Unified Stormwater Rule & NYC Stormwater Manual

Informational Briefing

December 20, 2021

Agenda

Mikelle Adgate SENIOR ADVISOR, PUBLIC AFFAIRS & COMMUNICATIONS

- Welcome Mikelle Adgate
- Unified Stormwater Rule Regulatory
 Context– Pinar Balci
- What's Changing? Peg O'Connor
- NYC Stormwater Manual Melissa Enoch
 - Manual Appendices Gareth King
- Next Steps Mikelle Adgate

USWR Regulatory Context

Pinar Balci ASSISTANT COMMISSIONER, ENVIRONMENTAL PLANNING & ANALYSIS

Regulatory Context – Today's Rules

Ch. 19.1 Water Quality Requirements

Ch. 31 Stormwater Quantity and Flow Rates

Stormwater Construction Permit

- Applies to MS4 projects that disturb 1 acre or more of soil
- Must comply with NYC Stormwater Design Manual
- Manage volume of 1.5-inch rainfall event

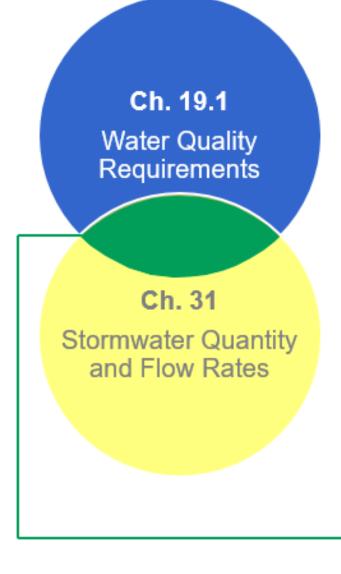
Site/House Connection Proposal

- Release rate and volume requirements based on allowable flow for site
- Additional release rate requirements for CSS projects, per 2012 Stormwater Rule
- Maximum discharge rate, often 0.25 cfs while rainfall event is being managed
- Must comply with NYCDEP 2012 SW Rule and guidelines for detention facility design

USWR Overview

- Aligns the RCNY Chapter 31 stormwater quantity and flow rate requirements with the RCNY Chapter 19.1 Construction/Post-Construction permitting program water quality requirements.
- Extends DEP's permitting, inspection and enforcement program for development projects from only MS4 areas to CSS areas, including requirements, standards and penalties for construction and post-construction stormwater controls.
- Updates sewer connection volume requirements and maximum stormwater release rates for both CSS and MS4 areas.

- Lowers DEP's current lot size threshold for the construction/post-construction stormwater permitting program from one-acre (43,560 square feet) to 20,000 square feet (sf) and adding the creation of 5,000 SF of impervious area as an additional trigger.
- Encourages development projects greater than or equal to 20,000 sf to use green infrastructure to meet requirements of both Chapter 31 and 19.1.
- Allows greater flexibility in stormwater management design options, while simplifying the rules and making them consistent across the city, regardless of the borough.
- References the new NYC Stormwater Manual in both Chapter 31 and 19.1 for applicable stormwater technical requirements, including Stormwater Management Practice Hierarchies and Stormwater Management Practice Selection Checklists.


What's Changing?

Peg O'Connor DIRECTOR, STORMWATER CONSTRUCTION PERMITTING

Unified Stormwater Rule:

Stormwater Construction Permit

- Applies to CSS/MS4 projects that disturb 20,000 sf or more of soil, OR add 5,000 sf or more of new impervious surface
- Must comply with Unified Stormwater Rule
- Manage volume of 1.5-inch rainfall event

Site/House Connection Proposal

- Applies to CSS/MS4 projects that require a site/house connection proposal
- Must comply with Unified Stormwater Rule
- Provide specified detention volume and maximum-release rate based on project type:
 - CSS-site: 1.85" volume, greater of 0.1 cfs/acre or 0.046 cfs
 - CSS-house: 1.50" volume, greater of 0.1 cfs/acre or 0.046 cfs
 - MS4-site: 1.50" volume, greater of 1.0 cfs/acre or 0.046 cfs
 - MS4-house: 1.10" volume, greater of 1.0 cfs/acre or 0.046 cfs

Green infrastructure framework that

supports application of practices to meet both objectives

What's Changing?

