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Introduction 
 
From 2002 to 2006, 843 pedestrians were killed and 6,784 were seriously 
injured in motor vehicle crashes in New York City, representing 50% of 
traffic fatalities and 26% of serious injuries in that five-year period. 
Vulnerable road users – pedestrians, bicyclists, and motorcyclists – account 
for three-quarters of traffic fatalities in New York City.  Continuing its 
pedestrian safety effort, NYCDOT’s strategic plan sets a goal of reducing 
the number of annual traffic fatalities by at least 50% from 274 in 2007, to 
137 in 2030.  New York City is ahead of schedule – with only 256 total 
traffic fatalities in 2009, below the year’s target of 258. 
 
To identify strategies to reach this goal, NYCDOT initiated a study of safety 
issues in New York City, with a focus on pedestrians.   The Department 
contracted the New York University Wagner Rudin Center, in conjunction 
with Rensselaer Polytechnic Institute and the Center for Transportation 
Injury Research at SUNY-Buffalo, to prepare the Pedestrian Fatality and 
Severe Injury Study, completed in April 2010, which identified the causes, 
common factors, and geographic distribution of severe and fatal pedestrian 
injury crashes.  This technical supplement represents the findings of that 
study and further analysis by NYCDOT, summarized in the New York City 
Pedestrian Safety Study and Action Plan. 
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1. Crash Characteristics 
 
This section describes the characteristics of drivers and pedestrians 
involved in crashes, frequency and location of pedestrian crashes, crash 
trends, correlations between crashes and intersection/corridor types, and 
the public health burden of crashes in which pedestrians were killed or 
severely injured (KSI crashes).  
 
The primary datasets used in this chapter include crash data provided by 
NYSDOT including all New York City fatal and serious injury pedestrian-
vehicle crashes during the study period (2002 through 2006), and other 
supporting datasets (e.g. transportation network-related GIS layers, land 
use, socioeconomic information, etc.). The objectives of this section are to 
(1) describe the available information and data for analysis of the fatal and 
severe injury pedestrian crashes; (2) identify trends and characteristics in 
the data; and (3) identify opportunities for crash frequency and severity 
modeling and analyses. 

 
 
 
1.1. Summary of Fatal and Severe Injury Pedestrian-Vehicle Crashes 
 
1.1.1. Citywide Trends  
 
Total Fatal and Severe Injury Pedestrian Crashes 
 
Multiple sources were consulted to obtain accurate summary statistics on 
the number of pedestrian severe injuries and fatalities, and the number of 
severe injury and fatality crashes from January 1, 2002 to December 31, 
2006.   A total of 843 pedestrian fatalities occurred during this period, 
according to the reconciled NYCDOT/NYPD database of traffic fatalities. 
NYSDOT data provides information for a total of 7,354 fatal and severe 
injury pedestrian-vehicle crashes. Of those, 739 crashes resulted in 
pedestrian fatalities and 6,615 crashes led to 6,784 severe injuries.  
 
Other reporting systems include the Fatality Analysis Reporting System 
(FARS) maintained by NHTSA, and death certificate data maintained by the 
Office of Vital Statistics of the New York City Department of Health and 
Mental Hygiene (OVS). The NYCDOT, NYSDOT, FARS, and OVS fatality 
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totals differ due to technical differences in reporting methods. Specifically, 
the NYCDOT/NYPD fatality database includes pedestrians who died of their 
injuries more than 30 days after the crash, and more rigorously exclude non-
traffic-related deaths among pedestrians as well as non-pedestrian traffic 
deaths.  NYCDOT and NYPD reconcile fatality numbers on a biweekly basis, 
revising older cases when necessary.  This is the most consistent source for 
pedestrian fatality data, and is used for all summary statistics. OVS reports 
more fatality cases than either the NYCDOT, NYSDOT, or FARS databases. 
OVS data includes pedestrians who died as a result of co-morbidities and 
had crash injuries listed as a contributing, but not primary, cause of death.  
These cases may be categorized as non-traffic pedestrian deaths in the 
NYCDOT-NYPD reconciliation process. 
   
Except where noted (e.g. borough and citywide fatality totals), NYSDOT 
data is used for all data in this study for depth and consistency.   
 
NYSDOT crash data is derived from MV-104AN reports completed by 
responding police officers at the crash scene.  Traffic injuries are 
categorized by NYSDMV on the basis of victim status, body region injured, 
and injury type information provided on MV-104AN reports.   This study 
defines severe injuries (or “A” injuries) according to NYSDMV criteria.  
NYSDMV-categorized severe injuries include all injuries involving an 
unconscious, semiconscious or incoherent victim, all injuries involving 
amputation, concussion, internal injuries, severe bleeding, moderate or 
severe burns, fractures or dislocations, and eye injuries.  These injuries 
typically involve a pedestrian being transported from the scene by 
ambulance. A comparison of NYSDMV injury categories and Abbreviated 
Injury Severity codes (used in the medical and public health community) is 
provided on page 26. 
 
 
Spatial Distribution of Pedestrian-Vehicle Crashes 
 
 
Fatal and severe injury pedestrian-vehicle crashes occurred widely across 
the five boroughs. The geographic distribution of the 7,354 fatal and severe 
pedestrian crashes between 2002 and 2006 is shown in Figure 1-2. These 
maps show fatal and severe pedestrian crashes grouped by zip code and by 
census tract.   
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Manhattan has a much higher density of pedestrian fatalities and severe 
injuries than other boroughs, a reflection of its high pedestrian volumes and 
high daytime population. For every mile of street in Manhattan, 0.07 
pedestrian fatalities and 0.68 pedestrian severe injuries occurred per year, 
four times the average for the other four boroughs.  Fatality rates (2.6) and 
severe injury rates (23.9) per 100,000 residential population in Manhattan 
are much higher than the citywide average (1.9 and 14.4), but are much 
lower than the citywide average after accounting for daytime population.  
Brooklyn and the Bronx have higher pedestrian severe injury rates and 
fatality rates than Manhattan after accounting for daytime population.   
 
 

 
Figure 1-2a. Fatal and Severe Crashes by Zip Code 
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Figure 1-2b. Fatal and Severe Crashes by Census Tract 
 
Figure 1-3 on the next page shows two levels of aggregation for the number 
of fatal crashes: zip codes and census tracts. The level of aggregation 
affects the apparent concentration of crashes relative to other tracts or zip 
codes; at the zip code level, concentrations of fatal crashes are apparent 
and appear related to population and employment density. At the census 
tract level, the number of fatal pedestrian crashes appears more evenly 
distributed, but with some concentration in part of Midtown Manhattan. This 
disparity results from the relatively low number of fatal crashes, and 
indicates that crash cause/frequency modeling must account for both levels 
of aggregation.  
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Figure 1-3a. Fatal Crashes Aggregated by Zip Code 
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Figure 1-3b. Fatal Crashes Aggregated by Census Tract 
 
 
 
1.1.2. Crashes by Time Attributes 
 
While crashes occur throughout the day, week, and year, an examination of 
crashes by time attributes reveals some trends.   
 
