Evaluation of Water Quality Standards in Watershed Streams Using the Protocols of the DEC/DEP MOU, Addendum E

New York City Water Supply

Report for 2010

1. Introduction

In September 1997, the New York State Department of Environmental Conservation (DEC) and the New York City Department of Environmental Protection (DEP) finalized a Memorandum of Understanding (MOU) governing several aspects of enforcement protocols in the New York City water supply watersheds. Addendum E of the MOU describes a series of methods to examine routine stream sampling data collected by DEP's Division of Watershed Water Quality Operations to evaluate water quality. According to Addendum E, DEP will submit reports describing the results of this analysis along with any other documentation of water quality concerns (*e.g.*, exceedances of TMDLs, results of non-routine special sampling efforts, biomonitoring information).

2. Data Analysis Description

Fecal and total coliform bacteria, pH, total phosphorus, dissolved oxygen, total ammonia, and nitratenitrite are the analytes routinely examined by these protocols. However, according to Addendum E, any
constituent listed in 6 NYCRR §703 can be included in this analysis. The means of the analytes were
calculated for each site, and compared to the stream water quality guidance values listed in Table I of
Addendum E, which is reproduced here as Table 1. Values below detection were converted to one-half the
detection limit for the purpose of calculating mean values. Mean coliform concentrations were calculated in
the log system. Coliform values listed as "too numerous to count" in the dataset were not used in the
summary statistics for each sampling site because they could not be converted into a numerical value. To
calculate the compliance of streams with the Addendum E pH standards (6.5≤pH≤8.5) this protocol converts
pH values to hydrogen ion concentrations, calculates the mean, and compares the mean to the pH standards
also expressed as hydrogen ion concentrations (i.e., 0.31623≥[H⁺]≥0.0031623).

Table 1. Water Quality Guidance Values used to compare routine stream monitoring data.

<u>Parameter</u>	Guidance Value
pH fecal coliform bacteria total coliform bacteria total phosphorus dissolved oxygen total ammonia (NH ₃ +NH ₄ -N) nitrate-nitrite (NO ₃ +NO ₂ -N)	$6.5 \le pH \le 8.5$ $\le 200 \text{ CFU } 100 \text{ml}^{-1}$ $\le 2400 \text{ CFU } 100 \text{ml}^{-1}$ $\le 50 \text{ µg L}^{-1}$ $\ge 6 \text{ mg L}^{-1}$ $\le 2 \text{ mg L}^{-1}$ $\le 10 \text{ mg L}^{-1}$

Summary statistics for all sites for the year 2010 can be found in Appendix A. Maps showing routine stream sample sites, surface discharging WWTPs, and stream biomonitoring sites are included as Appendix B. Table 2 lists the 50 sites with contraventions of water quality standards out of the 123 sites analyzed. The 11 sites at which mean concentrations contravened the Table 1 guidance values are noted in the third column of Table 2.

Most of the sites in Table 2 are there not because their mean concentrations actually contravened the Table 1 guidance values, but because there were more than two contraventions of the spike concentration values at

the site. A spike is defined in the Addendum as "...an ambient water quality concentration found to be above the [guidance] value by three standard deviations of the...mean at a given site." The concept of the spike concentration is important because most loading from non-point sources occurs during rainfall events. Since the routine samples are collected on a fixed frequency basis, average values from the routine sampling data may not reveal sites that occasionally receive excessive non-point loading. Such sites could be considered for special investigation. If there are a total of more than two spikes at a site, they are listed in the fourth column of Table 2. If the number of samples taken at a site during the sample period was unusually high (>30) or low (<10), it is so noted in the table.

Addendum E also specifies the application of a t-test to examine differences in concentrations of the seven constituents listed in Table 1 between sampling sites that are paired above and below selected wastewater treatment plant (WWTP) discharges. This test looks at the difference between the upstream and downstream concentrations, subtracts an allowable amount of increase (one half of the guidance value or one standard unit in the case of pH) and determines if the result is statistically less than zero at the 95% confidence level. The null hypothesis for this test is that the difference is greater than or equal to zero, that is, that the plant is increasing in-stream concentrations above an allowable amount. To reject the null hypothesis, and so conclude that the plant is not increasing in-stream concentrations above an allowable amount, the t-statistic must fall within the lower tail (or the upper tail in the case of alkaline pH and dissolved oxygen). The results of this analysis are listed in Table 3.

The second column of Table 3 lists those analytes for which the WWTP was found by this test to be a significant source, and whose mean concentrations at the downstream sampling site contravene the water quality guidelines listed in Table 1. WWTPs with entries in this column may be considered sources of water quality problems.

The third column of Table 3 lists those analytes for which the WWTP was found by this test to be a significant source, but whose mean concentrations at the downstream site do not contravene the Table 1 guidelines. For these analytes, the WWTP can be considered to be a significant source, but not a significant problem.

New York State does not have a numeric water quality standard for phosphorus. In the past, DEP has used the DEC phosphorus guidance value of $20~\mu g~L^{-1}$ when determining Phosphorus Restricted Basins and the Phase I TMDLs. The Phase II TMDLs, which were approved by EPA in October 2000, incorporate a site-specific guidance value of $15~\mu g~L^{-1}$ for source water reservoirs (New Croton, Cross River, Croton Falls, Kensico, West Branch, Rondout and Ashokan), and apply the existing New York State guidance value of $20~\mu g~L^{-1}$ for upstream reservoirs. For this stream water analysis, a $50~\mu g~L^{-1}$ guidance value is used. This value, intended to protect downstream impoundments from eutrophication, was taken from the Federal Water Quality Criteria "Gold Book", and has been accepted by New York State.

If a reservoir is listed as phosphorus restricted ("P-restricted") as of this report's time frame, it is so noted in Table 2. DEC removed Cannonsville Reservoir from the list of phosphorus restricted reservoirs in 2002, and added Bog Brook Reservoir and New Croton Reservoir in 2002 and 2004 respectively. Two phosphorus restricted reservoirs in the Croton System, Diverting and Bog Brook Reservoirs, are not listed in Table 2 because, for 2010, they had no stream sites meeting the criteria for inclusion.

3. Discussion

For the year 2010, 1,978 samples from 123 stream sample sites were analyzed. Of these, 50 sites are listed in Table 2. As in previous Addendum E water quality reports, most of the sites listed in Table 2 are there because of intermittently high concentrations ("spikes") of coliform bacteria, from sources other than WWTPs. See "Likely sources" in Table 2.)

Regarding pollutants from WWTPs, Addendum E analysis since 1997 has shown that sites downstream of WWTPs have often had excess total phosphorus (TP) concentrations. For 2010, however, only 5 stream sample site had a mean TP>50 μ g L⁻¹ and 2 are located downstream of a WWTP. These low numbers continue to indicate a significant reduction in phosphorus loading in general, and in particular from WWTPs.

