EXECUTIVE SUMMARY The New York City Department of Environmental Protection (DEP) owns and operates one of the largest wastewater collection and treatment systems in the world, with 14 wastewater treatment plants and 96 pumping stations that convey stormwater and wastewater. The City's wastewater treatment plants (WWTP) utilize advanced biological and chemical processes to treat on average 1.3 billion gallons of wastewater per day, using state-of-the-art technology that removes between 85 and 95 percent of pollutants before discharging the treated water into the city's waterways. During wet weather, these treatment plants can disinfect two times their dry weather capacity. This immense system protects the environment and the health of more than eight million New Yorkers, and DEP is committed to ensuring its continued performance and reliability. Many of the City's wastewater treatment plants and pumping stations are low-lying and necessarily located close to the waterfront in order to discharge treated wastewater and for efficient sludge handling. This waterfront dependency creates challenges that were plainly evident when a number of facilities experienced extensive damage during Hurricane Sandy. Flooding risk is likely to increase over time, as climate change brings more extreme storm surge events and continued sea level rise in the next several decades. # All 14 wastewater treatment plants and 60 percent of pumping stations are at risk of flood damage. As such, DEP has taken a proactive stance in assessing its infrastructure risks and setting forth a framework to implement protective measures. Since 2008, DEP has been investigating the impacts of climate change on its infrastructure, not only for wastewater facilities, but also for drinking water supply and stormwater management. Building upon previous studies, this climate risk assessment and adaptation study sets forth cost-effective strategies for reducing flooding damage to wastewater infrastructure and safeguarding public health and the environment. This comprehensive study examined buildings and infrastructure at DEP's 96 pumping stations and 14 wastewater treatment plants, identifying and prioritizing infrastructure that is most at risk of flood damage. Through the study, DEP developed a set of recommended design standards and cost-effective protective measures tailored to each facility to improve resiliency in the face of future flood events. The study produced a number of key results: All 14 wastewater treatment plants and 60 percent of pumping stations (58 out of 96) are at risk of flood damage. The study estimates that equipment valued at more than \$1 billion is at risk and requires additional protection. It is unlikely that this high damage cost would be incurred during a single storm surge event, as flood heights tend to vary across New York City depending on storm characteristics; however, some at-risk equipment may incur repetitive damage from multiple storm surge events over time. Considering the entire range of surge heights up to and including the 100-year flood with 30 inches of sea level rise, the cumulative damages over the next 50 years may exceed \$2 billion if no protective measures are put in place. The recommended protective measures, totaling \$315 million in improvements, are costly but critical. Increased resiliency not only reduces damage to DEP's assets, but also enables rapid recovery of full service to the community following a flood event, reduces risk of sewer backup into homes, and reduces the likelihood of the release of untreated sewage into the environment. DEP will prioritize these measures as part of planned capital projects and with an eye toward other proposals for engineered barriers or wetlands as part of the broader coastal protection initiatives described in *A Stronger, More Resilient New York*. Wastewater infrastructure valued at over \$1 billion is at risk if no protective measures are implemented. Over 50 years, cumulative damages could exceed \$2 billion. #### **KEY FINDINGS** #### What is at risk? #### Wastewater Facilities At-Risk of Storm Surge Inundation Source: FEMA; CUNY Institute for Sustainable Cities ### How should it be mitigated? #### **Adaptation Strategies** #### What is the cost? #### **Summary of Estimated Costs for Wastewater Infrastructure** Hurricane Sandy was a devastating coastal flood event that left many New Yorkers without homes, electricity, and their livelihoods. The damage to DEP's wastewater treatment plants and pumping stations alone has been estimated to exceed \$95 million. The inundation experienced at these facilities during the storm was unprecedented, forcing many of DEP's staff to work around the clock in difficult conditions through the surge and in the days that followed to maintain or restore service. The surge also provided DEP with a unique and unprecedented example of risks at its wastewater facilities. To improve protection and response in the future, staff rigorously documented flood depths, providing valuable information regarding the impacts of flooding on site. Of particular note, most of the damage experienced