudson District												
	ANGLE5	1 8.2 8.2 8.200	0 - -	0	0	1 10.99 10.99 11.0	0	0					
	BB5	0 - -	13 500 5 54	13 7100 80 1300	0	0	0 - -	0					
	BG9	12 7.47 6.62 7.138	14 310 1(nd) 33	12 4700 91(nd) 382	12 103 15 36.5	12 12.69 1.78 8.20	11 0.084 0.01(nd) 0.0395(nd)	12 0.413 0.01 (nd) 0.1632					
	CATHY7	0	14 1400 4(nd) 42	14 26000 80(nd) 548	0 • •	0	0	0					
	COLABAUGH	0	14 650 1(nd) 21	14 8800 160 802	0 - -	0	0	0					
	CORNELL1	0	14 2600 7(nd) 80	14 55000 160 1140	0 - -	0	0	0					
	CROSS2	12 10.22 7.57 8.061	19 3100 5(nd) 34	19 22000 33(nd) 500	12 72 15 34.9	13 15.95 7.77 11.8	12 0.025 0.01(nd) 0.0123(nd)	12 0.295 0.01(nd) 0.1310					
	E10	12 7.93 7.65 7.767	14 2000 5(nd) 76	12 9300 40 1356	0 - -	12 14.49 7.55 11.1	0	0					
	E11	12 7.84 7.2 7.532	13 1100 1(nd) 28	11 10000 25(nd) 670	12 124 14 39.7	12 13.91 0.91 8.54	11 0.133 0.01(nd) 0.0301(nd)	12 0.253 0.01(nd) 0.0721					

site	рН (fecal coliform CFU 100ml ⁻¹)	total coliform (CFU 100ml ⁻¹	total phosphorus ') (µg l ⁻¹)	dissolved oxygen (mg l ⁻¹)	ammonia	nitrate- nitrite (mg l ⁻¹)
E9	12 7.66 6.63 7.093	14 5400 2(nd) 71	12 59000 40 1487	0	12 14.58 2.83 7.07	0	0 • •
EASTBR	12 7.67 6.93 7.323	19 1000 8(nd) 50	19 6000 40 670	12 73 16 35.8	13 13.44 4.28 8.55	12 0.073 0.01(nd) 0.0226	12 0.261 0.01(nd) 0.0701
FRENCH5	0	14 230 1(nd) 10	14 4600 25 465	0	0 • •	0	0 • •
GEDNEY3	0	14 2300 1(nd) 44	13 14000 120 800	0	0	0	0
GYPSYTRL1	11 8.16 7.02 7.364	19 170 1 17	18 20000 50(nd) 500	12 71 9 25.3	12 14.5 7.99 10.4	12 0.052 0.01(nd) 0.0143(nd	12 0.393 0.01(nd))0.0608
нн7	6 7.73 7.43 7.552	14 350 3 34	14 4400 80 775	7 27 9 13.7	7 14.61 9.66 11.8	7 0.01(nd) 0.01(nd) 0.0100(nd	7 0.401 0.177)0.3004