Previous Addendum E reports have shown by t-test analysis that, as each plant has been upgraded, it is no longer a source of unacceptably high levels of phosphorus, and is therefore no longer listed for phosphorus in the second column of Table 3. For 2010, of the 11 WWTPs analyzed by this method all plants have been upgraded. Yorktown Heights WWTP was the last to be upgraded, and is no longer listed in the second column of Table 3. For the first time since the report was started there are no entries in Table 3, another sign of improved water quality.

Addendum E reports for 1998 through 2009 reported that stream sample sites with mean TP>50 μ g L⁻¹ often exhibited a significant correlation between phosphorus and turbidity measurements (Spearman's correlation analysis, at p<0.1). In 2010, there were two sites with mean TP>50 μ g L⁻¹ and with sufficient turbidity data required to perform the analysis. Two sites exhibited a significant correlation between phosphorus and turbidity measurements, which has decreased from four sites in 2009. Due to improved water quality, the number of sites still available for this analysis is low. However, the TP/turbidity correlation continues to suggest that management strategies, such as stormwater retrofit and whole farm planning that reduce turbidity and/or suspended solids also mitigate non-point source TP loading.

Table 2. List of routine stream sampling sites with contraventions of water quality guidelines in 2010.

Reservoir basin	Site	Mean contravened water quality guidelines	Number of samples contravening spike threshold	Likely sources	Notes
East-of-Hudson					
Kensico	E10		1-fecal coli.; 5-total coli.	highway runoff; wildlife	Site not sampled for nutrients.
	E11		3-fecal coli.; 4-total coli.	urban runoff; wildlife	
	E9		3-fecal coli.; 3-total coli.	urban runoff; wildlife	Site not sampled for nutrients.
	MB-1		2-fecal coli.; 2-total coli.	urban runoff; wildlife	
	N5-1	ТР	2-fecal coli.; 4-total coli.	urban runoff; wildlife	Significant TP/turbidity correlation. Benthic monitoring '97: slightly impaired.
	N12	total coli.	4-fecal coli.; 6-total coli.	urban runoff; wildlife	
	WHIP		1-total coli.	urban runoff; wildlife	Benthic monitoring '05, '09 - slightly impaired. '10 – not sampled for benthic monitoring.
	BG9		2-fecal coli.; 2-total coli.	urban runoff; wildlife	
New Croton (P-restricted)	HUNTER1		2-fecal coli.; 5-total coli.	urban runoff; wildlife	Benthic monitoring '00, '01, '02, '03, '04, '05, '06, '07, '08, '09, '10 - slightly impaired.

Table 2. List of routine stream sampling sites with contraventions of water quality guidelines in 2010.

Reservoir basin	Site	Mean contravened water quality guidelines	Number of samples contravening spike threshold	Likely sources	Notes
New Croton (P-restricted)	CORNELL1	<u> </u>	7-fecal coli.; 11-total coli.	urban runoff; wildlife	Site sampled for bact. only.
	САТНҮ7		4-fecal coli.; 9-total coli.	urban runoff; wildlife; construction site	Site sampled for bact. only. Benthic monitoring '05, '06 - slightly impaired.
	FRENCH5		4-fecal coli.; 7-total coli.	urban runoff; wildlife	Site sampled for bact. only.
	COLABAUGH1		4-fecal coli.; 9-total coli.	urban runoff; wildlife	Site sampled for bact. only.
	ILLINGTON1		2-fecal coli.; 6-total coli.	urban runoff; wildlife	Site sampled for bact. only.
	KITCHAWAN1		4-fecal coli.; 9-total coli.	urban runoff; wildlife	Site sampled for bact. only.
	NCBAILEY1		5-fecal coli.; 5-total coli.	urban runoff; wildlife	Site sampled for bact. only. Benthic monitoring '05, '06 - slightly impaired.
	PURDY1		6-total coli.	urban runoff; wildlife	Site sampled for bact. only.
	SAWMILL1		7-fecal coli.; 5-total coli.	urban runoff; wildlife	Site sampled for bact. only. Benthic monitoring '05 - slightly impaired.
	GEDNEY3		4-fecal coli.; 8-total coli.	urban runoff; wildlife	Site sampled for bact. only.
	WHITE2		5-fecal coli.; 11-total coli.	urban runoff; wildlife	Site sampled for bact. only.
	KISCO3		9-fecal coli.; 7-total coli.	urban runoff; wildlife	Benthic monitoring '95, '96, '01, '06 - slightly impaired.

Table 2. List of routine stream sampling sites with contraventions of water quality guidelines in 2010.

Reservoir basin	Site	Mean contravened water quality guidelines	Number of samples contravening spike threshold	Likely sources	Notes
Muscoot (P-restricted)	HMILL1		1-рН	urban runoff; wildlife	Small no.of samples: n=1. Located below Yorktown Heights WWTP. Benthic monitoring '07, '10 - moderately impaired; '08, '09 - slightly impaired.
	HMILL7	total coli.	10-fecal coli.; 13-total coli.; 1-pH	urban runoff; wildlife	Located above Yorktown Heights WWTP. Benthic monitoring: '94, '98, '99, '07, '08, '09, '10 –slightly impaired; '95, '00, '04, '06 – moderately impaired. Site not sampled for nutrients.
	HMILL4		13-fecal coli.; 10-total coli.; 1-pH	municipal WWTP; urban runoff, wildlife	Located below Yorktown Heights WWTP. Benthic monitoring: '94, '98, '06, '08 – moderately impaired; '95, '99, '00, '07 – severely impaired; '09, '10 - slightly impaired. Site not sampled for nutrients.
	MUSCOOT5		3-fecal coli.; 6-total coli.	municipal WWTP; urban runoff; wildlife	Located below Yorktown Heights WWTP. Benthic monitoring: '95- moderately impaired; '96, '99, '01, '06 – slightly impaired.

Table 2. List of routine stream sampling sites with contraventions of water quality guidelines in 2010.

Reservoir basin	Site	Mean contravened water quality guidelines	Number of samples contravening spike threshold	Likely sources	Notes
Muscoot (P-restricted)	PLUM2		1-fecal coli.; 5-total coli.	urban runoff; wildlife	Benthic monitoring: '98 – moderately impaired; '99, '00, '04 – slightly impaired.
	STONE5	TP	5-fecal coli.; 6-total coli.	WWTP; urban runoff; wildlife	Downstream from WWTP on Broad Brook; Benthic monitoring upstream: '97, '98, '01, '02, '04, '05, '06, '07, '08, '10 - slightly impaired;
	HOLLY12		7-fecal coli.; 5-total coli.	urban runoff; wildlife	Site located in Town of Southeast, on Holly stream.
Cross River	CROSS2		7-fecal coli.; 8-total coli.	wildlife	Site located in Ward Pound Reservation (county park).
	MUSCOOT 9		1-рН	urban runoff; wildlife	Small no.of samples: n=1. Site located in Town of Somers, on Muscoot River. Benthic monitoring '09, '10 – slightly impaired.
Amawalk (P-restricted)	MUSCOOT 10	ТР	6-fecal coli.; 9-total coli.	urban runoff; wildlife	Significant TP/turbidity correlation. Benthic monitoring '06 – slightly impaired.