Ch. 19.1

Water Quality

Requirements

Ch. 31

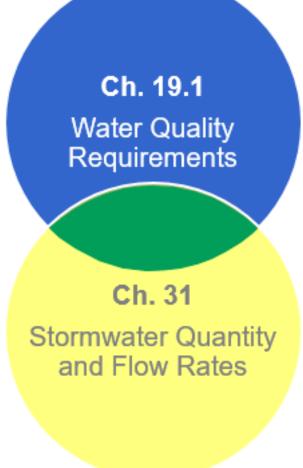
Stormwater Quantity

and Flow Rates

Stormwater Construction Permit

- Expanded to CSS area projects
- Reduces soil disturbance threshold from 1 acre to 20,000 sf
- New threshold for 5,000 sf or more of new impervious surface
- Creates clear SMP hierarchy for CSS/MS4 areas

Site/House Connection Proposal


- Aligns release rate requirements with Stormwater Construction Permit requirements
- Simplifies requirements to determine volume and release rate
- Provides maximum discharge rate scales by project area
- Reduces the maximum release rate from sites in all cases
- Lowers minimum orifice size to 1-inch diameter
- Defines house connections as 1-3 family (fee simple) homes <20,000 sf

Clear guidance on how green infrastructure volume can be applied towards multiple goals

New NYC Stormwater Manual Replaces:

- 2018 NYC MS4 Manual
- 2012 Stormwater Rule
 Manual
- 2012 Guidelines for Design of Detention Facilities

USWR Requirements:

Stormwater Construction Permit

- When permit applies, prepare a stormwater pollution prevention plan (SWPPP) that meets up to four requirements, as needed:
 - Erosion and sedimentation (ESC) to minimize the discharge of pollutants during construction activities.
 - Water quality (WQ) to manage runoff from small, frequent storm events that can significantly impact the quality of receiving waters in both MS4 and CSS areas.
 - **Runoff reduction (RR)** to maintain a minimum level of runoff reduction during small storms to preserve natural hydrologic functions.
 - No-net increase (NNI) to reduce pollutants of concern in MS4 sewershed areas that discharge to an impaired waterbody.

Site/House Connection Proposal

- When permit applies, prepare a site/house connection proposal that meets the following requirement:
 - Sewer operations (Vv) aims to manage runoff from larger storm events to maintain optimal flow rates in the City's sewer system and, in turn, improve overall sewer operations. Volume from SWPPP facilities will count towards this Vv requirement.

Chapter 19.1 Effectiveness (Summary):

New 19.1-03 does not apply to:

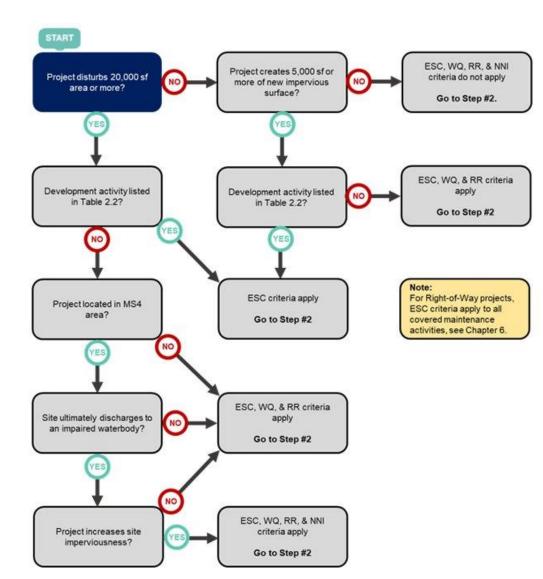
- A. MS4 development activity \geq 1 acre
 - If NYSDEC issued one of the following prior to 6/1/2019:
 1) letter of acknowledgment of NOI under NYS CGP or 2) individual SPDES permit for construction activity.
 - 2. If DEP issued MS4 SWPPP Acceptance Form within 2 years prior to effective date of USWR.
- B. CSS development activity \geq 1 acre
 - 1. If applied to DOB or SBS for construction document approval before 3/26/21.
- C. MS4 and CSS covered development project < 1 acre
 - not located in a rezoned area: if applied to DOB or SBS for construction document approval before effective date of USWR.
 - located in a rezoned area and developing the site pursuant to the rezoning: if DOB or SBS issued a permit for construction of the project before 12/10/2021.