Month 
Figure 1-4 summarizes pedestrian fatal and serious injury crashes by month. 
Two peaks occur, during late spring/early summer, and during late fall/early 
winter. The highest percentage of crashes occurred in November (719 
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crashes, 9.8%) and December (692 crashes, 9.4%). After decreasing 
between January and April, fatal and severe injury crashes increase again in 
May (629 crashes, 8.5%) and June (654 crashes, 8.9%). This trend may be 
explained by the increase in holiday pedestrian traffic. In addition, a higher 
number of crashes during the winter months may be attributed to limited 
visibility during early morning, evening and night, since the daylight hours are 
much shorter during winter than other seasons. During the time period of 4 
PM to 7 PM, 398 crashes occurred during November, December, and 
January, while only 305 crashes occurred during the same time period in 
May, June, and July.  

 
 
Day of the Week 
Figure 1-5 shows crashes coded by the day of the week on which they 
occurred. The highest percentage of crashes occurred on Friday, accounting 
for 16.3% of the crashes. Wednesdays saw the second most crashes with 
15.1% followed by Tuesday (14.9%), Thursday (14.5%), Saturday (14.3%), 
Monday (14.1%), and Sunday (10.9%). The underrepresentation of crashes 
on Sunday implies that less pedestrian interaction with traffic, partially due 
to fewer journey-to-work trips. On the other hand, the overrepresentation of 
crashes on Friday suggests more pedestrian or vehicular traffic.  
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Time of Day 
Figure 1-6 shows crashes by the time of the day at which they occurred 
broken out by fatal crashes and severe injury crashes. For 1,584 crashes, 
time was either unknown or not reported. The figure indicates the 
percentage of both severe injury and fatal crashes for the time period 
compared to all known crash times. The greatest number of crashes 
occurred between 6 PM and 7 PM (7.6%) followed by 5 PM to 6 PM (7.4%) 
and 3PM to 4 PM (6.8%). The largest AM peak occurred between 8 AM and 
9 AM with 4.8% of crashes.  
 
Aggregating the time of crashes by 3 hour intervals provides additional 
insights. While the majority of crashes occurred during the day time, crashes 
between midnight and 6 am are more likely to result in fatal or severe 
injuries. Roughly 14% (midnight-3am) and 19% (3-6 am) of pedestrian KSI 
crashes during this time period resulted in fatal injuries, which is higher than 
the average (10%). This finding is in line with the next section regarding the 
association of lighting and crashes.  
 
 

 

Figure 1-5. Crashes by Day of the Week 

Figure 1-6. Percent of Crashes by Time of Day



    

 
Light Conditions 
As noted in the previous section, pedestrian visibility may be an important 
factor pertinent to fatal and severe injury crashes. Figure 1-7 shows an 
association between light condition and fatal crashes. More than half of all 
pedestriankilled or severly injured (KSI) crashes (55%) occurred in daylight, 
and most of the remainder occurred in lighted locations during the night. 
However, crashes during dawn and/or on unlighted roads at night resulted in 
a relatively higher percentage of fatal crashes. The sample size of crashes at 
unlighted locations at night is small, but still meaningful (92 cases).  Roughly 
26% of crashes at night on unlighted roads resulted in fatalities, much 
higher than the average for all lighting conditions (10%). Overall, crashes 
during dawn and/or at night at unlighted locations led to higher percentage 
of crashes than other light conditions. For 261 crashes, lighting conditions 
were unknown or not reported. 

Figure 1-7. Crashes by Severity and Light Conditions

 
1.1.3. Pedestrian Demographic Characteristics 
 
Age and Gender of Pedestrians  
The following three figures present information on the ages and gender of 
pedestrians killed or seriously injured in crashes during the study period.  
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Figure 1-8 illustrates the number of pedestrian fatalities and serious injuries 
by age cohort and gender. It is of interest to note that the number of 

fatalities and serious injuries sustained by males are greater than those 
sustained by females in all age cohorts considered except the oldest cohort 
(i.e., >64 years). In addition, male children between 5 and 17 years old 
ranked first in terms of the absolute number of fatal and severe injury 
injuries, followed by the age cohorts 50-64 and over 64. However, using 
population as an exposure measure to assess the relative risk of being 
involved in fatal and severe injury crashes reveals overrepresentation of 
middle-aged and older adults (50 years old and over). As seen in Figure 1-9a, 
the crash rate for males aged over 64 is the highest of all groups (144.6), 
followed by males between 50 and 64 years old (114.5), and male children 
between 5 and 17 (109.8).  A similar age trend is observed for females. This 
figure indicates the high rates of severe injuries and fatalities experienced 
by pedestrians in the older age groups.  
 
 
 
 
 

Figure 1-8. Pedestrian Injuries and Fatalities by Gender and Age  
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The vulnerability of older adults is more significant if the rates are computed 
by injury severity.  Severe injury rates decrease from childhood to age 30, 
but, as shown in Figure 1-9b, fatality rates continuously increase with age. 
The fatality rate for the oldest age cohort (>64 years) is approximately 2.5 
times the next highest fatality rate (50 to 64 years) already much higher 
than other age cohorts. The pedestrian severe injury rates vs. cohort age 
group exhibit a bimodal shape with the 5 to 17 and >64 age groups 
presenting the highest injury rates. 

Figure 1-9a. Rates per 100,000 Population of Total Number of Pedestrian 
Injuries and Fatalities by Gender and Age  
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Race/Ethnicity of Pedestrians  
Figure 1-10 summarizes the data from the Office of Vital Statistics of the 
New York City Department of Health and Mental Hygiene (OVS) for the 
race/ethnicity of persons killed in pedestrian crashes. A total of 539 cases 
with data on race/ethnicity were available from the OVS dataset.  While 
White (237 cases), Hispanic (117), and Black (111) pedestrians account for 
86% of total fatalities – and White and Asian pedestrians have the highest 
overall fatality rates – fatality rates vary widely among age groups. The bar 
graph in Figure 1-10 (b) describes fatality rates per 100,000 population 
(New York City residents only), distinguishing among age groups within 
race/ethnic group categories. Residents over 65 years of age in the 
Asian/Pacific Islander group has the highest fatality rate, 7.8 per 100,000 
population, nearly double the average for the over-65 age group.   White and 
Black children had a higher fatality rate than Asian/Pacific Islander and 
Hispanic children. In the ages category 18-64 that represents the majority 
of fatalities, Black, Asian/Pacific Islander, and Hispanic adults had a higher 
fatality rate then White adults. 
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Education Levels of Pedestrians  
 
OVS data also included the education level achieved by pedestrians fatally 
injured in crashes. Figure 1-11 summarizes the education level of 
pedestrians 25 years of age and older who were killed in car crashes. Among 
adults, approximately 27.7% of the pedestrians killed did not complete high 
school. Figure 1-11 also illustrates the fatality rate per 100,000 population 
for adult residents as a function of education level. As noted, the highest 
fatality rate is associated with pedestrians who have graduated from high 
school or earned a GED, but have zero years of higher education. 
 