during Sandy was to electrical equipment that supplies power throughout the plants. Failure of this electrical equipment endangered many treatment processes. Fortunately, DEP implemented its Storm Preparedness Plan in advance so most facilities were able to retain some degree of power and operation using emergency generators. Only three facilities were non-operational as a result of the storm: Coney Island (two hours), North River (seven hours), and Rockaway (three days, although basic disinfection processes continued during this time). Many of the other plants experienced varying levels of flood damage to equipment and were forced to operate on their emergency generators for up to two weeks due to utility power outages. Damage caused to wastewater infrastructure led to environmental impacts on surrounding waters. Partly due to power outages and plant inundation, and partly due to a large influx of floodwater into the sewer system, DEP reported that approximately 562 million gallons of untreated and diluted sewage that was mixed with stormwater and seawater was released into local waterways. The majority of this combined sewage overflow originated from the areas served by the Tallman Island, North River, Newtown Creek, Coney Island, and Rockaway plants. Advanced (secondary) treatment was also reduced at the Port Richmond, Oakwood Beach, Rockaway, Coney Island, and 26th Ward Wastewater Treatment Plants; however these plants were able to continue basic (primary) treatment to meet their permit requirements for pollutant removal. Overall, given the severity of the storm, recovery was fairly quick. Just four days after the storm, DEP was treating 99 percent of all New York City wastewater; within two weeks, DEP had restored full treatment at all plants. DEP also enacted a number of emergency preparedness and response plans prior to the storm to protect its facilities, without which damage costs would have been much higher. #### **Timeline of Hurricane Sandy Impacts and Recovery** Out of the 96 pumping stations, 42 were affected by Sandy, with approximately half failing due to damage from floodwaters, the other half due to loss of power supply. Electrical equipment and power supply were found to be the systems at risk. Many of the pumping stations had to employ backup emergency generators during the surge. In addition, in some cases the main sewage pump motors were flooded which prevented the transfer of wastewater and stormwater. DEP immediately put into action many of the lessons learned from Hurricane Sandy. At two facilities already in the midst of upgrades — the Manhattan Pumping Station and the Gowanus Pumping Station — a number of # Hurricane Sandy provided an unprecedented example of flood risks at wastewater facilities. resiliency measures are being incorporated to address the risks identified during the storm. DEP is committing the time and money to include resiliency upgrades into these planned improvement projects, since combining upgrades is often less costly than performing them separately. The Rockaways experienced significant damage due to wave action during Hurricane Sandy. Waves swept away significant portions of beaches and inundated and battered homes and the nearby Rockaway Wastewater Treatment Plant. This facility and the surrounding community were amongst the hardest hit during Sandy's surge. The NYC Wastewater Resiliency Plan used a unique framework to assess flood risk and identify appropriate protective measures. This framework can be applied as a prototype to protect a wide range of vital City infrastructure beyond wastewater facilities. As shown in the adjacent flowchart, the framework is comprised of three major modules: # CLIMATE ANALYSIS: What is NYC's climate likely to be in the future, especially in terms of storm surge and sea level rise? What conditions should NYC prepare for? While climate science cannot predict when a surge will occur, current climate studies project that large surge events are likely to become more frequent in the future and will be exacerbated by sea level rise. The FEMA 100-year flood event was selected as the maximum surge assessed in this study. An additional 30 inches of flooding were also added to account for future sea level rise by the 2050s, the high end of the projections from the New York City Panel on Climate Change. #### RISK ANALYSIS: Which infrastructure will be affected in flood events? Potential risks at each facility were identified through site visits, analysis of facility blueprints, and interviews with facility personnel. Information about conditions during Hurricane Sandy also helped pinpoint specific risks and operational challenges. The elevations of flood pathways and infrastructure were then compared to the flood elevation defined in the Climate Analysis to determine which infrastructure is potentially at risk. Cost estimates for the replacement of at-risk equipment under emergency conditions, cleaning of facilities, and temporary power and pumping were developed, and then used as a metric to inform the prioritization of risks. ### ADAPTATION ANALYSIS: What can be done to protect at-risk