HMILL4	0	13 1100 8 142	14 27000 180 1889	0	0	0	0
HMILL7	0	14 1700 13 107	14 23000 83(nd) 781	0	0	0	0
HOLLY12	7 8.26 7.41 7.699	7 1900 7 82	7 12000 160 1100	7 72 10 25.7	7 16.68 8.59 12.0	7 0.029 0.01(nd) 0.0164(nd	7 0.816 0.477)0.6124

site	рН (1	fecal coliform CFU 100ml ⁻¹)	coliform]	total phosphorus) (µg l ⁻¹)		ammonia	nitrate- nitrite (mg l ⁻¹)
HORSEPD12	12	19	19	12	13	12	12
	8.16	1000	11000	65	14.4	0.01(nd)	0.472
	7.29	1(nd)	8	9	9.14	0.01(nd)	0.184
	7.734	17	670	20.3	11.2	0.0100(nd))0.3248
HUNTER1	12	19	19	12	12	12	12
	8.22	6200	28000	70	15.54	0.021	0.743
	7.61	7(nd)	50(nd)	12	7.99	0.01(nd)	0.3
	7.921	72	500	29.6	11.8	0.0109(nd))0.5167
ILLINGTON	0	14 2200 1(nd) 37	14 18000 80 1000	0 • •	0	0	0
KISCO3	11	19	19	12	12	12	12
	10.23	6400	79000	120	14.95	0.029	0.944
	7.23	18	120	21	7.36	0.01(nd)	0.191
	7.843	100	1200	48.4	11.6	0.0142(nd)0.5637
KITCHAWAN	0	14 1700 2(nd) 36	14 28000 40 727	0	0	0	0
LEETOWN3	6	14	14	7	7	7	7
	7.89	510	10000	37	13.6	0.043	0.339
	7.54	1(nd)	25(nd)	10	7.34	0.01(nd)	0.03
	7.662	10	548	23.6	10.2	0.0219	0.1521
LONGPD1	11	19	19	12	12	12	12
	7.85	640	6200	27	15.05	0.02	0.271
	7.6	4(nd)	100	9	8.69	0.01(nd)	0.036
	7.765	24	670	17.8	11.1	0.0108(nd)0.1853
MB-1	10 7.55 6.91 7.244	19 1500 2 78	12 10000 40 473	12 76 21 39.0	12 13.73 7.17 10.6	11 0.087 0.022(nd) 0.0488(nd	
MIDBR3	11	19	19	12	12	12	12
	8.3	520	7000	60	14.3	0.09	1.576
	7.43	3(nd)	17(nd)	7	8.51	0.01(nd)	0.178
	7.902	41	330	29.6	11.2	0.0280	0.4310

site	рН ((fecal coliform CFU 100ml ⁻¹)	coliform]	total phosphorus) (µg l ⁻¹)	dissolved oxygen (mg l ⁻¹)	ammonia	nitrate- nitrite (mg l ⁻¹)
MIKE2	11	19	19	12	12	12	12
	7.98	1600	35000	74	13.96	0.039	10.98