Chapter 31 Effectiveness (Summary):

New § 31-09:

Does not apply to any site with a sewer availability certification issued prior to the effective date of USWR.

Except that


Does apply to any site located in a **rezoned area** and developing the site pursuant to the rezoning, even if applied for or received certification prior to effective date of USWR.

Hydrology & Hydraulics for Rezoned Areas

- Projects proposed within areas that have been rezoned recently require additional assessment.
- The existing practice is to require a Hydrology and Hydraulics (H&H) analysis be complete prior to review.
- The combined and sanitary sewers in areas that have been rezoned may be substantially undersized compared to the new proposed densities.

USWR Requirement Applicability

Figure 2.3: for determining applicable requirements of the stormwater construction permit.

Table 2.2: Covered development activities that require the preparation of a SWPPP that only includes erosion and sediment control requirements.

Covered Development Activity

Installation of underground, linear utilities such as gas lines, fiber-optic cable, cable TV, electric, telephone, sewer mains, and water mains

Environmental enhancement projects, such as wetland mitigation projects, stormwater retrofits and stream restoration projects

Pond construction

Linear bike paths running through areas with vegetative cover, including bike paths surfaced with an impervious cover

Cross-country ski trails and walking/hiking trails

Sidewalk, bike path or walking path projects, surfaced with an impervious cover, that are not part of residential, commercial or institutional development;

Sidewalk, bike path or walking path projects, surfaced with an impervious cover, that include incidental shoulder or curb work along an existing highway to support construction of the sidewalk, bike path or walking path.

Slope stabilization projects

Slope flattening that changes the grade of the site, but does not significantly change the runoff characteristics

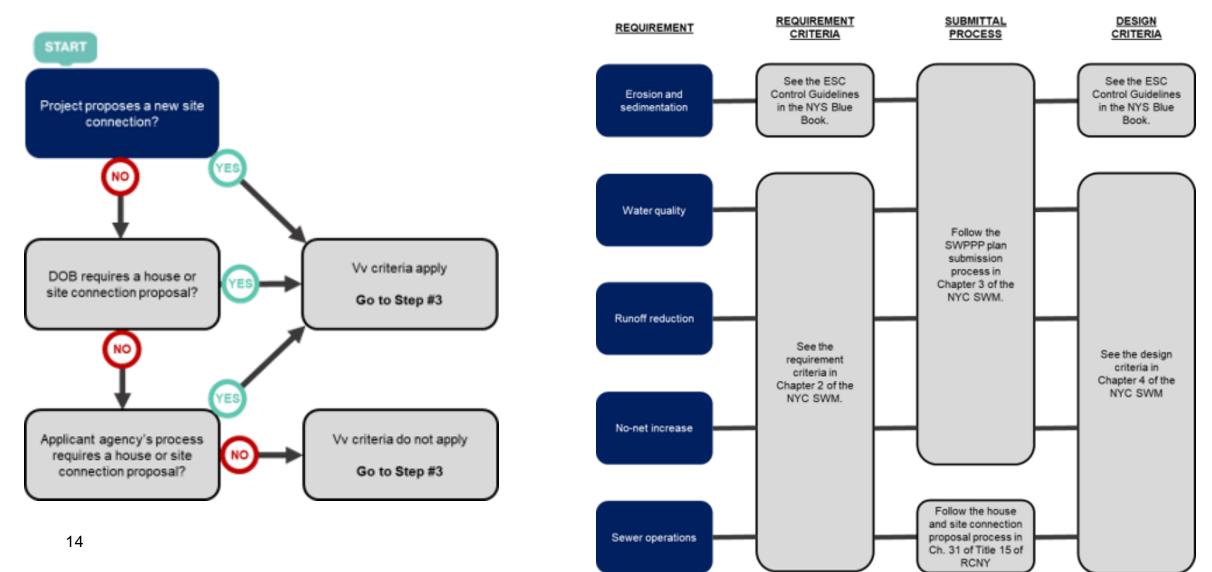
Spoil areas that will be covered with vegetation