infrastructure from surges and how much will this cost? DEP performed an extensive literature review of strategies being considered around the globe to protect against climate change and narrowed the list down to six measures that would work best for NYC's wastewater infrastructure. These protective measures were then evaluated for use at each wastewater facility. Strategy recommendations were made based on feasibility, effectiveness, and cost. #### **Climate Risk Assessment and Adaptation Framework** #### Facility Risk Analysis - Identify flood pathways and elevations of facilities - Identify facilities where flood pathway elevations are below the critical flood elevation - Determine if at-risk facilities contain critical, non-submersible infrastructure that resides below the critical flood elevation - Estimate cost of damage to at-risk locations and infrastructure ## Infrastructure Risk Analysis - Create infrastructure database noting location and equipment type - Identify critical infrastructure that is not already submersible Critical, Unprotected Infrastructure #### **Adaptation Analysis** - Review literature of adaptation strategies considered worldwide - Identify strategies applicable to NYC - Evaluate feasibility of using strategies at a facility and estimate cost of implementation - Provided strategy recommendations per facility based on feasibility, strategy cost, and resiliency level #### Recommended Adaptation Strategies #### **Next Steps** - Implement more robust design standards - Harden pumping stations through capital projects - Harden wastewater treatment plants through capital projects To increase the resiliency of wastewater treatment facilities against elevated flood levels, DEP is rapidly enacting a range of initiatives to implement the recommendations developed in the Climate Risk Assessment and Adaptation Study. One of these initiatives is to adopt new wastewater facility design standards that incorporate more robust measures than were formerly required. Previous wastewater facility designs typically provided protection against the highest historically-recorded water height of nearby water bodies. However, with the new surge records set by Sandy and projected future sea level rise, the new design standards will account for the critical flood elevation used in the study: the FEMA 100-year flood elevation plus 30 inches of sea level rise. To address the need for more robust protection, the design standard will incorporate appropriate protective strategies that were identified in the study as being highly effective for the site conditions of New York City's wastewater infrastructure. The portfolio of possible adaptation strategies includes six primary options, as follows: elevating equipment above the critical flood elevation, making pumps submersible and encasing electrical equipment in watertight casings, constructing a static barrier around a location, sealing structures with watertight windows and doors, sandbagging temporarily, and where feasible, providing backup power generation to pumping stations (treatment plants are # The new design standard will account for the critical flood elevation of the FEMA 100-year flood elevation plus 30 inches of sea level rise. already so equipped). Although these strategies may not necessarily keep the facility fully operational during a large storm event, the primary goal is to protect equipment from flood damage and reduce the time needed to return to normal operations following a flood event. Each strategy has associated advantages and disadvantages relating to strategy effectiveness, cost, and complexity. For example, the higher the resiliency of the measure, the more thoroughly the strategy protects the facility during a flood event and the more risk the strategy can help avoid. However, strategies with higher resiliency are often more costly to implement. While the six strategies were all analyzed in the study and recommendations made for each wastewater facility, through the design standard, planners and designers will have the option to choose which strategy is implemented at a facility based on funding availability and more detailed site-specific analyses. #### **Elevate Equipment** on pads or platforms, to a higher floor, to the roof, or to a new elevated building. \$\$\$\$ Cost #### **Flood-Proof Equipment** by replacing pumps with submersible pumps and installing watertight boxes around electrical equipment \$\$\$ #### **Install Static Barrier** across critical flood pathways or around critical areas. \$\$\$ #### **Seal Building** with water-tight doors and windows, elevating vents and secondary entrances for access during a flood event. \$\$ Sandbag Temporarily around doorways, vents, and windows before a surge event. \$ #### **Install Backup Power** via generators nearby or a plug for a portable generator. Does not protect equipment, but ensures rapid service recovery \$\$\$ The adaptation strategies identified in this study were narrowed down from a comprehensive literature review of climate resiliency measures being implemented or considered in various locations around the world. These