	7.23	12	25(nd)	13	8.89	0.01(nd)	0.508
	7.650	125	1700	37.5	11.1	0.0153(nd)) 3.8178
MUDTRIB1	0	14 900 4(nd) 45	14 14000 100(nd) 360	0	0	0	0
MUSCOOT10	11	19	19	12	12	12	12
	7.58	2200	27000	75	13.48	0.117	1.434
	7.1	13	100	10	5.96	0.01(nd)	0.225
	7.445	132	1000	44.8	9.37	0.0480	0.8218
MUSCOOT5	13	19	19	12	13	12	12
	8.15	3400	21000	61	14.7	0.137	1.244
	7.44	10(nd)	100	16	8.47	0.01(nd)	0.603
	7.937	61	830	30.3	11.7	0.0475	0.9281
MUSCOOT9	1 8.04 8.04 8.040	0	0	0	1 9.38 9.38 9.38	0	0
N12	10	13	12	12	12	11	12
	8.01	3200	39000	75	14.64	0.077	1.305
	7.61	1(nd)	80(nd)	12	8.63	0.01(nd)	0.566
	7.792	40	525	24.4	11.5	0.0192(nd))0.8091
N5-1	10 7.77 6.98 7.335	13 1000 18 105	12 39000 80 635	12 106 20 53.2	12 12.56 3.56 9.02	11 0.286 0.038(nd) 0.1068(nd)	
NCBAILEY1	0	14 540 4(nd) 23	14 6000 80 644	0	0	0	0
PLUM2	8	14	14	7	8	7	7
	8.24	170	3800	60	15.68	0.146	1.29
	7.36	1(nd)	17	14	6.41	0.01(nd)	0.587
	7.770	19	489	29.7	11.3	0.0359	0.9129

site	рH	fecal coliform (CFU 100ml ⁻¹)	total coliform (CFU 100ml ⁻¹	total phosphorus ¹) (µg l ⁻¹)	dissolved oxygen (mg l ⁻¹)	ammonia	nitrate- nitrite (mg l ⁻¹)
PURDY1	0	14 10000 1(nd) 26	13 6000 25(nd) 800	0 - -	0 • •	0 • •	0 • •
SAWMILL1	0	14 1800 2(nd) 26	13 1500 40(nd) 320	0	0	0 • •	0
STONE5	12	19	19	12	13	12	12
	10.18	5800	70000	110	16.48	0.067	0.963
	7.64	3	83	7	7.75	0.01(nd)	0.425
	8.137	64	830	39.5	11.8	0.0225	0.7661
TITICUS3	11	18	18	12	12	12	12
	8.5	5500	19000	127	15.46	0.315	0.655
	7.48	2(nd)	120	10	7.34	0.01(nd)	0.109
	8.053	81	840	43.0	11.8	0.0404	0.3808
WESTBR7	11	19	19	12	12	12	12
	7.72	290	1700	19	14.51	0.025	0.105
	6.98	1(nd)	17(nd)	9	7.86	0.01(nd)	0.01(nd)
	7.432	17	430	14.2	10.7	0.0135(nd)0.0523