Adults without any post-secondary education are overrepresented in 
pedestrian fatalities.  New Yorkers over age 25 with a high school 
diploma/GED or less account for 52% of the population,1 but accounted for 
70% of pedestrian fatality victims.  This confirms a study by Ryb et al. that 
reveals a relationship between pedestrian-vehicle crashes and low academic 
achievement of victims.2 A further analysis on the relationships among 
crashes, education levels, income and other socioeconomic characteristics 
may help NYCDOT determine specific education countermeasures.  
                                                      
1 United States Department of Commerce and Bureau of Census, Census 2000 Summary File 3 (SF3)  (Washington, DC: US 
Department of Commerce, 2001). 
2 Ryb et al., op. cit. 

(a) Percent of Fatalities by Race/Ethnicity 
(n=539) 

(b) Fatality Rates per 100,000 Residents

Figure 1-10. Pedestrian Fatalities by Race/Ethnicity 
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Figure 1-11. Pedestrian Fatality Rates by Years of Education for 
Pedestrians Aged 25 and Older

 
Place of Residence and Place of Birth 
 
Place of residence and place of birth for pedestrian fatality victims was also 
available from the NYCDOHMH Office of Vital Statistics.  Despite the 
geographic concentration of crashes in high-density areas such as the 
Manhattan business district, the percentage of pedestrian fatalities among 
residents of each borough was proportional to each borough’s share of New 
York City’s population. These proportions are illustrated in Figure 1-12. 
Further, among pedestrians killed in Manhattan, 43% were not Manhattan 
residents.   
 
 
 
 

New York City Pedestrian Safety Study & Action Plan: Technical Supplement 17



    

New York City Pedestrian Safety Study & Action Plan: Technical Supplement 18

6.1%

25.7%

31.0%

19.8%
17.3%

5.8%

27.4%

30.6%

19.5%

16.6%

0%

5%

10%

15%

20%

25%

30%

35%

Manhattan Bronx Brooklyn Queens Staten
IslandBorough

P
e

rc
e

n
t

Percent of NYC Resident
Fatalities
Percent of NYC Population

 
 
 
 

Foreign-born New Yorkers are also overrepresented among pedestrian 
fatality victims.   Foreign-born residents accounted for 36% of the New 
York City population in 2006,3 but account for 51% of pedestrian fatalities 
among New York City residents from 2002-2006.  While the sample size is 
small, this relationship appears unrelated to educational attainment, with 
foreign-born people across educational attainment levels having higher 
pedestrian fatality rates than their US-born counterparts. 
 

 
1.1.4 Driver and Vehicle Characteristics 
 
Age and Gender of Drivers involved in Pedestrian-Vehicle Crashes 
Figure 1-13 provides information on the drivers involved in fatal and severe 
injury pedestrian crashes. Overall, 5,830 pedestrian KSI crashes have driver 
information. The chart indicates the frequency distribution by age and 
gender for all known drivers involved in fatal or serious injury pedestrian 
crashes. As shown, the male and female distributions exhibit similar shapes; 
however, for all age categories, significantly larger numbers of male drivers 
than female drivers are involved in the crashes. Of these, male drivers were 
involved in 4,678 crashes (80.2%) and female drivers accounted for 1,152 
crashes (19.8%). 
 

                                                      
3 2006-2008 American Community Survey 3-Year Estimates 

Figure 1-12. Pedestrian Fatalities by Borough with Population by Borough 
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Examining by age categories, the involvement of drivers between 20 and 49 
is dominant. This is expected given their large population share and 
participation in various economic activities. A study by Lee and Abdel-Aty 
also obtained a similar result—a positive relation between drivers between 
25 and 44 and crashes with pedestrians.4 The largest cohort of drivers, 
accounting for 20.2% of known cases, are males between the ages of 30 
and 39. The second and third largest cohorts are males between 40 and 49 
(19.1%) and males between 20 and 29 (17.4%), respectively. The largest 
female cohort is between the ages of 30 and 39 as well, but only accounts 
for 5.1% of the known cases.  

 
 
Drivers Leaving the Scene 
A further data analysis of police accident reports found that 21.5% of 
drivers involved in fatal pedestrian crashes that occurred in New York City 
during the study period left the scene of the crash (i.e., hit-and-run crashes). 
Categorized by borough, the percentage of drivers who left the scene of 
fatal pedestrian crashes was: Bronx (24.6%), Brooklyn (24.1%), Queens 
(22.1%), Manhattan (18.1%), and Staten Island (12.2%).   These 

                                                      
4 Lee and Abdel-Aty, op. cit. 

Figure 1-13. Age of Drivers Involved in Pedestrian Fatal and Serious Injury 
Crashes



    

percentages are slightly higher than the number of hit-and-run drivers 
reported in FARS 
 
Previous Convictions 
Figure 1-14 shows the aggregate number of previous convictions by driver 
residence zip codes that were subsequently involved in a serious or fatal 
pedestrian crash in 2006. This data is limited to 2006 crashes due to the 
availability of the data from the New York State Department of Motor 
Vehicles. The aggregate number of previous convictions within zip codes 
range from 0 to 81.  
 

Figure 1-14. Previous Convictions of Drivers by Zip Code 
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Crash by Vehicle Type 
Table 1-2 displays crashes by vehicle type. Of specific interest is the 
number of crashes involving taxis, livery vehicles, buses, and trucks. In the 
crashes for which vehicle type was recorded, more than half are caused by 
passenger vehicles (4,530 of 7,354 crashes or 61.6%). However, a close 
examination reveals, “Size does matter.” In terms of the fatal crashes as a 
percentage of total crashes of a corresponding vehicle indicates that 30% 
of pedestrian-truck crashes and 25% of pedestrian-bus crashes led to 
pedestrian fatalities that is much higher than crashes with other vehicle 
types.  
 
Figure 1-15 shows a spatial distribution of crashes involving professional 
drivers. The majority of fatal and severe injury pedestrian crashes involving 
professional drivers are in the taxi/livery category. As one might expect, 
those crashes are concentrated in Manhattan, while pedestrian-bus/truck 
crashes are more evenly represented in other boroughs with taxi/livery 
crashes.  
 