Table 2. List of routine stream sampling sites with contraventions of water quality guidelines in 2010.

Reservoir basin	Site	Mean contravened water quality guidelines	Number of samples contravening spike threshold	Likely sources	Notes
Titicus (P-restricted)	TITICUS3		5-fecal coli.; 5-total coli.	urban runoff; wildlife	
Croton Falls (P-restricted)	MIKE2	fecal coli.; TP	10-fecal coli.; 11-total coli	municipal WWTP; wildlife, agriculture	Located below Carmel #2 WWTP; Benthic monitoring '99, '00, '05, '10 – slightly impaired.
Middle Branch (P-restricted)	MIDBR3	ТР	7-fecal coli.; 9-total coli.	urban runoff; wildlife	Benthic monitoring upstream: '00, '01, '10 – slightly impaired.
East Branch (P-restricted)	EASTBR		6-fecal coli.; 8-total coli.	urban runoff; wildlife	Benthic monitoring '06, '08, '09, '10 – slightly impaired.
	HH7		2-fecal coli.; 3-total coli.	urban runoff; wildlife	Large no.of samples: n=34.
	MUDTRIB1		8-fecal coli.; 6-total coli.; 1-pH	urban runoff, wildlife; WWTPs	Located below Patterson V. and Cornwall Meadows WWTPs. Site not sampled for nutrients.
	BB5		4-fecal coli.; 7-total coli.	urban runoff; wildlife	Benthic monitoring: '94, '95, '98, '99, '00, '01, '02, '03, '05, '08, '10 - slightly impaired. '04 – moderately impaired. Site not sampled for nutrients.
West Branch	GYPSYTRL1		4-fecal coli.; 8-total coli.	urban runoff; wildlife	Benthic monitoring: '00, '01, '09 – slightly impaired.

Table 2. List of routine stream sampling sites with contraventions of water quality guidelines in 2010.

Reservoir basin	Site	Mean contravened water quality guidelines	Number of samples contravening spike threshold	Likely sources	Notes
West Branch	LONGPD1	_	5-fecal coli.; 4-total coli.	urban runoff; wildlife	Benthic monitoring: '00, '03, '10 - slightly impaired.
	HORSEPD12		5-fecal coli.; 6-total coli.		Benthic monitoring: '10 - slightly impaired.
	WESTBR7		2-fecal coli.; 2-total coli.	urban runoff; wildlife	
	LEETOWN3		2-fecal coli.; 9-total coli.	urban runoff; wildlife	
Catskill District					
Schoharie	S10		1-fecal coli.	urban runoff; wildlife	Benthic monitoring '06 – not impaired; '08, '09, '10 - slightly impaired.
Delaware District					
Cannonsville	WDHOA		2-fecal coli.	urban runoff; agriculture; wildlife.	
Neversink	NK6		1-fecal coli.	acid precipitation	
	NK4	pH (acid)	1-рН	wildlife	Benthic monitoring '08, '10 – slightly impaired.
	NCG	pH (acid)	1-pH	acid precipitation	
Rondout	RRHG	pH (acid)	1-рН	acid precipitation	Benthic monitoring '06 – slightly impaired.
	RGB	pH (acid)	1-рН	acid precipitation	Benthic monitoring '06 – slightly impaired.

Table 3. WWTPs shown by t-tests of upstream/downstream sampling to be sources of contraventions of water quality standards at the downstream site for 2010.

WWTP (and upstream/downstream sample sites)	Parameters excessively contributed to by WWTP, and the mean at downstream site contravenes Table 1 guidelines.	Parameters excessively contributed to by WWTP, but the mean at downstream site does not contravene Table 1 guidelines.
Yorktown Heights (HMILL7 / HMILL4)	none	none
Margaretville (PMSA / PMSB)	ш	"
Pine Hill (E3 / E15)	u	· ·
Grand Gorge (S8 / S9)	u	u
Tannersville (S1 / S2)	u	"
Hobart (WDHOM / WDHOB)	u	и
Delhi (DTPA / DTPB)	u	"
Walton (WSPA / WSPB)	ш	ш
Mountainside (DCDA / DCDB) (Subsurface Industrial Discharge)	"	"
Grahamsville (RGA / RGB)	"	· ·
Roxbury Run (EDRA / EDRB)	u	"
Stamford (WDSTM / WDSTB)	· ·	"

APPENDIX A. SUMMARY STATISTICS FOR EACH SAMPLING SITE FOR 2010.

The four lines for each site display, respectively, n (number of samples), maximum, minimum, and mean values (in boldface). Where "nd" is noted next to a value, the minimum (and occasionally the maximum) was below detection and the displayed value is one-half the detection limit, which was the quantity used to calculate mean concentrations. Coliform values listed as "too numerous to count" in the dataset were not used in the summary statistics.

site	PH (fecal coliform CFU 100ml ⁻¹)	total coliform p (CFU 100ml ⁻¹	total phosphorus) (µg l ⁻¹)	dissolved oxygen (mg 1 ⁻¹)	ammonia	nitrate- nitrite (mg l ⁻¹)
East-of-Huds	on Distri	.ct					
BB5	2 7.8 7.71 7.755	24 910 3(nd) 64	24 16000 160 959	0	2 12.93 8.7 10.8	0	0
BG9	11 7.5 6.7 7.155	12 800 2(nd) 35	12 3000 83(nd) 670	11 57 8(nd) 25.7	11 12.77 1.38 8.64	3 0.048 0.01(nd) 0.0317	10 0.604 0.01(nd) 0.3082(nd)
САТНҮ7	0	23 350 4(nd) 46	24 8700 140 1549	0	0	0	0
COLABAUGH1	0	24 1200 1(nd) 40	24 24000 80(nd) 1100	0	0	0	0
CORNELL1	0	24 1240 7 122	24 13000 250 1249	0	0	0	0
CROSS2	12 7.92 7.35 7.736	24 460 3(nd) 65	24 7000 83 1497	12 39 11 25.2	11 19.08 9.09 12.4	3 0.01(nd) 0.01(nd) 0.0100(nd	12 0.416 0.018) 0.1885
E10	12 7.89 7.33 7.653	12 250 5 45	12 4700 83(nd) 1140	0	10 14.58 7.76 11.4	0	0
E11	12 7.64 7.12 7.387	11 350 2(nd) 27	12 15000 50(nd) 1157	12 60 13 31.8	11 13.41 1.7 7.79	3 0.01(nd) 0.01(nd) 0.0100(nd	11 0.443 0.01(nd) 0.1359