WHIP	10	13	12	12	12	11	12
	7.88	620	10000	35	16.38	0.021	1.452
	7.6	2(nd)	40(nd)	11	8.42	0.01(nd)	0.44
	7.727	23	812	21.2	11.9	0.0119(nd)0.8660
WHITE2	0	14 260 1(nd) 14	14 6500 83 890	0	0	0	0

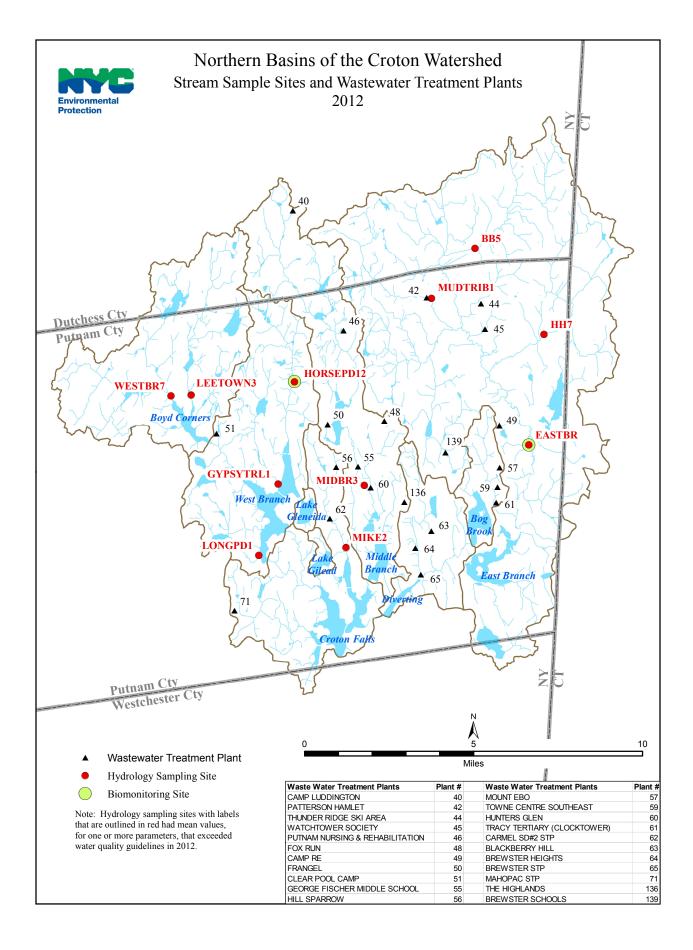
site	рН	fecal coliform (CFU 100ml ⁻¹	total coliform)(CFU 100ml	total phosphorus ⁻¹) (µg l ⁻¹)	dissolved oxygen (mg l ⁻¹)	ammonia	nitrate- nitrite (mg l ⁻¹)
CATSKILL D	ISTRICT						
ABCG	12 8.47 6.97 7.690	9 130 1 10	0	12 19 10 14.3	10 14.9 10.3 12.1	12 0.01(nd) 0.01(nd) 0.0100(nd	12 0.32 0.16)0.2325
AEHG	12 7.03 5.72 6.487	6 31 1(nd) 5	0 • •	12 15 5 9.1	10 14.9 10.1 11.6	12 0.02 0.01(nd) 0.0108(nd	12 0.8 0.25) 0.4575
ASCHG	12 7.75 6.14 6.938	4 2 1(nd) 1	0	12 14 6 10.1	10 13.9 9.7 11.9	12 0.01(nd) 0.01(nd) 0.0100(nd	12 0.62 0.32) 0.4583
BK	12 8.75 6.92 7.629	12 34 1(nd) 3	0 • •	12 14 5 7.9	10 16 8.6 12.0	12 0.02 0.01(nd) 0.0108(nd	12 0.23 0.01(nd))0.1133
BNV	12 8.08 7.03 7.555	11 34 1(nd) 8	0	12 25 10 14.2	10 14.8 10.1 12.1	12 0.02 0.01(nd) 0.0108(nd	12 0.51 0.22)0.3383
BRD	12 7.81 7.12 7.417	12 20 1(nd) 4	0	12 20 8 13.5	10 15.7 9.6 12.0	12 0.01(nd) 0.01(nd) 0.0100(nd	12 0.88 0.12)0.3058
E10I	12 7.88 6.98 7.393	9 10 1(nd) 5	0	12 11 5 7.7	10 14.9 9.1 11.9	12 0.02 0.01(nd) 0.0108(nd	
E16I	12 8.33 7.05 7.686	11 68 1(nd) 7	0 • •	12 23 8 14.7	10 15.8 9.7 12.4	12 0.02 0.01(nd) 0.0117(nd	12 0.35 0.08) 0.2325
E5	12 8.48 6.99 7.533	9 28 1(nd) 5	0 • •	12 25 6 10.5	10 15.4 9.9 12.0	12 0.03 0.01(nd) 0.0125(nd	12 0.3 0.01(nd))0.1817

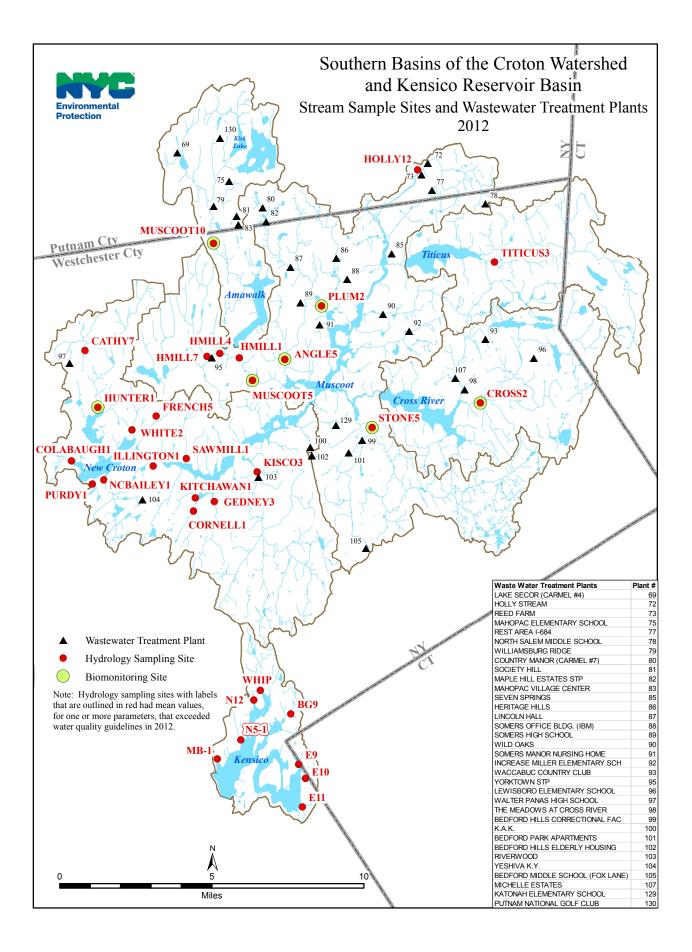
site	рH	fecal coliform (CFU 100ml ⁻¹	total coliform)(CFU 100ml	total phosphorus ⁻¹) (µg l ⁻¹)	dissolved oxygen (mg l ⁻¹)	total ammonia (mg l ⁻¹)	nitrate- nitrite (mg l ⁻¹)