 

Vehicle Type 

Fatal 
Ped. 

Crashes 

% Fatal 
Ped. 

Crashes 

Severe 
Injury 
Ped. 

Crashes

% 
Severe 
Injury 
Ped. 

Crashes Total 
% of 
Total 

Bus 44 7.3% 133 2.6% 177 3.1% 
Truck 74 12.3% 172 3.4% 246 4.3% 
Taxi/Livery 44 7.3% 727 14.2% 771 13.5% 
Passenger 439 73.0% 4,091 79.9% 4,530 79.1% 
Total Known 601  5,123  5,724  
Other/Unknown 138  1,492  1,630  
Total 739 6,615 7,354   

Table 1-2. Percent of Crashes by Vehicle Type



    

 

Figure 1-15. Livery, Taxi, Bus, and Truck Crashes 
 

 
 
1.1.5. Crash Location Characteristics  
 
Intersection vs. Midblock Crashes 
In New York City, 10% of pedestrian KSI crashes involved at least one 
fatality. Of the fatal pedestrian crashes, 62.2% occurred at intersections 
while 37.8% occurred mid-block and 30 fatal crashes had unknown 
locations. Of the severe injury pedestrian crashes, 74.8% occurred at 
intersections while 25.2% occurred mid-block and 231 severe injury 
crashes had unknown locations. Crashes without a location listed (261) 
accounted for 3.5% of the total. 
 
Examining crash locations by borough (Figure 1-16) reveals that while more 
fatal and severe injury crashes generally took place in intersections across 
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the City, the highest percentage of intersection crashes occurred in 
Manhattan. On the other hand, Staten Island experiences the highest 

percentage of mid-block pedestrian KSI crashes. While relevant factors 
associated with this trend need to be further investigated, street network 
characteristics may play a role in such trends. Most of Manhattan’s street 
network consists of short blocks, resulting in a higher density of 
intersections compared to other boroughs, increasing the proportion of 
intersection crashes. 
 
1.1.6. Pedestrian and Driver Behavior 
 
Pedestrian Action 
Pedestrian action data (Table 1-3) is available for pedestrian KSI crashes in 
6,369 cases (985 were not entered, not applicable, or unknown). Roughly 
71% (or 4,519 crashes) involved pedestrians crossing streets. A plurality of 
pedestrian KSI crashes occurred when pedestrians were crossing streets 
with the signal (i.e. during the “Walk” phase), which occurred in roughly 27% 
(or 1,712 crashes). A close examination of signalized crosswalk may be 
warranted. The failure of drivers to yield to pedestrians in a crosswalk is a 
major factor in pedestrian KSI crashes; most such pedestrian KSI crashes 
occur at signalized intersections and involve turning vehicles. 27% of all 
pedestrian KSI crashes involve a pedestrian struck while crossing with the 

Figure 1-16. NYC Crashes by Intersection or Mid-block Location by Borough 
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signal, and another 6% involve a pedestrian crossing in a non-signalized 
crosswalk.   After eliminating apparent red-light-running and stop-sign-
running crashes (1.5% of pedestrian KSI crashes), 31% of all pedestrian 
KSI cases involved drivers failing to yield to pedestrians.   The second 
highest number of crashes occurred where a signal or crosswalk was not 
present (just under 24%). The third most frequent pedestrian action was 
crossing against the signal (approximately 20%).  
 

Pedestrian Action Severe Fatal Total 
% of 
Total 

Crossing with Signal 1,712 26.9% 1,589 123
23.6% Crossing, No Signal or Crosswalk 1,338 168 1,506
20.4% Crossing against Signal 1,155 146 1,301

7.6% Other Actions in Roadway 399 83 482
6.9% Emerge From Behind Parked Vehicle 401 38 439

Crossing, No Signal, Marked 
Crosswalk 327 37 364 5.7% 

3.7% Not in Roadway 204 30 234
1.4% Playing in Roadway 88 3 91
1.3% Getting On/Off Vehicle 83 1 84
1.1% Working in Roadway 66 5 71

Along Highway with Traffic 41 6 47 0.7% 
Along Highway against Traffic 24 5 29 0.5% 
Child Getting On/Off School Bus 8 1 9 0.1% 
Total Known 5,723 646 6,369   

Table 1-3. Crashes by Pedestrian Action and Severity

 
 
Apparent Contributing Factors 
Table 1-4 displays the top apparent contributing factors to pedestrian KSI 
crashes.  Multiple contributing factors may be reported for one crash (up to 
two per involved vehicle/pedestrian), and approximately 50% of crashes do 
not have an apparent factor reported, or have an entered factor of ‘unknown’ 
or ‘not applicable’.  
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Table 1-4. Top Apparent Contributing Factors Pedestrian KSI Crashes 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Apparent Factor Cases (n=7,354)  Percent of Total  
DRIVER INATTENTION 2647 36.0% 
PEDESTRIAN'S ERROR/CONFUSION 1578 21.5% 
FAILURE TO YIELD RIGHT OF WAY 1512 20.6% 
UNSAFE SPEED 610 8.3% 
BACKING UNSAFELY 506 6.9% 
VIEW OBSTRUCTED/LIMITED 382 5.2% 
ALCOHOL INVOLVEMENT 352 4.8% 
TRAFFIC CONTROL DEVICES 
DISREGARDED 344 4.7% 
OTHER (VEHICLE) 342 4.7% 
AGGRESSIVE DRIVING/ROAD RAGE 280 3.8% 

PAVEMENT SLIPPERY 277 3.8% 
DRIVER INEXPERIENCE 240 3.3% 
GLARE 212 2.9% 
PASSING OR LANE USAGE 
IMPROPERLY 119 1.6% 
OUTSIDE CAR DISTRACTION 81 1.1% 
REACTION TO OTHER UNINVOLVED 
VEHICLE 70 1.0% 
UNSAFE LANE CHANGING 54 0.7% 
OBSTRUCTION/DEBRIS 40 0.5% 
PASSENGER DISTRACTION 39 0.5% 
FOLLOWING TOO CLOSELY 38 0.5% 
BRAKES DEFECTIVE 37                                         0.5% 

 
Major behavioral issues that emerge from this contributing factors list 
include driver failure to yield/inattention, speed, and “pedestrian 
error/confusion.”  
 
Failure to Yield and Driver Inattention 
The related issues of driver inattention and failure to yield are involved in 
large portion of pedestrian KSI crashes, and substantially coincide with 
crashes in which the injured pedestrian was crossing legally with the signal 
or at an unsignalized crosswalk.  These numbers are likely to underestimate 
the frequency of both failure-to-yield-violations in pedestrian KSI crashes, 
and driver inattention, since NYSDOT contributing factor data does not 
account for all crashes.  Further, these labels appear to be used 
interchangeably for some types of crashes, including failure-to-yield 
crashes. 
 