APPENDIX A. SUMMARY STATISTICS FOR EACH SAMPLING SITE FOR 2010.

site	рН	fecal coliform CFU 100ml ⁻¹)	total coliform (CFU 100ml	total phosphorus 1) (µg l ⁻¹)	dissolved oxygen (mg l ⁻¹)	ammonia	nitrate- nitrite (mg l ⁻¹)
E9	10 7.15 6.7 6.950	9 2700 2 64	10 26000 83 1349	0	9 13.38 2.14 6.11	0	0
EASTBR	13 7.6 7.02 7.245	24 1300 2(nd) 55	24 25000 8(nd) 949	12 96 12 43.7	13 13.11 3.85 8.38	3 0.01(nd) 0.01(nd) 0.0100(nd	
FRENCH5	0	24 1200 1(nd) 36	24 11000 100 1049	0	0	0	0
GEDNEY3	0	24 780 8(nd) 54	24 16000 250(nd) 1649	0	0	0	0
GYPSYTRL1	11 8.02 6.9 7.256	23 780 3(nd) 46	22 7700 50(nd) 1304	12 133 12 30.2	12 14.8 8 10.9	3 0.01(nd) 0.01(nd) 0.0100(nd	
нн7	12 7.8 7.28 7.555	24 550 3(nd) 38	24 11000 50(nd) 710	12 23 7 11.8	12 15.66 7.72 11.5	3 0.01(nd) 0.01(nd) 0.0100(nd	0.105
HMILL1	1 7.76 7.76 7.760	0	0	0	1 10.3 10.3	0	0
HMILL4	1 7.6 7.6 7.600	24 6900 16 176	24 7600 130 2249	0	1 8.2 8.2 8.20	0	0
HMILL7	1 7.8 7.8 7.800	24 1300 18 157	24 8300 83 2700	0	1 8.2 8.2 8.20	0	0

APPENDIX A. SUMMARY STATISTICS FOR EACH SAMPLING SITE FOR 2010.

site	рН (fecal coliform CFU 100ml ⁻¹)	total coliform p (CFU 100ml ⁻¹	total phosphorus) (µg 1 ⁻¹)	dissolved oxygen (mg 1 ⁻¹)	total ammonia (mg l ⁻¹)	nitrate- nitrite (mg l ⁻¹)
HOLLY12	12	17	17	12	12	3	12
	7.74	2200	40000	58	15.24	0.01(nd)	0.805
	7.24	12	170	16	7.62	0.01(nd)	0.389
	7.563	150	1300	29.0	11.3	0.0100(nd)0.5867
HORSEPD12	12 8.2 7.2 7.639	24 830 1(nd) 32	24 8600 83(nd) 800	12 193 9 34.4	13 15 8.7 11.4	3 0.01(nd) 0.01(nd) 0.0100(nd	
HUNTER1	12	24	24	12	11	3	12
	8.03	350	20000	57	15.81	0.01(nd)	0.862
	7.59	8	83(nd)	8	8.42	0.01(nd)	0.282
	7.798	54	670	24.6	11.3	0.0100(nd)0.5791
ILLINGTON1	0	24 630 3(nd) 35	24 4700 170(nd) 746	0	0	0	0
KISCO3	12	24	24	12	11	3	12
	7.69	500	6870	104	14.84	0.01(nd)	1.047
	6.46	20	83(nd)	7	8.08	0.01(nd)	0.307
	7.418	123	1000	38.1	11.5	0.0100(nd)0.6598
KITCHAWAN1	0	24 510 5(nd) 66	24 11000 100(nd) 1140	0	0	0	0
LEETOWN3	12 7.8 6.29 7.340	24 530 1(nd) 17	24 14000 45(nd) 1775	12 94 11 27.6	12 13.9 6.3 10.4	3 0.01(nd) 0.01(nd) 0.0100(nd	12 0.462 0.01(nd)
LONGPD1	13	24	24	12	13	3	12
	7.9	1350	15000	59	14	0.037	0.487
	7.3	1(nd)	83	9	8.38	0.01(nd)	0.028
	7.653	51	735	25.4	11.1	0.0190(nd) 0.2036
MB-1	12	12	12	12	12	3	11
	7.56	3300	15000	97	14.75	0.049	0.681
	7.1	5(nd)	250(nd)	14	6.8	0.01(nd)	0.029
	7.367	49	843	36.9	10.3	0.0230	0.3101

APPENDIX A. SUMMARY STATISTICS FOR EACH SAMPLING SITE FOR 2010.

site	рН	fecal coliform (CFU 100ml ⁻¹)	total coliform (CFU 100ml	total phosphorus 1) (µg l ⁻¹)	dissolved oxygen (mg l ⁻¹)	total ammonia (mg l ⁻¹)	nitrate- nitrite (mg 1 ⁻¹)
MIDBR3	11	24	24	12	12	3	12
	8.7	830	16000	144	14.9	0.038	0.677
	7.2	7	170(nd)	17	8.6	0.01(nd)	0.048
	7.853	111	2145	50.4	11.5	0.0193(nd)0.3636
MIDBR4	1 8 8 8.000	0	0	0	1 9.1 9.1 9.10	0	0
MIKE2	12	24	24	12	13	3	12
	8.4	11000	28000	98	15.3	0.064	9.721
	7	13	83	20	8.19	0.01(nd)	0.721
	7.698	207	2300	53.7	11.2	0.0280	2.5978
MUDTRIB1	1 7.71 7.71 7.710	24 6800 5 96	22 29000 170 1049	0	1 12.36 12.36 12.4	0	0
MUSCOOT10	12	24	24	12	12	3	12
	7.7	11000	38000	135	13.4	0.065	2.196
	7	4	83(nd)	25	4.22	0.01(nd)	0.239
	7.335	133	1597	58.2	9.21	0.0340	0.8019
MUSCOOT5	12	24	24	12	11	3	12
	8.12	560	4000	41	15.17	0.01(nd)	2.223
	7.15	4	83(nd)	14	9.77	0.01(nd)	0.75
	7.753	59	1140	23.2	12.1	0.0100(nd)1.2286
MUSCOOT9	1 7.8 7.8 7.800	0	0	0	1 10.1 10.1 10.1	0	0
N12	12	12	12	12	12	3	11
	8.22	670	9000	28	13.89	0.01(nd)	1.714
	7.12	10	83	9	8.6	0.01(nd)	0.516
	7.789	107	2683	16.8	11.4	0.0100(nd)1.0178
N5-1	12	12	12	12	12	3	11
	7.78	5300	25000	164	15.47	0.01(nd)	1.909
	7.22	16(nd)	140(nd)	13	0.8	0.01(nd)	0.058
	7.463	82	911	67.4	9.04	0.0100(nd)0.9340