LBK	12 7.72 6.91 7.393	11 38 2(nd) 6	0	12 14 6 10.3	10 15.7 8.5 11.6	12 0.02 0.01(nd) 0.0117(nd	
M-1	17 7.43 6.72 7.046	28 65 1(nd) 3	0	7 24 7 12.4	10 14.5 9.4 11.3	7 0.02 0.01(nd) 0.0114(nd	7 0.32 0.17)0.2543
S10	11 8.83 7.29 8.111	11 44 1(nd) 6	0	12 40 9 27.6	10 15.5 9 12.0	12 0.01(nd) 0.01(nd) 0.0100(nd	12 0.39 0.01(nd))0.1725
S4	11 7.89 6.51 7.292	12 52 1(nd) 7	0	12 9 2.5(nd) 6.1	10 14.8 8.5 11.7	12 0.01(nd) 0.01(nd) 0.0100(nd	
S5I	11 8.13 7.3 7.768	12 98 1(nd) 8	0	12 29 7 13.8	10 15.5 7.9 11.8	12 0.01(nd) 0.01(nd) 0.0100(nd	0.01(nd)
SGI	10 8.76 7.53 8.091	11 2000 1(nd) 7	0	11 46 9 23.6	9 15.4 8.8 11.7	11 0.02 0.01(nd) 0.0109(nd	
S7I	11 8.65 7.37 7.908	11 150 1(nd) 6	0	12 23 2.5(nd) 9.5	10 14.8 8.5 11.6	12 0.02 0.01(nd) 0.0108(nd	12 0.23 0.01(nd))0.0900
SBKHG	10 7.35 6.37 6.885	8 9 1(nd) 2	0	12 30 7 13.3	9 14.3 8.8 11.0	12 0.01(nd) 0.01(nd) 0.0100(nd	12 0.64 0.11)0.3908
SCL	12 8.8 6.57 7.604	12 170 1(nd) 6	0	12 31 9 16.6	10 15.6 9.5 12.2	12 0.02 0.01(nd) 0.0108(nd	12 0.38 0.01(nd))0.2333

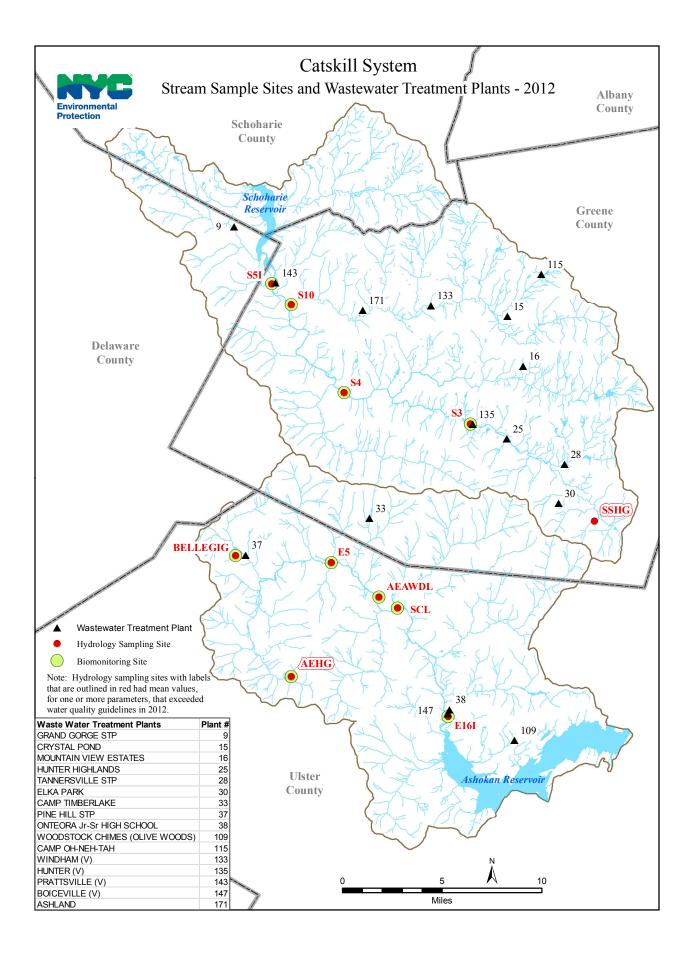
site	ЪH			total phosphorus ¹) (µg l ⁻¹)		ammonia	nitrate- nitrite (mg l ⁻¹)
SCL-A	12 7.89 6.82 7.244	0	0	0 • •	10 15.2 9 12.5	0	0 • •
SCL-B	12 8.46 7.05 7.487	11 56 1(nd) 5	0 - -	12 28 9 17.9	10 16.1 9 12.2	0	0 - -
SEK	10 8.86 7.15 7.970	9 4 1(nd) 1	0 • •	12 16 6 8.3	9 12.5 5.2 10.0	12 0.02 0.01(nd) 0.0108(nd	
SSHG	10 7.23 6.29 6.533	9 4 1(nd) 2	0 - -	12 16 2.5(nd) 7.3	9 13.1 6.6 10.4	12 0.02 0.01(nd) 0.0108(nd	12 0.74 0.12) 0.4767
SSMA	10 7.44 6.72 7.020	10 6 1(nd) 2	0	12 12 2.5(nd) 5.8	9 13.2 6.1 10.5	12 0.01(nd) 0.01(nd) 0.0100(nd	12 0.27 0.01(nd))0.1258