 

New York City Pedestrian Safety Study & Action Plan: Technical Supplement 25



    

New York City Pedestrian Safety Study & Action Plan: Technical Supplement 26

 
Pedestrian Behavior 
Pedestrian error/confusion is reported in 21.5% of cases, and is typically 
reported in crossing-against-the-signal and midblock-crossing crashes.  
However, pedestrian action data is a more reliable source for understanding 
pedestrian behavior as relates to crashes. 
 
Speed 
21% of all pedestrian KSI crashes were attributed by responding officers to 
speed-related contributing factors: speeding (8.3%), slippery pavement (i.e. 
driving too fast to stop under prevailing weather conditions, 3.8%), limited 
sight distance (i.e. driving too fast for specific geometric conditions, 5.2%), 
aggressive driving (3.8%), and following too closely (0.5%).   These numbers 
are likely to underestimate the importance of speeding, since NYSDOT 
contributing factor data does not account for all crashes, and only two 
contributing factors may be reported for each crash.  Many DWI crashes 
(4.8%) and driver inattention crashes (36%) are also suspected to involve 
speeding or unsafe speeds. 
 
Alcohol  
Alcohol involvement was reported as a factor in 8.1% of fatal crashes and 
3.1% of severe injury crashes.  This may also be an underestimate, since 
other data (discussed above) suggest that drivers leave the scene in about 
21% of the fatal and serious injury crashes.  Other research indicates that 
drivers who leave the scene (and are later identified) are more likely to have 
had a previous arrest for driving while intoxicated than drivers who remain at 
the scene.5   
 
 
 
 
 
 
 
 
 
 
 
                                                      
5 Sara J. Solnick and David Hemenway, “Hit the Bottle and Run: The Role of Alcohol in Hit-and-Run Pedestrian Fatalities,” Journal 
of Studies on Alcohol and Drugs 55:6 (1994): 679-584. 
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Roadway Conditions 
Table 1-5 shows the roadway surface conditions present at the time and 
location of the crashes. In 78.9% of the crashes, the roadway condition was 
listed as dry. Wet road surfaces were present in 19.3% of the crashes.  This 
result is expected, since New York City has an average of 96 days with 
precipitation per year (26% of the year). 
 
 
 
 
 
 
 
 
 
 
 
 
1.1.7  Injury Outcomes: Summary of CODES Data 
The following section describes medical injury-severity data using Maximum 
Abbreviated Injury Scale (MAIS) data, a more detailed level of medical 
outcome data than available in the NYSDOT crash data files.  MAIS data 
was obtained from the New York State Department of Health (NYSDOH) 
through its Crash Outcome Data Evaluation System (CODES). The CODES 
system enables a probabilistic linkage of data on motor vehicle crashes, 
hospitalization, and victim information. The probabilistic record linkage is 
accomplished by comparing data fields in two files, such as birth date and 
gender, or any other identifiable information. Then, a comparison of the data 
fields identifies the probability that two records refer to the same person 
(and should be linked) based on the similarity of the identifiable information 
across the databases.  

The database was aggregated to the zip code level by NYSDOH and then 
provided to NYCDOT.  Due to privacy restrictions on this dataset, in 
categories with five or fewer injuries the precise number of injuries was not 
provided (X).   
 

Road Surface Crashes 
% of 
Total 

Dry      5,626 78.9 

Wet      1,377 19.3 

Snow/Ice        86 1.2 

Slush        28 0.4 

Other        14 0.2 

Table 1-5 Crashes by Roadway Surface Conditions 
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Table 1-6 shows the total number of injuries reported in the CODES data, 
assuming a range of possible substitution values for the suppressed data. 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 1-17 shows the aggregate severity levels with an MAIS score of 2 
(Moderate) through 6 (Maximum) by zip code of crash victim residence 
normalized by population. The values represent the total number of victims 
in that zip code and range from a minimum of zero to a maximum of 124 in 
any individual zip code with a mean of 38.9 and then divided by the total 
population of that zip code.  
 

Code Severity X=1 X=5 X=Average 
MAIS_0 No Injury 34,588 34,604 34,596
MAIS_1 Minor 6,777 6,865 6,821
MAIS_2 Moderate 4,332 4,428 4,380
MAIS_3 Serious 1,477 1,701 1,589
MAIS_4 Severe 532 892 712
MAIS_5 Critical 129 509 319
MAIS_6 Maximum 3 15 9
MAIS_9 Unknown 4 20 12

Table 1-6 CODES Injury Severity Summary 
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Figure 1-18 shows the aggregate hospitalization time in days by zip code of 
crash victim residence normalized by population. As indicated, the 
normalized values range from 0 to 0.12 days.  The mean number of 
aggregate days in the hospital is 433.2 and the total for all New York City is 
77,972.74 days. 

 

Figure 1-17. CODES Aggregated Severity MAIS 2-6 by Zip Code (Normalized)
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Figure 1-19 shows the aggregate total hospitalization cost in dollars by zip 
code of crash victim residence normalized by population. The raw values 
range from zero to $9,919,020.80 in any individual zip code and a mean of 
$1,761,482.50 and the citywide total is $317,066,849.13. The 
normalized values range from 0.00 to 614.07. 
 

Figure 1-18. Total Hospitalization Time by Zip Code (Normalized) 
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Figure 5-22 by Zip Code 

Figure 1-19. Total Hospitalization Cost by Zip Code (Normalized) 
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2. Spatial Analysis 
 

Evaluation of Methods for Identification of High Frequency Crash 
Locations 
 

Spatial analysis of the pedestrian crash distributions is central to this study. 
This section applies methodologies and strategies that mitigate the 
influence of the positional error in the source datasets. The purpose of this 
procedure was to determine if locations exist in which “accident clusters” or 
specific accident types occur and to evaluate potential techniques for 
identifying high-crash locations. A cluster is defined as a group of crashes 
that is in relatively close proximity to a single location (point) or corridor (line). 
By identifying these clusters, we are able to detect locations (i.e., 
intersections or corridors) that potentially present the greatest risk for 
pedestrian safety. Specific strategies are described below. 
 

2.1. Cluster Statistics 
Two measures of clustering and spatial dependence were employed. They 
are spatial autocorrelation (Moran’s I) and Hot Spot Analysis (Getis-Ord Gi*).  
 