APPENDIX A. SUMMARY STATISTICS FOR EACH SAMPLING SITE FOR 2010.

site	рН	fecal coliform (CFU 100ml ⁻¹)	total coliform (CFU 100ml	total phosphorus 1) (µg l ⁻¹)	dissolved oxygen (mg l ⁻¹)	ammonia	nitrate- nitrite (mg l ⁻¹)
NCBAILEY1	0	24 4200 5 56	24 8000 180 1449	0	0	0	0
PLUM2	12	24	24	12	11	3	12
	8.09	230	8300	66	14.98	0.01(nd)	1.324
	7.55	2(nd)	50(nd)	14	7.29	0.01(nd)	0.531
	7.802	28	665	29.3	11.7	0.0100(nd)0.8378
PURDY1	0	23 200 1(nd) 26	23 10000 160 1000	0	0	0	0
SAWMILL1	0	23 3100 3(nd) 61	24 9500 100(nd) 970	0	0	0	0
STONE5	13	23	24	11	12	3	12
	8.19	560	8670	139	14.91	0.01(nd)	2.619
	7.24	20	50(nd)	16(nd)	8.8	0.01(nd)	0.627
	7.845	92	1300	50.2	11.9	0.0100(nd)1.1052
TITICUS3	12	24	24	12	12	3	12
	8.6	5400	60000	95	15.28	0.01(nd)	0.92
	7.38	5	120	15	7.16	0.01(nd)	0.136
	7.918	82	1300	32.7	11.7	0.0100(nd) 0.4672
WESTBR7	13	24	24	12	13	3	12
	7.7	410	3700	25	15	0.01(nd)	0.249
	7.2	2(nd)	50(nd)	8	7.9	0.01(nd)	0.01(nd)
	7.501	24	809	13.9	10.8	0.0100(nd)0.0652
WHIP	12	12	12	12	12	3	11
	7.93	160	3300	33	14.07	0.01(nd)	1.412
	7.34	5(nd)	83(nd)	8	8.9	0.01(nd)	0.581
	7.675	26	1000	19.0	11.2	0.0100(nd)0.9286
WHITE2	0	24 1200 1(nd) 39	24 19000 83 1442	0	0	0	0

APPENDIX A. SUMMARY STATISTICS FOR EACH SAMPLING SITE FOR 2010.

site	рН	fecal coliform (CFU 100ml ⁻¹	total coliform)(CFU 100ml	total phosphorus 1) (µg l ⁻¹)	dissolved oxygen (mg 1 ⁻¹)	ammonia	nitrate- nitrite (mg 1 ⁻¹)
CATSKILL	DISTRICT						
ABCG	10 8.08 7.04 7.532	9 120 1(nd) 5	0	10 30 9 17.3	9 14.9 10.21 11.9	10 0.01(nd) 0.01(nd) 0.0100(nd	
AEHG	7 7.74 6.14 6.833	6 10 1(nd) 2(nd)	0	8 13 2.5(nd) 7.7	7 14.17 9.27 12.2	8 0.01(nd) 0.01(nd) 0.0100(nd	8 1.01 0.18)0.3838
ASCHG	12 8.02 6.62 7.074	10 50 1(nd) 3(nd)	0	12 18 6 11.5	11 14.35 10.53 12.2	12 0.01(nd) 0.01(nd) 0.0100(nd	12 0.64 0.23) 0.4133
ВК	12 8.3 7.25 7.610	11 100 1(nd) 3	0	12 37 5 13.8	11 18.59 9.84 12.5	12 0.01(nd) 0.01(nd) 0.0100(nd	12 0.22 0.01(nd))0.0775
BNV	11 7.8 7.08 7.426	11 70 1(nd) 5	0	12 17 10 13.2	11 15.1 10.42 12.8	12 0.01(nd) 0.01(nd) 0.0100(nd	12 0.36 0.11)0.2383
BRD	11 7.72 7.03 7.405	11 50 1(nd) 5(nd)	0	12 100 7 25.2	11 15.53 9.66 12.6	12 0.01(nd) 0.01(nd) 0.0100(nd	0.01(nd)
E10I	12 7.78 6.86 7.365	11 100 1(nd) 6	0	12 10 5 7.8	11 15.16 9.64 12.2	12 0.01(nd) 0.01(nd) 0.0100(nd	12 0.17 0.01(nd))0.0858
E16I	11 8.45 7.08 7.705	11 100 2(nd) 14	0	11 41 6 15.7	11 16.64 10.35 13.2	11 0.01(nd) 0.01(nd) 0.0100(nd	11 0.33 0.08) 0.1736
€5	11 8.53 7.04 7.564	11 50 1(nd) 5	0	12 33 7 12.9	11 15.54 9.91 12.7	12 0.01(nd) 0.01(nd) 0.0100(nd	12 0.29 0.01(nd)

APPENDIX A. SUMMARY STATISTICS FOR EACH SAMPLING SITE FOR 2010.

site	Нд	fecal coliform (CFU 100ml ⁻¹)	total coliform (CFU 100ml	total phosphorus 1) (µg l ⁻¹)	oxygen	ammonia	nitrate- nitrite (mg l ⁻¹)
LBK	12 7.89 7.03 7.462	12 200 1 7	0	12 14 6 10.4	11 17.08 9.69 12.4	12 0.01(nd) 0.01(nd) 0.0100(nd	12 0.12 0.01(nd)
S10	10 8.07 6.74 7.523	11 240 1(nd) 13	0	11 92 6 19.5	8 14.68 10.75 12.5	11 0.04 0.01(nd) 0.0145(nd	11 0.49 0.01(nd)
S4	11 7.93 6.59 7.238	10 88 1(nd) 9	0	12 30 2.5(nd) 8.3	9 15.39 11.37 13.0	12 0.01(nd) 0.01(nd) 0.0100(nd	12 0.45 0.01(nd)
S5I	8 8.18 6.92 7.576	9 80 1(nd) 13	0	9 39 5 12.0	6 13.12 10.03 11.9	9 0.02 0.01(nd) 0.0111(nd	9 0.19 0.01(nd)
S6I	11 8.48 7.12 7.717	9 108 1(nd) 12	0	12 77 10 27.4	9 16.47 9.66 13.0	12 0.03 0.01(nd) 0.0125(nd	12 1.45 0.06 1)0.4608
S7I	11 8.04 7.34 7.676	11 96 1(nd) 10	0 .	12 43 5 14.0	9 16.23 9.84 12.7	12 0.01(nd) 0.01(nd) 0.0100(nd	12 0.24 0.01(nd)
SBKHG	12 7.72 6.55 6.898	9 28 1(nd) 2	0	12 22 6 11.4	9 14.71 10.37 12.3	12 0.01(nd) 0.01(nd) 0.0100(nd	12 0.53 0.14 1)0.3175
SCL	12 9.03 7.05 7.703	12 100 1(nd) 12	0	12 67 7 24.8	11 18.01 10.66 13.0	12 0.01(nd) 0.01(nd) 0.0100(nd	12 0.41 0.01(nd)
SCL-A	11 7.69 6.91 7.229	0	0	0	11 21.3 10.96 13.5	0	0