SSMB	10 7.49 6.83 7.140	12 220 1(nd) 7	0 - -	12 10 5 7.5	9 13.1 5.5 10.2	12 0.01(nd) 0.01(nd) 0.0100(nd	
STHHG	11 7.36 6.88 7.104	11 69 1(nd) 3	0 - -	12 39 10 21.8	10 14.9 7.3 11.1	12 0.01(nd) 0.01(nd) 0.0100(nd	12 0.68 0.01(nd))0.3650
SWK	10 8.68 7.23 7.868	11 77 1(nd) 4	0	11 81 5 21.9	9 11.5 6.2 9.88	11 0.01(nd) 0.01(nd) 0.0100(nd	11 0.41 0.01(nd))0.1573
SWKHG	10 7.45 6.4 6.848	6 8 1(nd) 2	0	10 19 5 9.9	8 12.6 9 10.4	10 0.01(nd) 0.01(nd) 0.0100(nd	10 0.46 0.01(nd))0.2820

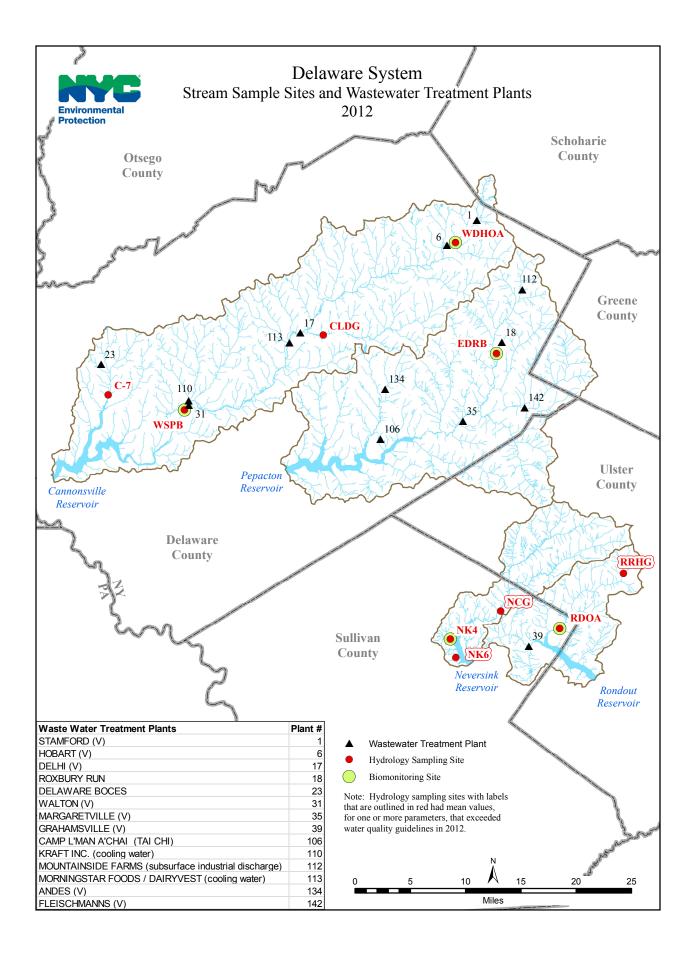
site	рН	fecal coliform (CFU 100ml ⁻¹)	coliform	phosphorus		ammonia	nitrate- nitrite (mg l ⁻¹)
WDL	13 8.7 6.97 7.485	11 76 1(nd) 7	0	13 31 7 11.5	10 14.9 9.3 11.9	13 0.01(nd) 0.01(nd) 0.0100(nd	

site	Нq	fecal coliform CFU 100ml ⁻¹)	total coliform (CFU 100ml ⁻¹	total phosphorus ¹) (µg l ⁻¹)	dissolved oxygen (mg l ⁻¹)	ammonia	nitrate- nitrite (mg l ⁻¹)
DELAWARE DIS	STRICT						
C-7	12 7.85 6.87 7.187	10 300 4(nd) 30	0 • •	12 137 7 25.7	12 14.9 9.3 11.8	12 0.02 0.01(nd) 0.0117(nd	12 0.44 0.14)0.2908
C-8	12 7.83 7.06 7.378	8 26 5(nd) 10	0	12 32 8 13.6	12 15.1 8.6 11.5	12 0.01(nd) 0.01(nd) 0.0100(nd	12 0.4 0.14)0.2517
CCBHG	12 7.17 6.66 6.829	10 47 1 7	0	12 33 11 17.3	12 15 8.1 10.9	12 0.03 0.01(nd) 0.0117(nd	12 0.63 0.18) 0.4042
CDG	12 8.07 6.96 7.415	11 170 1 20	0	12 38 14 25.9	12 15.7 9.1 11.3	12 0.02 0.01(nd) 0.0108(nd	12 0.85 0.19) 0.5742
CEBG	12 7.74 6.92 7.257	10 88 2 13	0	12 58 6 15.2	12 15.7 8.4 11.6	12 0.02 0.01(nd) 0.0117(nd	12 0.44 0.08) 0.2567
CEBHG	12 7.12 6.52 6.856	8 26 1(nd) 4	0	12 46 6 15.9	12 15 7 10.9	12 0.02 0.01(nd) 0.0125(nd	12 0.36 0.06)0.2225
CLDG	12 8.77 7.08 7.615	11 360 4 48	0 - -	12 23 9 16.3	12 16.3 9 11.6	12 0.03 0.01(nd) 0.0125(nd	12 0.47 0.025(nd))0.2600