Vegetated open space projects (i.e. recreational parks, lawns, meadows, fields, downhill ski trails) excluding projects that alter hydrology from pre- to post-development conditions,

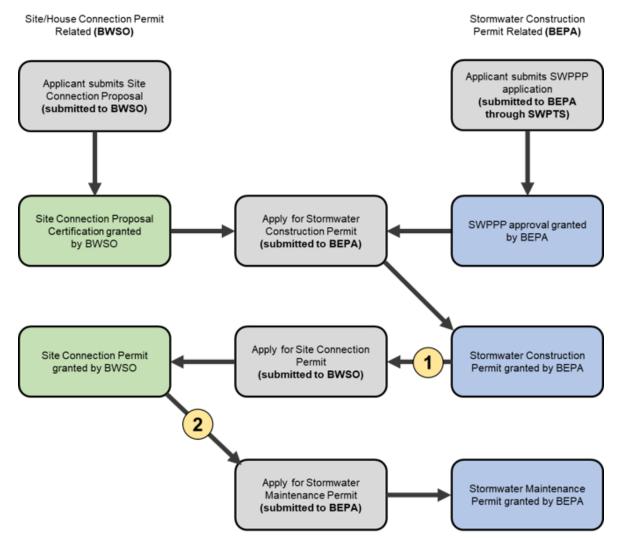
Athletic fields (natural grass) that do not include the construction or reconstruction of impervious area and do not alter hydrology from pre to post development conditions

Demolition project where vegetation will be established, and no redevelopment is planned

Overhead electric transmission line project that does not include the construction of permanent access roads or parking areas surfaced with impervious cover


Temporary access roads, median crossovers, detour roads, lanes, or other temporary impervious areas that will be restored to pre-construction conditions once the construction activity is complete

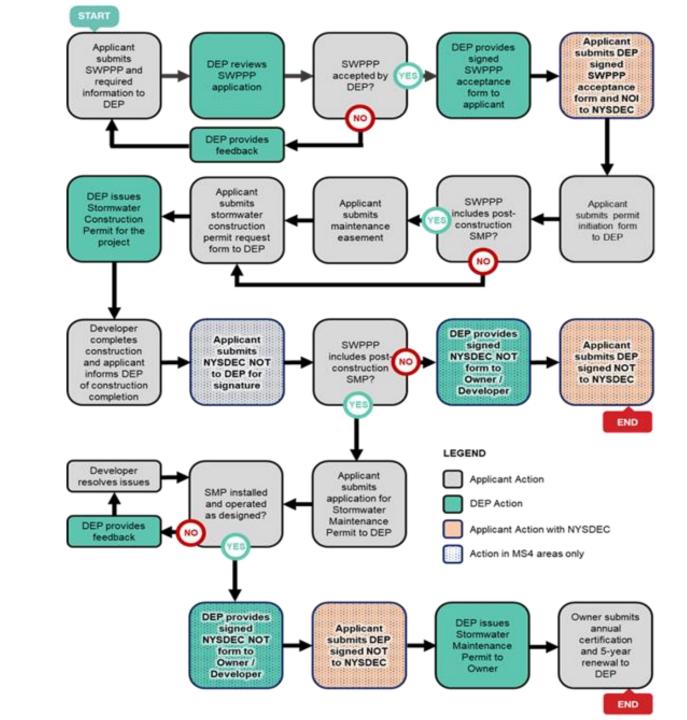
Road reconstruction projects where the total soil disturbance from all activities is less than 1-acre


USWR Requirement Applicability

Flow diagram #2: for determining applicable requirements of the site/house connection proposal.