Spatial autocorrelation measures the degree of spatial dependence among 
observations in space. Spatial autocorrelation that is more positive than 
expected from random indicates the clustering of similar values across geo-
space, while significant negative spatial autocorrelation indicates that 
neighboring values are more dissimilar than expected by chance. 
Specifically, Moran’s I compares the spatial weights to the covariance 
relationship at pairs of locations. Moran’s I is calculated as follows: 
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Where there are n regions and is a measure of the spatial 
proximity between regions i and j, and yi is the value of the 
variable interest at region i, yj is the value of the variable 
interest at region j, 

ijw

y  is the mean value of the variable interest 
in all regions. 
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The results from this analysis (illustrated in Figure 2-1) show that nearly all 
points (94.37%) fall within one standard deviation of the mean. This 
indicates that there was relatively low clustering of more than one crash 
near any single point. A majority of the positive values were also correlated 
to single crashes whose nearest neighbor was also a single crash. 
 

 
 
In order to take a closer look at local patterns Getis-Ord Gi* statistic was 
also considered. Local spatial autocorrelation used in the Getis-Ord Gi* 
statistic provides a measure of the spatial dependence of each entity on 
surrounding entities by comparing their values within a specified distance. 
This statistic is especially useful when no ‘global’ patterns (from Moran’s I for 

Figure 2-1. Moran’s I Calculation, mean excluded
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our study) have been found and ‘local’ spikes in incidents may exist. Getis-
Ord Gi* is calculated as follows: 
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where x is the variable of interest, x is the mean value of the 
variable interest in all regions,  is the sample standard 
deviation of the x values, and (d) is equal to one if region j is 
within a distance of d from region i, and zero otherwise, is 
the number of regions with weight of zero. The sum is over all 
regions, including I, and where is the standard deviation of 
the regions with a weight of zero. 

 
The results from the Getis-Ord Gi* calculation (illustrated in Figure 5-24) 
indicate that 84.94% of all crashes fall within one standard deviation of the 
mean. Of the values that fell outside of one standard deviation, all had 
positive values which are strongly linked to the high number of crashes with 
a single injury or fatality.  
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2.2. Cluster Mapping 
Using severe injury and fatal crash locations, raster density surfaces were 
created to visualize the data. High accident locations were then mapped 
citywide and also by borough. This process involved creating a continuous 
grid overlay of the study area and “coding” each grid cell by its underlying 
calculated value. From the raster surfaces, it is also possible to create 
ordinal lists of high frequency locations by overlaying roadway segments 

Figure 2-2. Getis-Ord Gi* Calculation, mean excluded
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and intersections and extracting those locations that lie on top of high raster 
values. 
 
Two variations of this method were employed to calculate the underlying 
values of the raster surfaces based on kernel densities. Both methods used 
a weighting scheme in which a fatal crash was given two times the weight of 
a severe injury crash. Two different search and grid sizes were used in the 
analyses. First, a 250 foot search and 10 foot grid size (Figure 5-25) was 
used to identify local areas with high concentrations of crashes. Second, a 
500 foot search and 50 foot grid size (Figure 5-26) was used to identify 
neighborhood/corridor areas with high concentrations of crashes. The 
different techniques allowed identification and analysis patterns at different 
scales. Details of the calculations are shown by borough in Appendix D. 

 

 

Figure 2-3. Kernel Density 250’ Search / 10’ Grid  
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2.3. Buffered Clusters 
A valuable tool that can be utilized to identify crash clusters is the buffering 
of crash locations in order to group those that occur within a specified 
distance to each other. This technique allows us to overcome the fact that 
the crash locations may not have absolute positional accuracy, but may still 
be closely related to other crashes in specified vicinity. In a recent NHTSA-
funded study performed by the Center for Transportation Injury Research at 
CUBRC, buffers with a 100-foot radius, for each year independently, were 
created.6 This scheme helped the researchers mitigate any error in the 
accuracy of the original geocoding and accommodate the rather large 
distance between two crashes that may have occurred on opposites legs of 
                                                      
6 K.M. Majka, L. V. Lombardo, B. Eisemann, A. J. Blatt, M. C. Flanigan. “A Spatial Analysis of Geocoded FARS Data to Identify 
Intersections with Multiple Occurrences of Fatal Crashes.” In the Proceedings of the 13th 2006 World Congress & Exhibition on 
Intelligent Transportation Systems and Services, October 9-12, 2006, London, England. 
 

 

Figure 2-4. Kernel Density 500’ Search / 50’ Grid 



    

an intersection. For this study however, we found that using 100-foot radius 
buffers was too large for the relatively small blocks (meaning intersections 
are close to each other) in New York City, especially in the borough of 
Manhattan. We therefore utilized buffers of 50-foot radius (100-foot 
diameter) to identify clusters. 
 
After the buffers are created, the interior boundaries between overlapping 
buffers were dissolved so that crashes occurring within 100 feet of each 
other are grouped together in both concentrated areas and also along 
corridors. The crash locations were then “spatially joined” within the GIS 
system to the dissolved buffers. This allowed the attributes of the datasets 
that are associated with each crash to be associated with the dissolved 
buffers. It also enabled us to obtain the number of crashes within each 
dissolved buffer and the intersection or corridor most associated with each 
buffered location. The results of this analysis are presented below. 
 
The buffered cluster analysis found that using a 50-foot radius buffer as a 
surrogate for locating the ‘same’ location resulted in the following clusters of 
severe and fatal crashes: 

 10 crashes – 1 cluster 
 9 crashes – 0 clusters 
 8 crashes – 2 clusters 
 7 crashes – 1 cluster 
 6 crashes – 10 clusters 
 5 crashes – 15 clusters 
 4 crashes – 49 clusters 
 3 crashes – 146 clusters 
 2 crashes – 636 clusters 
 1 crash – 4388 clusters 
 Unknown (non-geocoded) locations – 892 crashes 
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Pedestrian KSI Crashes by Intersection
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Of the 6,462 crashes that had known locations, approximately 68% occur 
at a unique location. The 29 locations had at least 5 pedestrian KSI crashes, 
an average of 1 per year.  These locations are listed in Table 2-1.  

Of the 6,462 crashes that had known locations, approximately 68% occur 
at a unique location. The 29 locations had at least 5 pedestrian KSI crashes, 
an average of 1 per year.  These locations are listed in Table 2-1.  
  
  
  
  
  
  
  
  
  
  

Figure 2-5. Pedestrian KSI Crashes per Intersecti  on
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2.4 Summary of Spatial Analysis  
The previous section presented four methods of spatial analysis of severe 
injury and fatal pedestrian crashes: two spatial auto-correlation measures 
(Moran’s I and Getis-Ord Gi*), kernel based density measures, and a 
clustering method based on buffering. Each of these techniques has 
advantages and limitations as well as specific uses.  