CTNBG	12 7.95 7.05 7.535	12 150 2 18	0	12 29 13 22.3	12 16 8.6 11.4	12 0.02 0.01(nd) 0.0125(nd	12 0.66 0.025(nd)) 0.2925
CTNHG	12 7.34 6.65 6.947	9 13 2 3	0	12 30 11 18.2	12 16 7.9 11.2	12 0.01(nd) 0.01(nd) 0.0100(nd	12 0.74 0.29) 0.5625


site	рН	fecal coliform (CFU 100ml ⁻¹	total coliform)(CFU 100ml	total phosphorus ⁻¹) (µg l ⁻¹)	dissolved oxygen (mg l ⁻¹)	ammonia	nitrate- nitrite (mg l ⁻¹)
NCG	12 6.6 6.1 6.345	11 33 1 4	0	12 8 2.5(nd) 5.5	12 13.8 8.1 10.9	12 0.06 0.01(nd) 0.0158(nd	12 0.44 0.14)0.3008
NK4	13 7.02 6.23 6.628	7 16 1 2	0	12 11 2.5(nd) 5.1	13 14.3 5.6 10.7	12 0.02 0.01(nd) 0.0108(nd	
NK 6	13 6.69 6.28 6.449	10 38 5 14	0	12 77 17 44.6	13 13.1 5.5 8.99	12 0.14 0.01(nd) 0.0483	12 0.57 0.025(nd) 0.2542
P-13	12 7.43 7.02 7.201	12 160 3 16	0	12 19 7 12.3	12 14.7 8.7 11.3	12 0.02 0.01(nd) 0.0117(nd	
P-21	12 8.02 7 7.499	11 33 2 9	0	12 25 7 13.8	12 15.8 8.9 11.8	12 0.02 0.01(nd) 0.0108(nd	12 0.55 0.05)0.2750
P-50	12 8.51 7.24 7.743	12 55 1 5	0	12 21 10 14.9	12 14 8.6 11.2	12 0.02 0.01(nd) 0.0108(nd	12 0.41 0.025(nd)) 0.1829
P-60	12 7.77 6.69 7.206	10 51 2 5	0	12 8 2.5(nd) 5.7	12 15.4 8.6 11.7	12 0.01(nd) 0.01(nd) 0.0100(nd	12 0.65 0.13)0.3292
P-7	12 7.6 6.92 7.294	12 160 3 18	0	12 32 9 18.1	12 14.4 8.4 11.2	12 0.01(nd) 0.01(nd) 0.0100(nd	12 0.52 0.16)0.3625
P-8	12 7.47 6.65 7.182	12 180 1 4	0	12 21 7 12.9	12 14.1 8.6 11.2	12 0.01(nd) 0.01(nd) 0.0100(nd	12 0.6 0.12)0.3800


site	рH	fecal coliform (CFU 100ml ⁻¹	total coliform)(CFU 100ml ⁻	total phosphorus ¹) (µg l ⁻¹)	dissolved oxygen (mg l ⁻¹)	ammonia	nitrate- nitrite (mg l ⁻¹)