strategies will be incorporated into wastewater facility design moving forward to ensure more resilient plants and pumping stations. As part of capital projects and subject to available funding, DEP will design and implement resiliency projects at the 58 pumping stations that are vulnerable to storm surge damage from a 100-year flood with 30 inches of sea level rise. These pumping stations are situated across the five boroughs and vary greatly in their configurations. Some are located entirely underground, some have above ground structures, some are under streets and sidewalks, and others are in parks. Despite their diverse characteristics, the 58 pumping stations tend to have similar risks. The most common flood pathways were doorways, hatches, and pipe penetrations leading to areas containing electrical equipment and pump motors, which Hurricane Sandy showed were especially vulnerable. It is critical that these facilities be protected since at-risk pumping station infrastructure is valued at approximately \$220 million. Recommendations for resiliency improvements were made in close consultation with DEP's operating bureaus and predominately involve making pumps submersible and elevating electrical equipment on platforms or to higher floors, new buildings, and nearby roofs. Depending on space constraints, backup power Implementing \$128 million in capital improvements at pumping stations would reduce equipment failures and potential damage by more than \$700 million over the next 50 years. generators or plugs to connect to portable generators were also frequently recommended to ensure rapid recovery in restoring service. The recommended strategies, which would cost a total of \$128 million to implement, were specifically selected to protect equipment from flood damage and increase the likelihood of continued pumping during or immediately following a flood event. While the implementation cost is steep, investing in resiliency measures at particularly low-lying pumping stations will protect them not just in a large flood, but also from less severe storms when flooding may occur. #### **Pumping Station Configurations** New York's pumping stations vary greatly in size, configuration, and site characteristics. While their risks tend to be consistent, implementation of adaptive measures may vary depending on site specific constraints. #### **Pumping Stations At-Risk of Storm Surge Inundation** The total value of risk avoided over 50 years if protective measures are implemented for all 58 pumping stations is \$709 million, multiple times the total value of infrastructure that is at risk (\$220 million). Although it is not likely that all at-risk equipment and facilities would be affected at once in a single storm event, the value of at-risk equipment is twice the total cost of implementing the recommended strategies (\$128 million), lending strong economic support for implementation. Considering pumping stations also provide a critical service of transporting sewage and stormwater from homes, businesses, hospitals, and other facilities, implementing the recommended strategies makes sense both from an operational basis and from an economic basis. Prioritizing pumping stations for capital improvements is an important aspect of planning since the required economic funding needs are greater than the available resources. In order to aid prioritization, a number of criteria were applied including operational, environmen- DEP will upgrade pumping stations based on level of risk at the facility, level of service to the community, and whether the facility has other planned capital improvements. tal, social and financial metrics. These metrics included historical flooding frequency at each pumping station, proximity to beaches and sensitive water bodies, population served, number of critical facilities served (e.g. hospitals, nursing homes, fire and police stations, etc.), and whether the particular pumping station is scheduled for improvements in DEP's 10-year capital plan. Based on the multiple criteria, the top 5 priority pumping stations are currently the Van Brunt, Howard Beach, Throgs Neck, Nautilus Creek, and 40th Road pumping stations. | Pumping Station Estimated Cost | | | | | |-------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------|--| | Pumping Stations | Cost of Protective
Measures (\$M) ¹ | Damage Cost for Critical Flood without Protection (\$M) ^{1,2} | Cumulative Risk Avoided