Flow diagram #3: which indicates procedures for the applicable requirements.

USWR Permit Process


Construction work may begin, contingent on any other required permits

Site connection work may begin

2

Flow diagram #4: inter-relationship between the stormwater construction permit and site/house connection proposal process, when both are applicable

USWR Permit Process

Flow diagram #5: detailed process for stormwater construction permits

NYC Stormwater Manual

Melissa Enoch MANAGING DIRECTOR, GI PLANNING & PARTNERSHIPS

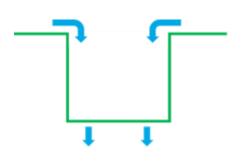
NYC Stormwater Manual Chapters

1: Introduction

2: Stormwater Management Requirements

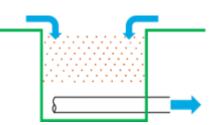
- Stormwater Construction Permit (Chapter 19.1)
- Site/House Connection Proposal (Chapter 31)

3: City Development & Review Requirements


- Workflow for projects that trigger both Chapter 19.1 & 31 Permits
- Entire process for Chapter 19.1 Permits

4: SMP Selection & Design

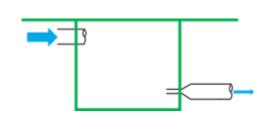
5: Post-Construction Stormwater Management Requirements


6: Right-of-Way Stormwater Management Requirements

Chapter 4: SMP Function Types

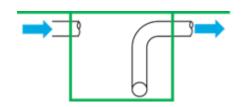
Infiltration

- Water is captured and infiltrated into the underlying soils, which is sometimes referred to as exfiltration.
- Relies on sufficient permeability rates of underlying soils. Practices do not use outlet pipes to drain water.
- Example: Bioretention, no outlet pipe



Filtration

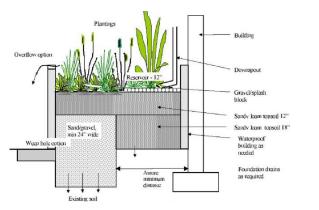
- Water passes through a filtration media to remove various pollutants.
- Relies on steady flow of water through the filtration media. Practices have an outlet pipe to support filtration.
- Example: Sand filter


Evapotranspiration

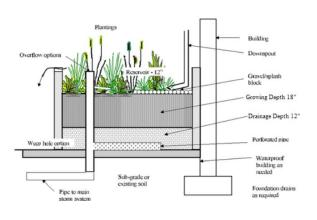
- Water is captured and evaporated or transpired back into the atmosphere.
- Relies on ET occurring between rainfall events. Practices are usually shallow and have no or limited ability to infiltrate water.
- Example: Green roof

Detention

- Water is temporarily stored and released at a lower flow rate.
- Relies on ability to control release rate. Practices have a controlled-flow device, such as an orifice.
- Example: Detention tank


Reuse

Water is captured and reused for non-irrigation purposes.
Relies on continuous reuse of water. Practices can be integrated into existing non-potable and non-contact water uses.
Example: Reuse in cooling tower


Chapter 4: Benefits of Function Framework

- Framework allows a wide range of potential configurations:
 - Practices may change function based on design components (see right)
 - Supports innovative systems, such as hybrid or dual functions
- Guidance that may be specified by function type:
 - Hierarchy (i.e., retention vs. treatment vs. detention)
 - Sizing (i.e., 100% runoff reduction vs. 40%)
 - Design criteria (i.e., min. infiltration rate or media depth)
 - Components (i.e., no outlet pipes vs. with outlet pipes)

Planter Box Example

Infiltration

Filtration

Chapter 4: MS4 Area Hierarchy

Primary Goal: Retention

Vegetated Retention Vegetated

- Bioretention
- Rain garden
- Stormwater planter
- · Green roof
- Tree planting / preservation
- Dry basin
- Grass filter strip
- · Vegetated swale
- Other dual function systems with retention capability