Crashes Location Borough 
10 Grand Concourse at E 167th St Bronx 
8 W Fordham Rd at University Ave Bronx 
8 E Broadway at Forsyth St Manhattan 
7 E Fordham Rd at Webster Ave Bronx 
6 Grand Concourse at E 183rd St Bronx 
6 Nostrand Ave at Atlantic Ave Brooklyn 
6 Ocean Pkwy at Neptune Ave Brooklyn 
6 9th Ave at W 49th St Manhattan 
6 Avenue of the Americas at Broadway Manhattan 
6 Ave of the Americas AT W 42nd St Manhattan 
6 Bowery between Bayard St & Pell St Manhattan 
6 Essex St at Delancey St Manhattan 
6 Grand St at Chrystie St Manhattan 
6 Union St at Northern Blvd Queens 
5 Baychester Ave at Bartow Ave Bronx 
5 Grand Concourse at E 161st St Bronx 
5 Grand Concourse at E Tremont Ave Bronx 
5 Bay Pkwy at 85th St Brooklyn 
5 Flatbush Ave between Dorchester Rd & Clarendon Rd Brooklyn 
5 Dorchester Rd near Coney Island Ave Brooklyn 
5 11th Ave at W 56th St Manhattan 
5 7th Ave at W 34th St Manhattan 
5 8th Ave at W 42nd St Manhattan 
5 Broadway at E 23rd St Manhattan 
5 W 72nd St between Broadway & Amsterdam Ave Manhattan 
5 Park Ave at E 33rd St Manhattan 
5 Main St at Kissena Blvd & 41st Ave Queens 
5 Main St at Sanford Ave Queens 
5 Queens Blvd at 63rd Dr Queens 

Table 2-1. Locations with 5 or More Pedestrian KSI Crashes, 2002-2006
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Two methods of spatial auto-correlation, Moran’s I and Getis-Ord Gi* were 
analyzed for effectiveness in finding areas of high concentrations of crashes 
and numbers of injuries and or fatalities. It is important to analyze both types 
of spatial auto-correlation in order to find both small and large scale 
patterns. For example, a distribution of crash events may seem random 
when analyzed using Moran’s I at the global level (all New York City 
pedestrian crashes) but may in fact have a distinct pattern when a smaller 
area is analyzed (one borough) using Getis-Ord Gi*. Neither of these 
techniques, however, effectively identified areas of high concentrations of 
crashes, injuries, or fatalities. Their effectiveness was in large part 
impacting by the high number of crashes that occur at ‘unique’ locations (i.e. 
only 1 crash). Using a larger dataset of crashes (all crashes) might be one 
solution in utilizing these techniques more efficiently.  
 
Both kernel density methods presented here, of 250-foot search, 10-foot 
grid size and 500-foot search, 50-foot grid size, provide an interesting 
visualization and an effective way of estimating crash values at any 
particular location. The regular grid pattern of many of New York City’s 
streets, however, limits the effectiveness to which the results can be 
displayed. As evident in the 250-foot search, 10-foot grid size map (Figure 
2-3) using a relatively small search and grid size practically presents the 
results at near individual crash levels. Trying to utilize a larger search size of 
500-feet and a grid size of 50-feet to overcome the somewhat regular 
distances between streets and intersections however, creates a large 
surface of continuous values that cannot be used to identify locations or 
corridors for analysis (Figure 2-4). This technique is therefore best suited for 
analyzing neighborhood level areas. 
  
A buffered clustering method, developed by the Center for Transportation 
Injury Research at CUBRC for a NHTSA funded study7 on intersection 
analysis, was adapted for the unique environment of New York City. The 
buffered clustering method was effective in discerning locations that had a 
high number of crashes, severe injuries, and fatalities and also grouping 
nearby locations. Although a 100-foot diameter buffer was selected for this 
particular study, the technique can be easily tailored to meet the needs of 
the desired analysis. Increasing buffer sizes will result in larger 
                                                      
7 K.M. Majka, L. V. Lombardo, B. Eisemann, A. J. Blatt, M. C. Flanigan. “A Spatial Analysis of Geocoded FARS Data to Identify 
Intersections with Multiple Occurrences of Fatal Crashes.” In the Proceedings of the 13th 2006 World Congress & Exhibition on 
Intelligent Transportation Systems and Services, October 9-12, 2006, London, England. 
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agglomeration of points and can more easily help identify corridors. 
Conversely, decreasing the buffer size limits the grouping to very similar 
locations.     
 
The buffered clustering method identified 29 locations that had 5 or more 
crashes that involved fatal or severe injury pedestrian crashes. It is our 
recommendation that the New York City Department of Transportation 
utilize this technique along with additional information, such as locations of 
roadway improvements or changes, to determine and prioritize areas 
needing additional study. It is also important to note that this technique 
could easily be expanded beyond the scope of serious injury and fatality 
pedestrian crashes to include all crashes or any other specific targeted 
crash category of interest. It would therefore be a valuable tool to calculate 
NYC’s highest crash locations of any type or total. 
 

A summary of these techniques with their advantages, limitations, and 
recommendations is provided in Table 2-2 below. 

Technique Advantages Limitations Recommendations 

Moran’s I 

When used 
appropriately, results 
indicate clustering of 
similar and dissimilar 
values. 

Predictive ability 
lessened by the high 
number of crashes that 
occur at unique locations 
with a single fatality or 
injury. 

May provide additional 
information if a larger 
dataset was analyzed 
(i.e. all crashes) and 
weighted by severity. 

Getis-Ord 
Gi* 

Able to detect patterns 
of clustering (Similar 
values) at a smaller 
scale than Moran’s I 

Also limited by the 
relatively rare and unique 
distribution of serious 
injury and fatality 
crashes. 

May provide insight in 
neighborhood area 
analysis with a larger 
dataset. 

Kernel 
Densities 

Creates a continuous 
‘surface’ to estimate 
crash values at any 
location. 

Regular grid pattern of 
many NYC streets 
influences negatively 
impacts search and grid 
size of display. 

Effectively illustrates 
concentrations of 
crashes at neighborhood 
level. 

Buffered 
Clusters 

Quickly estimates the 
number of nearby 
crashes that can be 
considered part of a 
complex intersection or 
corridor. 

Increasing buffer sizes 
may group crashes or 
locations that have very 
different characteristics. 

Recommended technique 
for NYCDOT to 
effectively produce 
prioritized lists of high 
frequency crash 
locations. 

Table 2-2. Summary of Spatial Analysis Techniques



    

3. Crash Cause/Frequency and Severity Modeling 
 
This section describes the results of two models of pedestrian KSI (Killed or 
Severely Injured) crashes in New York City.  The first, crash frequency 
modeling, uses causal factors to explain the frequency of pedestrian severe 
injuries and fatalities in geographic areas, and the second, crash severity 
modeling, examined the effects of these factors in determining whether a 
crash result was severe or fatal. 
 