APPENDIX A. SUMMARY STATISTICS FOR EACH SAMPLING SITE FOR 2010.

site	Нд	fecal coliform (CFU 100ml ⁻¹)	total coliform (CFU 100ml	total phosphorus 1) (µg l ⁻¹)	dissolved oxygen (mg l ⁻¹)	total ammonia (mg l ⁻¹)	nitrate- nitrite (mg l ⁻¹)
SCL-B	10 7.71 7.07 7.365	0	0	0	10 19.21 10.9 13.0	0	0
SEK	11 7.98 6.67 7.365	11 50 1(nd) 6	0	11 27 2.5(nd) 7.9	9 16.21 9.33 13.0	11 0.01(nd) 0.01(nd) 0.0100(nd	
SSHG	12 7.24 6.05 6.683	10 60 1(nd) 2	0	12 14 2.5(nd) 7.6	9 15.18 8.76 12.3	12 0.01(nd) 0.01(nd) 0.0100(nd	12 0.33 0.01(nd)
SSMA	11 7.61 6.31 6.868	7 16 1(nd) 3	0	11 12 2.5(nd) 7.6	9 15.87 10.13 13.0	11 0.01(nd) 0.01(nd) 0.0100(nd	11 0.23 0.01(nd))0.0855
SSMB	12 7.37 6.54 6.959	10 100 1(nd) 12	0	12 14 2.5(nd) 8.0	9 16.01 9.8 13.3	12 0.01(nd) 0.01(nd) 0.0100(nd	12 0.36 0.01(nd)
STHHG	10 7.57 6.88 7.210	9 68 1(nd) 5	0	11 37 10 20.2	8 15.11 9.82 12.3	11 0.01(nd) 0.01 (nd) 0.0100(nd	
SWK	11 8.12 7.01 7.588	9 44 1(nd) 8	0	11 84 2.5(nd) 18.4	8 16.7 9.65 12.1	11 0.01(nd) 0.01(nd) 0.0100(nd	
SWKHG	12 7.18 6.4 6.858	9 24 1(nd) 2	0	12 13 5 9.5	9 15.32 9.99 12.4	12 0.01(nd) 0.01(nd) 0.0100(nd	12 0.37 0.12)0.2567
WDL	11 8.49 6.87 7.443	12 88 1(nd) 10	0	12 86 6 23.8	11 16.17 9.3 12.3	12 0.01(nd) 0.01(nd) 0.0100(nd	12 0.3 0.06) 0.1592

APPENDIX A. SUMMARY STATISTICS FOR EACH SAMPLING SITE FOR 2010.

site	рН		total coliform (CFU 100ml ⁻¹	phosphorus	dissolved oxygen (mg l ⁻¹)	ammonia	nitrate- nitrite (mg 1 ⁻¹)
DELAWARE DI	STRICT						
C-7	11 7.79 6.74 7.100	11 290 1 24	0	12 27 9 15.0	12 13.64 9.72 11.5	12 0.05 0.01(nd) 0.0133(nd	12 0.45 0.13)0.2725
C-8	11 7.52 6.69 7.211	12 200 3 23	0	12 25 7 15.8	12 16.14 8.67 11.3	12 0.02 0.01(nd) 0.0117(nd	
CCBHG	10 7.48 6.66 6.876	9 140 1(nd) 10	0	11 70 10 20.6	11 13.07 7.39 10.6	11 0.01(nd) 0.01(nd) 0.0100(nd)	11 0.82 0.2)0.4255
CDG	4 8.51 6.9 7.480	4 240 8 30	0	4 44 14 23.8	4 13.61 9.73 11.8	4 0.01(nd) 0.01(nd) 0.0100(nd)	0.34
CDG1	7 8.72 6.95 7.621	8 180 2 20	0	8 44 18 28.5	8 13.41 8.77 11.2	8 0.02 0.01(nd) 0.0113(nd)	
CEBG	11 7.8 6.73 7.250	12 360 3 31	0	12 22 5 12.7	12 14.59 8.83 11.5	12 0.02 0.01(nd) 0.0117(nd)	
CEBHG	11 7.06 6.64 6.825	10 90 1(nd) 8	0	12 51 7 17.7	12 14.2 7.47 10.6	12 0.02 0.01(nd) 0.0108(nd)	
CLDG	11 8.84 6.92 7.670	11 370 1 17	0	12 34 10 19.0	12 14.44 8.46 11.4	12 0.01(nd) 0.01(nd) 0.0100(nd)	12 0.53 0.025(nd))0.2483
CTNBG	11 8.19 6.98 7.501	11 140 1(nd) 14	0	12 41 12 24.4	12 13.72 8.6 11.2	12 0.01(nd) 0.01(nd) 0.0100(nd	12 0.67 0.025(nd))0.2767

APPENDIX A. SUMMARY STATISTICS FOR EACH SAMPLING SITE FOR 2010. The four lines for each site display, respectively, n (number of samples), maximum, minimum, and mean values (in boldface). Where "nd" is noted next to a value, the minimum (and occasionally the maximum) was below detection and the displayed value is one-half