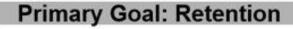
Vegetated Treatment

- Bioretention
- Stormwater planter
- Constructed wetland
- Other dual function systems with treatment capability

Capture & Reuse

- Rain tank
- Cister

Non-vegetated Retention


- Stormwater gallery
- Stone trench
- Porous pavement
- Synthetic turf field
- Other dual function systems with retention capability

Non-vegetated Treatment

- Porous pavement
- Synthetic turf field
- Sand filter
- Organic filter
- Wet basin / pond
- Other dual function systems with treatment capability

Chapter 4: CSS Area Hierarchy

Vegetated Retention

- Bioretention
- Rain garden
- Stormwater planter
- Green roof
- Tree planting / preservation
- Dry basin
- Grass filter strip
- Vegetated swale
- Other dual function systems with retention capability

Vegetated Detention

- Dry basin
- Constructed wetland
- Other dual function systems
- with detention capability

Capture & Reuse

- Rain tank
- Cistern

Non-vegetated Retention

- Dry well
- Stormwater gallery
- Stone trench
- Porous pavement
- Synthetic turf field
- Other dual function systems
 with retention capability

- Wet basin / pond
- Subsurface gallery
- Blue root
- Detention tank
- Other dual function systems with detention capability

Chapter 4: Constraints

SMP HIERARCHY CHECKLIST - CSS AREAS

Percent of SMP volume applied^a

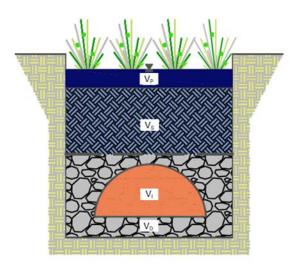
Site constraints that limit SMP feasibility^b

Tier®	Function Type ^d	Practice Type*	WQv	RRv	Vv	Soil	Subsurface	Hotspot	Surfaces	Space
		Bioretention	100	100	50	×	×	×	×	×
		Rain garden	100	100	50	×	×	×	×	×
	1. 20	Stormwater planter	100	100	50	×	×	×	×	×
	Infiltration (Vegetated)	Tree planting / preservation	SC	SC	0					
	(vegetated)	Dry basin	100	100	50	×	×	×	×	×
Tier 1		Grass filter strip	SC	SC	0	×	×	×	×	×
		Vegetated swale	SC	SC	0	×	×	×	×	×
		Rain garden	100	100	0		×		×	×
	-	Stormwater planter	100	100	0				×	
	Evapotranspiration'	Tree planting / preservation	SC	SC	0					
		Green roof	100	100	0					
	Infiltration (Non-vegetated)	Dry well	100	100	50	×	×	×		×
		Stormwater gallery	100	100	50	×	×	×		×
Tier 2		Stone trench	100	100	50	×	×	×	×	×
		Porous pavement	100	100	50	×	×	×		×
		Synthetic turf field	100	100	50	×	×	×	×	×
Anytime /	Reuse	Rain tank	100	100	SC					
Optional	ional	Cistern	100	100	SC					
	Detention ^{g.h.j}	Dry basin	100	0	100		×		×	×
		Constructed wetland	100	0	100		×		×	×
Tier 3		Wet basin / pond	100	0	100		×		×	×
TIEL 3		Stormwater gallery	100	0	100		×			×
		Blue roof	100	0	100					
		Detention tank	100	0	100					

Soil constraints – permeability tests indicate that soil infiltration rates are less than 0.5 in/hr, which limits the use of infiltration practices.

Subsurface constraints – boring tests indicate that the bottom of practice would be less than three feet from the groundwater table or bedrock, which limits the use of most practices, except those enclosed in concrete with adequate anchoring as determined by an engineer.

Hotspot constraints – land use or soil conditions increase the risk of runoff contamination, which limits the use of infiltration practices, or those without liners. Specific criteria for demonstrating hotspot constraints are outlined in Chapter 4.