Over 50 Years (\$M) ^{1,3} | | | 122nd Street | \$0.28 | \$1.85 | \$0.62 | | | 15th Avenue | \$2.66 | \$3.51 | \$1.00 | | | 19th Street | \$0.30 | \$3.66 | \$1.43 | | | 24th Avenue | \$1.48 | \$5.03 | \$15.75 | | | 2nd Avenue | \$1.91 | \$1.32 | \$6.78 | | | 37th Avenue | \$0.06 | \$3.51 | \$3.85 | | | 40th Road | \$0.51 | \$1.77 | \$8.32 | | | 49th Street | \$2.87 | \$2.12 | \$10.91 | | | 6th Road | \$2.87 | \$1.37 | \$6.77 | | | Avenue M | \$1.07 | \$3.84 | \$19.75 | | | Avenue U | \$2.60 | \$3.70 | \$19.04 | | | Bayswater Avenue | \$0.17 | \$1.14 | \$5.29 | | | | \$1.94 | \$3.24 | \$15.22 | | | Borden Avenue | | | | | | Broad Channel | \$2.40 | \$2.34 | \$12.03 | | | Bush Terminal | \$0.59 | \$3.47 | \$17.84 | | | Canal Street | \$2.42 | \$2.71 | \$13.33 | | | Cannon Avenue | \$1.43 | \$4.39 | \$20.46 | | | Clearview | \$4.71 | \$7.82 | \$16.80 | | | Commerce Avenue | \$0.63 | \$1.04 | \$5.34 | | | Conner Street | \$5.46 | \$6.57 | \$32.13 | | | Co-op City North | \$0.35 | \$3.70 | \$3.26 | | | Douglaston Bay | \$7.39 | \$1.80 | \$9.26 | | | Eltingville | \$0.59 | \$9.51 | \$5.44 | | | Ely Avenue | \$0.47 | \$2.02 | \$3.58 | | | Flushing Bridge | \$1.26 | \$1.74 | \$8.51 | | | Gildersleeve Avenue | \$0.89 | \$1.14 | \$3.97 | | | Hannah Street | \$1.37 | \$12.80 | \$63.24 | | | Hollers Avenue | \$2.48 | \$2.82 | \$14.53 | | | | | | | | | Howard Beach | \$8.16 | \$17.44 | \$20.65 | | | Hunts Point Market | \$0.73 | \$1.86 | \$5.65 | | | Kane Street | \$4.80 | \$6.23 | \$11.93 | | | Linden Place | \$1.15 | \$4.03 | \$4.41 | | | Marble Hill | \$0.62 | \$3.38 | \$15.67 | | | Mason Avenue | \$0.55 | \$3.37 | \$15.60 | | | Mayflower Avenue | \$0.04 | \$6.50 | \$28.43 | | | Melvin Avenue | \$2.54 | \$1.78 | \$9.14 | | | Nautilus Court | \$2.42 | \$3.28 | \$16.85 | | | Nevins Street | \$1.09 | \$1.31 | \$6.75 | | | New York Times | \$5.56 | \$1.99 | \$10.23 | | | Old Douglaston | \$0.74 | \$4.07 | \$20.95 | | | Orchard Beach | \$0.66 | \$1.15 | \$3.05 | | | Paerdegat | \$16.96 | \$15.41 | \$19.21 | | | Richmond Hill Road | \$0.01 | \$5.49 | \$1.20 | | | Richmond Hill Road
Rikers Island North | \$2.87 | \$3.14 | \$6.35 | | | | \$0.27 | \$3.02 | \$0.70 | | | Roosevelt Island Main | | | | | | Roosevelt Island North | \$2.54 | \$1.66 | \$8.56 | | | Roosevelt Island South | \$0.66 | \$1.66 | \$0.51 | | | Rosedale | \$9.94 | \$5.22 | \$26.84 | | | Sapphire Street | \$0.80 | \$3.70 | \$19.04 | | | Seagirt Avenue | \$2.30 | \$4.23 | \$21.75 | | | South Beach | \$0.29 | \$2.36 | \$10.93 | | | Throgs Neck | \$5.92 | \$10.67 | \$53.00 | | | Van Brunt Street | \$2.74 | \$0.93 | \$4.79 | | | Victory Boulevard | \$0.88 | \$1.85 | \$9.52 | | | Warnerville | \$0.88 | \$1.14 | \$5.87 | | | Zerega Avenue | \$0.66 | \$1.28 | \$6.60 | | | | 44.00 | ¥=v | ¥ 0.00 | | Notes: Avenue V and Gowanus Pumping Stations are considered at-risk, but are already undergoing extensive protective upgrades and are not considered in this cost estimate. ¹⁾ All cost estimates are presented in 2013 US Dollars. ²⁾ One-time replacement cost of at-risk equipment if no protective measures are in place and critical flood scenario occurs (i.e., current 100-year flood plus 30 inches). This estimate does not consider the probability of storm occurrence. ³⁾ Repair/replacement costs that would be avoided over 50 years if protective measures are in place for storm surges up to and including the 100-year flood plus 30 inches. This estimate incorporates the probability of storm occurrence. The city's wastewater treatment plants are large facilities spanning multiple elevations and flood zones, as seen at the Bowery Bay Wastewater Treatment Plant to the right. The plants also contain thousands of pieces of equipment, including pumps, motors, electrical power equipment, mechanical equipment, instrumentation, and controls. The facilities are also highly complex, with multiple buildings, tanks, and outdoor areas interconnected by tunnels, pipe work, and electrical conduits. A site-specific analysis of each plant was required to ensure the nuances and layouts were adequately assessed. Each plant was visited to determine flood pathways and at-risk equipment. Common pathways documented were doorways, windows, vents, basement access ways, tunnels, and buried electrical conduits. These electrical conduits crisscross the plants and represent a significant risk as waterproofing sealant on conduits is difficult to maintain and monitor over time. In total, infrastructure valued at \$901 million is at risk at the City's wastewater treatment plants. While all 14 wastewater treatment plants are at risk from the 100-year flood with 30 inches of sea level rise, not all will be affected to the same degree. For example, the Jamaica Infrastructure valued over \$900 million is at risk in a large flood event, making these facilities prime targets for resiliency upgrades. Wastewater Treatment Plant is located on relatively higher ground. Only one large piece of electrical equipment is at risk. This risk was already known to staff, who regularly sandbag around the infrastructure. In contrast, the Rockaway Wastewater Treatment Plant was devastated during Hurricane Sandy and would be under more than 6 feet of water in a 100-year flood with 30 inches of sea level rise. This plant is also very close to the ocean, and could experience severe structural damage due to pounding waves. Low-lying plants such as the Rockaway Wastewater Treatment Plant can expect resiliency measures to provide protection in small and large flood events, making the case for adaptation strong even at higher costs. An aerial image of Bowery Bay Wastewater Treatment Plant is shown with the 2013 Advisory FEMA flood map and sea level rise projections overlaid. During the study, these maps provided flood elevation information which was then compared