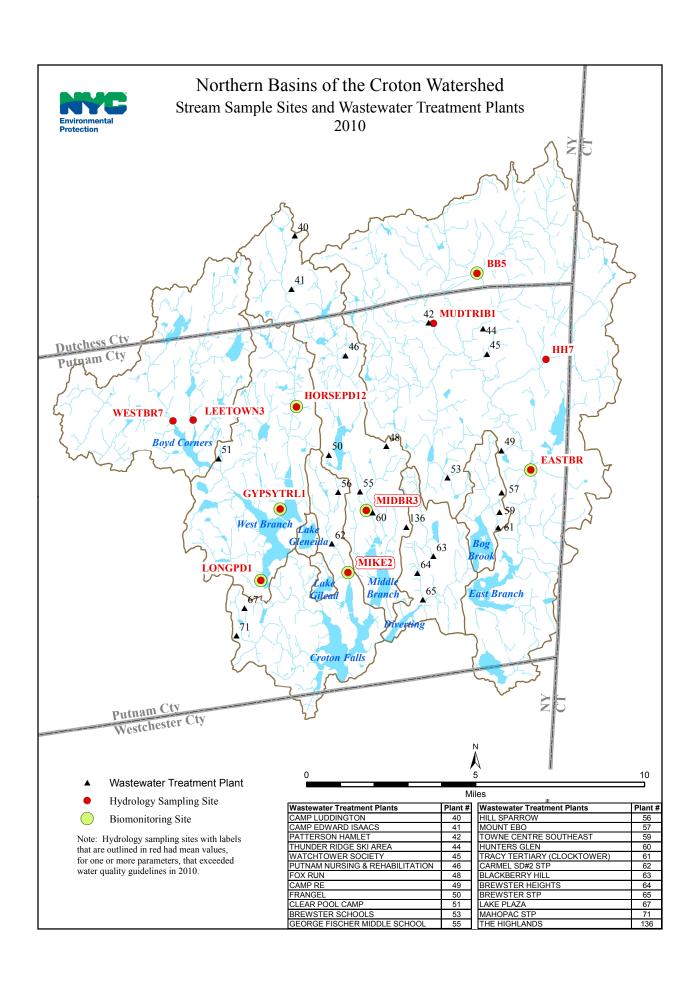
the detection limit, which was the quantity used to calculate mean concentrations. Coliform values listed as "too numerous to count" in the dataset were not used in the summary statistics.

site	рН	fecal coliform (CFU 100ml ⁻¹	total coliform (CFU 100ml	total phosphorus 1) (µg l ⁻¹)	dissolved oxygen (mg l ⁻¹)	total ammonia (mg 1 ⁻¹)	nitrate- nitrite (mg 1 ⁻¹)
CTNHG	10 6.97 6.76 6.875	8 39 1(nd) 7	0	11 32 10 20.1	11 13.34 8.27 10.8	11 0.01(nd) 0.01(nd) 0.0100(nd	11 0.62 0.29)0.4082
CWBA	11 8.19 6.96 7.458	11 210 2 16	0	12 48 18 29.5	12 13.45 8.61 11.2	12 0.12 0.01(nd) 0.0200(nd	12 0.63 0.1)0.3242
CWBB	11 8.24 7.03 7.541	10 200 3 30	0	12 74 18 33.6	12 13.43 8.89 11.3	12 0.08 0.01(nd) 0.0175(nd	12 0.68 0.15)0.3833
NCG	12 6.63 5.71 6.307	10 40 1 9	0	12 10 2.5(nd) 5.7	12 19.73 9 11.6	12 0.02 0.01(nd) 0.0108(nd	12 0.27 0.08) 0.1600
NK4	12 6.72 5.71 6.383	6 93 1(nd) 6	0	12 8 2.5(nd) 4.9	12 13.86 5.91 10.6	12 0.01(nd) 0.01(nd) 0.0100(nd	12 0.32 0.05) 0.1458
NK6	12 6.8 6.11 6.552	10 290 1(nd) 28	0	13 135 16 31.1	12 13.17 8.59 10.6	12 1.25 0.01(nd) 0.1225	12 0.68 0.3 0.4900
P-13	12 7.72 7 7.303	11 120 2 15	0	12 17 7 13.8	12 20.87 8.84 12.1	12 0.02 0.01(nd) 0.0117(nd	12 0.57 0.1)0.2842
P-21	12 8.57 6.97 7.698	12 48 1 8	0	12 22 8 14.8	12 20.61 9.14 12.2	12 0.02 0.01(nd) 0.0108(nd	12 0.44 0.05)0.2092
P-50	11 8.11 6.96 7.614	11 100 1(nd) 7	0	12 21 8 14.5	12 13.94 8.96 11.6	12 0.03 0.01(nd) 0.0117(nd	12 0.31 0.025(nd)

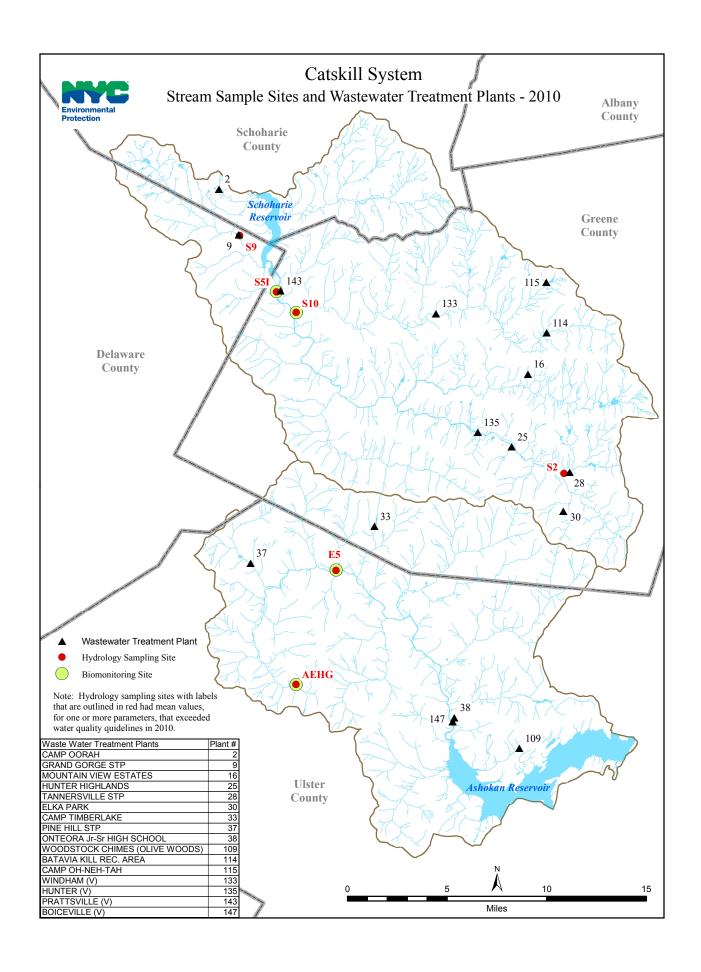
APPENDIX A. SUMMARY STATISTICS FOR EACH SAMPLING SITE FOR 2010. The four lines for each site display, respectively, n (number of samples), maximum, minimum, and mean values (in boldface). Where "nd" is noted next to a value, the minimum (and occasionally the maximum) was below detection and the displayed value is one-half