Surface constraints – regulations require the use of paved surfaces, which limits the use of vegetated practices. As an example, regulations for parking and/or egress requirements.

Space constraints – required setbacks from structures, utilities, property lines, existing trees, or other site features limits the use of practices at the ground level. General siting criteria for onsite projects can be found in Appendix C.

Chapter 4: Sizing

General steps:

- Calculate volume of practice
- Apply volume to applicable criteria
- Confirm drawdown time is acceptable

EQ4.1:

 $V_{SMP} = V_P + V_S + V_I + V_D$

where:

V_{SMP} = storage volume of SMP (cf) V_P = volume of surface ponding (cf)

 V_s = volume of voids in the soil media layer (cf)

V_I = volume of voids created by internal structures

such as chambers or pipes (cf)

V_D = volume of voids in the drainage media (cf)

	Percent of SMP Volume Applied to Requirement (F _A)			
SMP Function	WQv	RRv	Vv	
Infiltration	100	100	50	
Evapotranspiration	100	100	0	
Reuse ^A	100	100	50	
Filtration	100 ^B	40 ^c	0	
Detention	100 ^D	0	100	

^A Designers must demonstrate continuous and reliable capacity throughout the year (see Section 4.11)

^B Applies to MS4 areas only

^c Applies to practices with engineered soils only

P Applies to CSS areas and select detention practices with treatment abilities in MS4 areas

NYC Stormwater Manual Appendices

Gareth King

CIVIL ENGINEER II, WATER & SEWER OPERATIONS

Appendices

A. SMP Hierarchy Checklist

B. NNI Calculator Guide

C. SMP Siting Criteria

D. SMP Sizing Examples

E. Site Design Example

F. Controlled-Flow Pump Workbook

G. Detention in Series Workbook and Examples

H. ROW Guidance Materials

Appendix F: Controlled Flow Pump Workbook

Pump Head Losses Reviewer: C. Moskos Date: 11/24/2021 Example: - 1 pump - Fittings: 1 strainer, 1 swing check valve, 3 ball valves, 3 standards elbows, 1 45° elbow, 1 'flow thru run' tee, 1 'side to run' tee - Pump start level: 152.08' - Pump stop level: 151.75' - Force main discharge elevation: 162' - Detention volume: 1919 ft ¹ - Detention tank footprint: 366 ft ³	1. Input number of fittings in system. Fittings Losses # in Strainer 320 Globe Valve, Open 340 Angle Valve, Open 170 Swing Check Valve, Open 80 Gate Valve, Open 7 Ball Valve, Open 4 Standard Elbow 32 Medium Sweep Elbow 27 Long Sweep Elbow 15	1 Pump start level 152.08 ft Pump stop level 151.75 ft Force main discharge elevation 162.00 ft 1 Detention volume 1919 ft ³ 2 Detention tank footprint 366 ft ² 3 Force main diameter 3.0 in 3 Force main length 62.00 ft Hazen-Williams coefficient 130	Pump Performance Curve**	Manfacturer: Flygt Duty Point: Flow (gpm): 58.0 Duty Point: Head (ft): 9.8 Product: NZ 3085.060 SH Curve Number: 63-498-00-3856 Impeller Diameter (mm): 102
- Force main diameter: 3" - Force main length: 62" - Hazen-Williams coefficient: 130* *Choosing Mazen-Williams Coefficient: New Wrought or Cost iron, Steel, Ductile iron, Vitrifled: 150 New Concrete: 120 Xioy upper Apport	Flow through Wye 30 Tee - Flow thru Run 20 Standard Tee - Side to Run 65 Tee - Side to Run, With Throat 45 Enlargement, d/D = 1/4 32 Enlargement, d/D = 1/2 20 Enlargement, d/D = 3/4 7 Contraction, d/D = 1/2 12 Contraction, d/D = 1/2 12 Contraction, d/D = 3/4 7	3. Build pump curve (from manufacturer). 1 1 1 1 1 1 1 1 1 1 1 2 14 12 39 14 18	0 20 40 60 80 100 120 140 160 Flow (gpm) 4. Change minimum and maximum flow rates until points align with pump curve. Head Flow (ft) (gpm) Maximum 8.81 72 Minimum 11.44 44 Average 10.12 58	Calculations: Equivalent length of pipe for fittings 152 Minimum static lift 5.01 Maximum static lift 9.92 Provided storage depth 5.24 Maximum water level 156.99 Maximum pump rate 0.160 Minimum pump rate 0.098 Average rate 0.129 V ² /2g 0.17
provided pump ourse information outputation Flow Rate	Head Loss	Equivalent Pipe Length (Pipes in Pa	rallel) Equivalent Pipe Length (Pipes in Serie	
1. Input values: Pipe diameter in Hazen-Williams C Pipe length ft Head loss ft	I. Input values: Pipe diameter ("Flow rate Hazen-Williams C oan be entered in Flow rate Q** either ofs or	in Pipe 1 diameter I. For two pipes in parallel to be replaced by a single pipe of gpm equivalent capacity, input: Pipe 2 length	er in Pipe 1 diameter ft 1. For two pipes Pipe 1 length	in ft in ft
2. Results: V ² /2g = DIV/0! ft	apm, or both,) Pipe length Head loss % (Q, cfs) Head loss % (Q, Head loss % (Q, 2. Results: gpm) #	ft Assumed head #DIV/0! % Diameter of pr #DIV/0! % 2. Equivalent pipe length:		cfs in #DIV/0: ft
	Head loss #	#DIV/0! ft #DIV/0! ft		