to the elevations of doorways, windows, and other flood pathways at the plant to see what areas and equipment would be vulnerable to flood damage. Doorways and windows are easy to identify as flood pathways. However, understanding the often complex system of underground tunnels, pipes, and electrical conduits at wastewater treatment plants is much more difficult and requires the use of facility blueprints. #### **Wastewater Treatment Plants At-Risk of Storm Surge Inundation** As with pumping stations, the total potential damage to the wastewater treatment plants is extremely high and warrants protection. The study associated and tailored strategies to each facility based on preliminary site feasibility assessments and a comprehensive cost-risk analysis. This quantitative assessment accounts for the cost to implement each strategy and the amount of risk each strategy could mitigate. For equipment that is critical to meeting a minimum required level of service by state law, strategies with high resiliency were selected to promote continuous service. For other equipment, recommended strategies provide a balance of resiliency and a good return on investment. The study also identified a number of additional resiliency measures that are under consideration for implementation at wastewater treatment plants. These include: - Upgrading and retrofitting the plant generation systems to incorporate new technologies that allow for digester gas reuse and use as a backup power source during a flood event. - Establishing safe houses for staff during the storm with backup power and supplies. - Having electrical and mechanical contractors ready for immediate repairs following a flood event. Quick references such as storm surge impact charts were also developed from this study, and will be distributed to plant operators to better inform emergency efforts before a surge event. | Wastewater Treatment Plant Estimated Cost | | | | | | |---|---|--|---|--|--| | Wastewater Treatment Plant | Cost of Protective
Measures (\$M) ¹ | Damage Cost for Critical Flood without Protection (\$M) ^{1,2} | Cumulative Risk Avoided
Over 50 Years (\$M) ^{1,3} | | | | Wastewater Treatment Plants with Greatest Potential for Affecting Beaches | | | | | | | 26th Ward | \$8.18 | \$82.42 | \$79.45 | | | | Coney Island | \$15.48 | \$84.95 | \$349.81 | | | | Hunts Point | \$24.28 | \$201.36 | \$246.44 | | | | Jamaica | \$0.21 | \$1.70 | \$0.46 | | | | Oakwood Beach | \$5.33 | \$20.97 | \$44.28 | | | | Rockaway | \$15.12 | \$49.28 | \$198.10 | | | | Subtotal | \$68.61 | \$440.67 | \$918.55 | | | | All Other Wastewater Treatment F | Plants | | | | | | Bowery Bay | \$40.26 | \$112.60 | \$69.03 | | | | Newtown Creek | \$8.85 | \$28.79 | \$9.13 | | | | North River | \$17.15 | \$94.10 | \$445.79 | | | | Owls Head | \$11.01 | \$48.41 | \$158.81 | | | | Port Richmond | \$10.39 | \$54.85 | \$60.36 | | | | Red Hook | \$18.56 | \$67.38 | \$24.95 | | | | Tallman Island | \$11.02 | \$45.18 | \$32.80 | | | | Wards Island | \$1.48 | \$8.73 | \$40.46 | | | | Subtotal | \$118.74 | \$460.04 | \$841.32 | | | | Wastewater Treatment Plants Citywide | \$187 M | \$901 M | \$1,760 M | | | ¹⁾ All cost estimates are presented in 2013 US Dollars. DEP plans to start protecting wastewater treatment facilities by implementing the six adaptation measures (presented in the Adopt New Design Standards section) as part of repairs and other planned capital improvements. As facilities are upgraded, the recommendations made through this study will be reassessed with detailed site analyses, and may be modified within the context of other capital improvements being made. Timing with other capital improvements is especially important for resiliency upgrades, as the cost of implementing protective measures with other upgrades and at the end of equipment life spans often significantly reduces capital cost and may provide additional opportunities for improvement. Since water quality in New York City's waterways is vital to environmental and public health, DEP has also selected wastewater treatment plants that can affect bathing beaches as high priority for implementing protective measures. These plants include 26th Ward, Coney Island, Hunts Point, Jamaica, Oakwood Beach, and Rockaway. In all, investing \$187 million in a strategic mix of protective measures could improve resiliency at New York City's wastewater treatment plants and reduce risk by almost 85 percent. The damage costs avoided over 50 years from flood events, up to and including projected 100-year storms with 30 inches of sea level rise, is an estimated \$1.76 billion. These estimates provide strong support for implementing protective measures as they will likely save the City more money as compared to the cost of repairs and disaster relief over time. ²⁾ One-time replacement cost of at-risk equipment if no protective measures are in place and critical flood scenario occurs (i.e., current 100-year flood plus 30 inches). This estimate does not consider the probability of storm occurrence. ³⁾ Repair/replacement costs that would be avoided over 50 years if protective measures are in place for