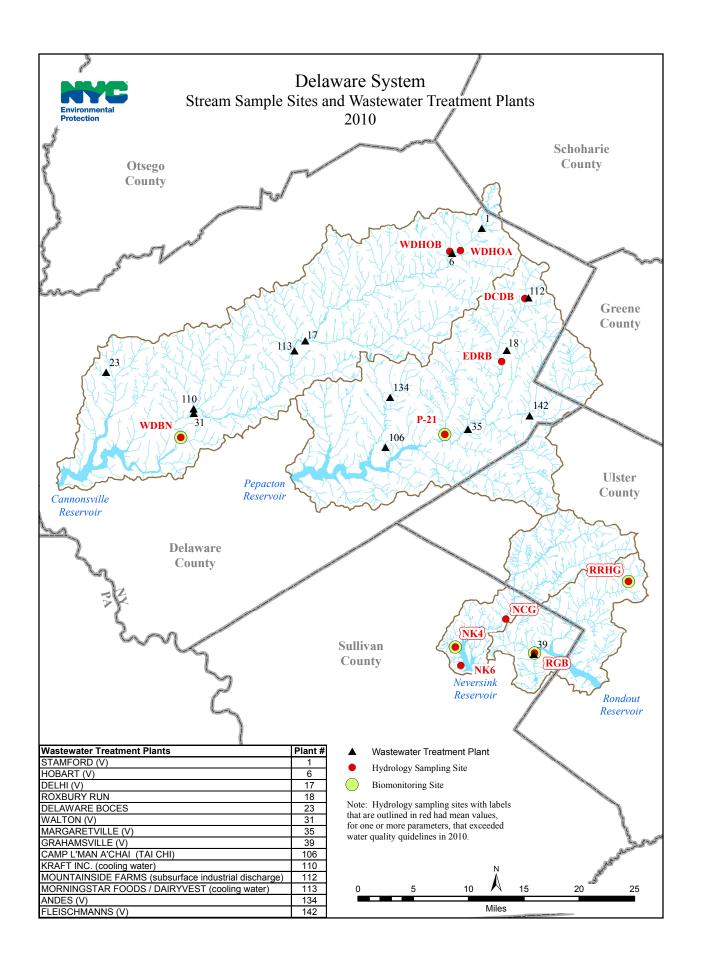
the detection limit, which was the quantity used to calculate mean concentrations. Coliform values listed as "too numerous to count" in the dataset were not used in the summary statistics.

site	рН	fecal coliform (CFU 100ml ⁻¹	total coliform (CFU 100ml	total phosphorus 1) (µg l ⁻¹)	dissolved oxygen (mg l ⁻¹)	total ammonia (mg 1 ⁻¹)	nitrate- nitrite (mg 1 ⁻¹)
P-60	12 7.88 6.53 7.404	10 22 1(nd) 5	0	12 9 2.5(nd) 6.1	12 20.13 9.12 12.1	12 0.01(nd) 0.01(nd) 0.0100(nd	12 0.44 0.1 1)0.2517
₽-7	12 7.79 7.03 7.365	12 150 1(nd) 25	0	12 34 13 20.1	12 19.13 8.76 11.9	12 0.02 0.01(nd) 0.0108(nd	12 0.56 0.1 1)0.3400
P-8	12 7.53 7.01 7.278	11 48 4 10	0	12 20 7 14.2	12 18.42 8.84 11.8	12 0.03 0.01(nd) 0.0133(nd	12 0.55 0.14 1)0.3258
PBKG	11 7.4 6.34 7.157	12 400 4 30	0	12 22 6 13.1	12 14.15 8.93 11.6	12 0.03 0.01(nd) 0.0117(nd	
PBRA	11 7.67 7.08 7.429	8 22 1 4	0	12 18 7 12.8	12 13.77 8.68 11.3	12 0.01(nd) 0.01(nd) 0.0100(nd	12 0.36 0.06 1)0.2067
PBRB	11 7.88 7.07 7.632	12 180 12 71	0	12 26 7 13.5	12 13.96 8.92 11.1	12 0.02 0.01(nd) 0.0108(nd	12 0.44 0.07 1)0.2267
PDRY	11 7.38 6.61 7.143	12 70 1(nd) 8	0	12 15 5 9.8	12 14.45 8.96 11.7	12 0.01(nd) 0.01(nd) 0.0100(nd	
PMSB	11 7.95 6.86 7.311	11 210 3 22	0	12 25 8 17.3	12 14.6 9.34 11.8	12 0.02 0.01(nd) 0.0108(nd	12 0.57 0.025(nd)
PROXG	10 7.06 6.67 6.882	12 400 1(nd) 16	0	12 81 22 40.8	11 12.66 8.29 10.6	12 0.04 0.01(nd) 0.0167(nd	12 0.41 0.13 1)0.2383


APPENDIX A. SUMMARY STATISTICS FOR EACH SAMPLING SITE FOR 2010. The four lines for each site display, respectively, n (number of samples), maximum, minimum, and mean values (in boldface). Where "nd" is noted next to a value, the minimum (and occasionally the maximum) was below detection and the displayed value is one-half


the detection limit, which was the quantity used to calculate mean concentrations. Coliform values listed as "too numerous to count" in the dataset were not used in the summary statistics.


site	рН (fecal coliform CFU 100ml ⁻¹)		total phosphorus (µg l ⁻¹)	dissolved oxygen (mg l ⁻¹)	ammonia	nitrate- nitrite (mg l ⁻¹)
RD1	11 7.06 6.47 6.727	11 44 1 10	0	12 18 8 13.4	11 13.41 8.71 11.4	12 0.02 0.01(nd) 0.0117(nd	12 0.21 0.025(nd))0.1079
RD4	11 7.2 6.31 6.779	8 20 1 4	0	12 31 6 10.7	11 13.63 9.19 11.3	12 0.01(nd) 0.01(nd) 0.0100(nd	12 0.15 0.025(nd))0.0588
RDOA	12 7.3 6.13 6.644	11 28 1 7	0	13 9 2.5(nd) 6.4	12 14.18 9.63 11.7	12 0.01(nd) 0.01(nd) 0.0100(nd	12 0.2 0.025(nd)
RGA	12 7.01 6.49 6.837	12 140 1 15	0	12 23 11 14.8	12 14.16 8.92 11.2	12 0.01(nd) 0.01(nd) 0.0100(nd	12 0.3 0.13)0.2142
RGB	13 6.99 5.14 6.680	12 180 3 18	0	12 18 12 14.4	13 14.15 8.78 11.3	12 0.02 0.01(nd) 0.0108(nd	12 0.41 0.16) 0.2650
RRHG	11 6.21 4.61 5.666	5 12 3 7	0	12 7 2.5(nd) 4.4	11 14.85 9.34 11.6	12 0.02 0.01(nd) 0.0108(nd	12 0.26 0.09) 0.1817
WDBN	11 8.15 6.92 7.380	12 180 2 24	0	12 35 8 18.1	12 13.27 8 11.1	12 0.03 0.01(nd) 0.0125(nd	12 0.89 0.24)0.5050
WDHOA	11 8.2 6.93 7.401	11 360 3(nd) 50	0	12 53 14 31.4	12 13.7 8.58 11.2	12 0.03 0.01(nd) 0.0150(nd	12 1.16 0.44)0.7950


APPENDIX B

SITE MAPS