Appendix G: Detention in Series Workbook & Examples

Detention in Series Workbook

Application of SMPs Toward Vv Criteria

	Percent of SMP Volume Applied to Requirement (F _A)			
SMP Function	WQv	RRv	Vv	
Infiltration	100	100	50	
Evapotranspiration	100	100	0	
Reuse ^A	100	100	50	
Filtration	100 ^B	40 ^C	0	
Detention	100 ^D	0	100	

^ADesigners must demonstrate continuous and reliable capacity throughout the year (see Section 4.11) ^BApplies to MS4 areas only

^cApplies to practices with engineered soils only

^DApplies to CSS areas and select detention practices with treatment abilities in MS4 areas

PROJECT NAME PROJECT ID ADDRESS

Notes: Use this form to determine the required storage volumes for detention systems in series. There are two parts to this form. In the first part, users input properties of the downstream detention system. In the second part, users input properties of each individual upstream area that drains to the downstream detention system. Inputs are entered in the yellow cells and outputs are shown in the gray cells.

ERRORS None

DOWNSTREAM SYSTEM

INPUT S		OUTPUTS		
	Total Contributing	Maximum	Required	
Permit Type	Area	Release Rate	Detention Volume	Effective C-value
name	sf	cfs	cf	#
CSS - SCP	40000	0.092	3883	0.63

UP STREAM SY STEM

INPUT S		OUTPUTS				
TDA ID	TDA Area	C-value	Detention System Type	Maximum Release Rate	Required Detention Volume	Effective C-value
name	sf	#	name	cfs	cf	#
1	20000	0.95	Blue Roof	0.5	1829	0.41
2	20000	0.85	None			0.85

Next Steps

Mikelle Adgate SENIOR ADVISOR, PUBLIC AFFAIRS & COMMUNICATIONS

Public Briefings and Comments

Event	Date/Time	Virtual Meeting
Informational Briefing #1	December 20, 2021 4:00PM	Zoom
Informational Briefing #2	January 4, 2022 10:00AM	Zoom
Public Hearing	January 10, 2022 11:00AM	Microsoft Teams

Resources

- 1. Unified Stormwater Rule Overview
- 2. Chapter 31
- 3. Chapter 19.1
- 4. NYC Stormwater Manual

Send comments/questions to nycrules@dep.nyc.gov