storm surges up to and including the 100-year flood plus 30 inches. This estimate incorporates the probability of storm occurrence. "Storm surge added to Mean Higher High Water at Sandy Hook as of 2012, which is 1.77 ft Brooklyn Sewer Datum. Sea level is expected to rise up to 30 inches by 2050. This storm surge advisory is for current conditions. "One of the multiple flood pathways into the tunnel system. To protect tunnels, ensure all pathways are protected. This storm surge placard provides a quick reference for operators to prepare their plant in advance of a surge event. The guidance enables an operator to rapidly locate at-risk locations based on storm surge warnings. Once at-risk areas are identified, plant staff may proactively protect locations at or below the forecasted surge levels. DEP manages drainage system infrastructure with many elements that will last longer than 100 years, and must make sensible long-term plans that account for anticipated changes beyond its control. Among these important changes are rising sea level, increased population, elevated surface temperatures, and the possibility of more intense precipitation patterns. These factors could have an impact on wastewater treatment processes, the frequency of combined sewer overflow (CSO) events, and flooding on local streets. This study focused on the anticipated changes in rainfall and sea level from projected climate change, and assessed the alternatives available to mitigate these impacts. This study included three phases: Phase 1: Precipitation Analysis Rainfall statistics are critical for design standards for city drainage systems; the goal of Phase 1 was to assess whether there have been changes to the rainfall intensity, duration, and frequency statistics, or IDF curves, that are used for sewer design. The study examined a longer, more complete rainfall dataset than has been used in the past to produce the revised IDF curves and to revisit the 'typical rainfall year' that is modeled for DEP's CSO Long-Term Control Plan (LTCP). - Phase 2: Watershed Analysis In this phase of the analysis, a representative drainage area was assessed using hydraulic and hydrologic simulation models developed for the LTCP. These models were used to assess the potential impact of changes in sea level and precipitation on the performance of the drainage system, with particular attention on changes to CSO frequency and street flooding. Finally, the models were used to estimate the possible benefits of implementing combinations of green and grey infrastructure alternatives. - Phase 3: Tide Gate Analysis The final phase of the study assessed the effectiveness, costs, and benefits of installing tide gates at stormwater outfalls to prevent storm surge inundation in adjacent communities. #### **Precipitation Analysis** Most of the city is served by a combined sewer system, and drainage pipes are large enough to carry both stormwater and sanitary flow for the majority of precipitation events. During dry weather, the pipes have ample capacity. This study sought to understand if there have been statistically relevant changes to wet weather patterns in New York City, and included an update of regional precipitation statistics to include an additional 50 years of data beyond the previous record. The study determined that, although there have been some notable extreme events in recent years, the complete record shows no statistically significant trend towards more intense rainfall events over the longer historical record. IDF curves, one of the most common and useful tools for sewer design, were reassessed using historical rainfall data which revealed that the intensities for a storm with a 5-year return period are not significantly different between the current and updated IDF curves for durations (or travel time) up to 100 minutes. In other words, for durations relevant to sewer design, the expanded, more recent data record revealed no discernible trend toward more intense rainfall. The relevance of this finding for DEP's current sewer design standards is that current drainage planning tools (IDF curves) remain suitable for design. However, to recognize any emerging trends in precipitation intensity due to future climate change, DEP will work with the Mayor's Office of Long-Term Planning and Sustainability and the New York City Panel on Climate Change to create a process to reassess precipitation data periodically and incorporate any advances in climate modeling. Based on any material emerging trends, DEP will assess implications for the sizing of stormwater detention systems, sewer site connections, and green infrastructure, as appropriate. Historical rainfall data analysis did, however, result in a change in the 'typical year' to represent average annual conditions for LTCP modeling. Data from JFK Airport in 2008 is now used to represent the 'typical' rainfall year and will be used for modeling the efficacy of projects to reduce CSOs. Furthermore, to account for more extreme years that may become the norm in the future with climate change, the historical time series used for LTCP modeling has been expanded to