PBKG	12 7.56 6.69 7.106	11 62 3 12	0 • •	12 20 6 10.9	12 13.8 7.4 10.8	12 0.02 0.01(nd) 0.0108(nd	12 0.49 0.08) 0.2800
PBRA	12 7.74 7.21 7.453	8 5 1 2	0 - -	12 15 7 11.3	12 13.7 8.9 10.9	12 0.01(nd) 0.01(nd) 0.0100(nd	0.025(nd)
PBRB	12 7.99 7.29 7.682	9 180 3 34	0 - -	12 28 6 14.8	12 14 8.3 10.9	12 0.01(nd) 0.01(nd) 0.0100(nd	0.025(nd)
PDRY	12 7.76 6.96 7.193	12 42 2 8	0	12 13 2.5(nd) 7.9	12 13.8 8.5 11.2	12 0.01(nd) 0.01(nd) 0.0100(nd	12 0.52 0.08) 0.2708
PMSB	12 8.2 7 7.339	11 69 2 18	0	12 33 8 14.4	12 13.4 9.3 11.4	12 0.02 0.01(nd) 0.0108(nd	12 0.86 0.07)0.3650
PROXG	12 7.07 6.6 6.833	11 310 1 21	0 - -	12 74 22 39.6	12 12.7 8.4 10.2	12 0.02 0.01(nd) 0.0133(nd	
RD1	12 7.02 6.39 6.705	10 310 2 10	0 - -	12 33 8 14.1	12 14.8 9 11.5	12 0.03 0.01(nd) 0.0133(nd	12 0.25 0.06)0.1775
RD4	12 7.05 6.35 6.763	9 23 1(nd) 3	0	12 15 2.5(nd) 8.0	12 14.9 9.3 11.4	12 0.01(nd) 0.01(nd) 0.0100(nd	12 0.14 0.025(nd))0.0588
RDOA	12 6.73 6.47 6.558	11 32 3 7	0 - -	12 10 5 6.7	12 15.3 9.1 11.6	12 0.03 0.01(nd) 0.0117(nd	12 0.37 0.15)0.2542


site	рН	fecal coliform (CFU 100ml ⁻¹)	coliform	total phosphorus ¹) (µg l ⁻¹)	oxygen	ammonia	nitrate- nitrite (mg l ⁻¹)
RGA	12 7.1 6.78 6.928	12 200 1 15	0	12 37 10 15.6	12 13.3 8.8 10.9	12 0.02 0.01(nd) 0.0117(nd	
RGB	12 7.08 6.66 6.917	11 180 5 25	0	12 35 9 16.1	12 13.7 8.4 10.9	12 0.01(nd) 0.01(nd) 0.0100(nd	0.15
RRHG	12 6.22 5.2 5.763	5 8 1 3	0	12 8 2.5(nd) 4.3	12 14.5 9.3 11.4	12 0.03 0.01(nd) 0.0117(nd	
WDBN	12 7.93 6.99 7.500	10 60 2 15	0	12 26 9 17.5	12 15.2 9.6 11.8	12 0.04 0.01(nd) 0.0175	12 0.76 0.32 0.5567
WDHOA	12 7.53 6.71 7.187	12 950 7 40	0	12 47 16 30.5	12 13.9 7.7 10.9	12 0.03 0.01(nd) 0.0175	12 1.64 0.5 0.9325


APPENDIX B

SITE MAPS