ten years--including 2005 and 2006, which most closely fit the projections for future precipitation. The incorporation of additional years will be used to test the robustness of various CSO mitigation approaches under a range of average and extreme conditions. #### **Watershed Analysis** Watershed analysis is an integral component of DEP's planning for water quality projects to reduce the effects of CSOs, and is based on a simulation of the actual urban environment that considers how the system responds to precipitation events and fluctuations in tides. The Flushing Bay watershed was chosen as a sample case study because it is representative of the city as a whole in a number of critical ways, and therefore feasible adaptation strategies developed for this watershed may be applicable citywide. The analysis showed that CSO discharges and local flooding would likely increase under future climate conditions in response to potential increases in precipitation volume and intensity. Overall annual rainfall volume is the most important driver of increased CSO volume and potential effects on water quality. A detailed analysis of various solutions to address increased local flooding and CSO events showed that a combination of green infrastructure and grey infrastructure has the greatest benefit, but that adaptation strategies must be evaluated and implemented on a site-by-site basis in order to confirm feasibility, and compared on a cost-benefit basis with other proposed projects. Already, DEP is implementing an ambitious Green Infrastructure Plan to build green infrastructure citywide to reduce CSO events. Continuing to implement the PlaNYC goal for green infrastructure is an important element of a strategy to adapt to climate change. Used in combination with cost-effective grey infrastructure practices, such as high-level storm sewers, these strategies will help to ensure that the city's wastewater system continues to provide a high level of service to the public and the environment, now and in the future. #### **Tide Gate Analysis** Tide gates prevent salt water from entering the combined sewer system and disrupting operations at wastewater treatment plants. Discharge points for stormwater pipes, however, are only occasionally fitted with tide gates. This portion of the study sought to determine where additional tide gates might improve the functioning of the system during a storm surge event. A preliminary, static analysis was performed to determine the viability and impacts of tide gate installations at 211 DEP-owned stormwater outfalls in New York City. The screening analysis looked at the local topography of the community upstream of each associated outfall and compared it to the elevations of typical tidal events to see whether the installation of a tide gate would provide flood protection. The results varied and are highly dependent on the engineering of the sewers in each area. It demonstrated that tide gates must be analyzed on a case-by-case basis at each outfall to examine the hydraulics of the local drainage system, the surrounding topography of the community, and the typical tidal elevation along the associated shoreline. In some cases, tide gates would yield benefits, but it would not be cost-effective or provide effective flood mitigation to install tide gates at every outfall in the city, adding costs for maintenance and replacements, and in some cases. potentially exacerbating flooding conditions. The NYC Wastewater Resiliency Plan was a tremendous effort, with vital data sharing and intensive discussion between operators, risk analysts, climate specialists, and policy makers. The study greatly improved understanding of wastewater infrastructure risks and resulted in identification of a portfolio of robust adaptation strategies that will be incorporated in DEP design standards and capital planning. DEP has also established resources and institutional programs to help staff members understand the risks of climate change and continue to improve resiliency. This study, therefore, does not mark the end of climate resiliency efforts at DEP. As New York City's climate continues to change, DEP is ready and committed to continue risk evaluations and pursue resiliency upgrades, not only in wastewater, but also for stormwater management, ecosystems management, and drinking water supply, as described in the report from Mayor's Special Initiative for Rebuilding and Resiliency. With a combination of hardened infrastructure and better emergency response, DEP is well positioned to better protect the City's water infrastructure and waterways on multiple fronts, and is committed to continue serving the public to create a stronger and more resilient New York City. #### **Additional Information** In addition to this document, DEP has developed a number of detailed public reports regarding the citywide risk framework and climate analyses used in this study, as well as facility-specific documents which serve as a valuable resource regarding lessons learned from Sandy and site-specific recommended adaptation strategies. Please see subsequent chapters for further details.