Crash frequency modeling entailed the examination of pedestrian crash 
frequency by performing statistical regression analysis of the input data 
(crash data, roadway and land use characteristics, traffic controls, motor 
vehicle operator characteristics, etc.) with the aim of identifying factors 
associated with crash frequency. The analysis was conducted at two 
different spatial levels of aggregation: zip code and census tract. This 
allowed the researchers to study the effects of specific roadway and 
intersection types (more influential at the census tract level) while 
accounting for neighborhood characteristics (which may be more relevant at 
the zip code level). At the zip code level, models were developed for 
pedestrian fatality crashes and pedestrian severe injury crashes.  This 
distinction allowed more robust and accurate models that capture the 
factors that might differently affect the frequency of these two categories 
of pedestrian crashes.  However, since the number of crashes was few at 
the census tract level with resulting higher dispersion the researchers 
developed a single model for all pedestrian KSI crashes at the census tract 
level, rather than modeling severe injuries and fatalities separately, to 
ensure a proper model fit. 
 
Crash severity models seek to explain why some pedestrian crashes 
resulted in a severe injury, while others resulted in fatal injuries. A Binary 
Logit Model was used to determine the severity levels for Pedestrian KSI 
crashes in New York City and to evaluate the associations between 
pedestrian injury risk and possible contributing factors. While crash 
cause/frequency models described in Appendix B were built at the 
aggregated zip code or census tract geographic level, the severity model 
analyzes individual crash records to identify the specific characteristics that 
determined the severity level of a crash.  
 

New York City Pedestrian Safety Study & Action Plan: Technical Supplement 43



    

New York City Pedestrian Safety Study & Action Plan: Technical Supplement 44

Pedestrian KSI crashes in the NYSDOT database were classified into two 
categories based on the severity of injury: fatal crashes and severe-injury 
crashes. The model results identified factors that contribute to the level of 
severity of pedestrian crashes.  These results have implications for 
engineering, enforcement, and education countermeasures for reducing the 
severity of pedestrian crashes.   
 
 
3.1. Frequency Analysis 
Pedestrian crashes result from the interaction of several factors, including 
the characteristics of drivers, motor vehicles, and pedestrians, as well as 
roadway design, weather, and other environmental conditions. Crash 
frequency models are estimated to determine the factors that affect the 
frequency of crashes. Different crash frequency models such as standard 
Negative Binomial (NB), Zero-Inflated NB (ZINB), and NB with heterogeneity 
(NB+) in dispersion parameter models are estimated here. The latter two 
account for variability introduced by zero values and variability in dispersion 
parameter as a function of covariates. The dispersion parameter captures 
the difference between the mean and the variance. These models (NB, ZINB, 
and NB+) are used when the data is over-dispersed; that is when the 
estimated variance is greater than the estimated mean. 

 
The number of pedestrian crashes is expected to increase as pedestrian risk 
exposure increases. Pedestrian risk exposure is usually defined as a function 
of population, vehicle and pedestrian volumes or the number of walking 
trips8 In this study, we utilize population, vehicle registrations, the presence 
of signalized intersections, and transit usage to control for pedestrian 
exposure.  
 
A review of the modeling approach adopted for crash cause modeling in New 
York City is presented below. This process was created to follow a 
comprehensive and parsimonious modeling process that avoids the 
introduction of bias encountered in more subjective methodologies. Given 
that, it provides a thorough preliminary analysis of the independent variables 
to capture their independent effect and correlation. First, we present some 
preliminary analysis using descriptive statistics, cross tabulation and 

                                                      
8 B.L.Bowman, R.L. Vecellio, J. Miao,”Vehicle and pedestrian  models for median locations,” Journal of Transportation Engineering. 
121(6) (1994): 531-537; C. Lee and M. Abdel-Aty, “Comprehensive analysis of vehicle–pedestrian crashes at intersections in 
Florida”,   Analysis and Prevention  37 (2006): 775-786; A. Loukaitou-Sideris et al., “Death on the Crosswalk: A Study of Pedestrian-
Automobile Collisions in Los Angeles.” Journal of Planning Education and Research 26 (3) (2007): 338-351; S. S. Pulugurtha et al, 
op. cit. 



    

correlation analysis to group variables in subsets. All variables in a subset 
are such that they each represent a unique characteristic and do not have a 
high correlation index. Next, each of these subsets is used to run the three 
different modeling techniques (NB, NB+, and ZINB). The model building 
process progresses from all the variables in a subset to a few significant 
variables, with variables eliminated using likelihood ratio tests. Then, we 
compare these models to select the group of best fit models for both the zip 
code level (fatal and severe crashes) and census tract level (total crashes) 
aggregations. Finally, a set of ‘best’ models are presented, with their 
corresponding statistical parameters, followed by analysis interpretation of 
the results and implications. 
 
3.1.1. Preliminary Analysis 
In order to best understand the data, preliminary analysis was performed 
using descriptive statistics, cross tabulations, and correlation analysis at 
both zip code and census tract levels for the dependent variables, and for 
selected important independent variables. Descriptive statistics on 
independent variables are provided in Appendix B. 
 
Figures 3-1 through 3-4 plot the count of fatal and severe crash frequencies 
that are dependent variables for frequency models. In both cases, several 
zero values were detected, particularly at the census tract level. This led us 
to consider Zero Inflated models to account for the possible existence of a 
two state (zero and non-zero) process, which, as noted earlier, accounts for 
overdispersion of models as a result of too many zero values at the given 
unit of analysis.   
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Figure 3-1. Histogram of Fatal Crash Count at the Census Tract Level 

 
 

 
Figure 3-2. Histogram of Severe Crash Count at the Census Tract Level 
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Figure 3-3. Histogram of Fatal Crash Count at the Zip Code Level 

 
 

 
Figure 3-4. Histogram of Severe Crash Count at the Zip Code Level 

 
 
As expected, significantly greater variation was identified by comparing the 
coefficient of variation (COV) at the census tract level and then at the zip 
code level. Further, independence tests and correlation analysis were used, 
in order to identify correlation between independent variables.  
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After identifying initial correlation, ratio or fraction variables were created. 
These variables break down the correlation and at the same time provide 
more intuitive crash cause results. This normalizes the value by spreading 
the dependency of one variable against another (i.e., Hispanic 
population/Total Population). For both levels of aggregation, the following 
control variables were used:  
 

 Population: this variable was used to control for socio-demographic 
variables (i.e., age, gender, ethnicity, language, education, etc.). 
 

 Length (miles): this variable was used to control for some longitudinal 
roadway characteristics that included transit and geometric 
parameters (i.e. type of roadway, number of lanes, vehicle routes, 
width of lanes, etc.). 
 

 Total Area: this variable was used to control for different land use 
characteristics (i.e. type of development area, land use variables, etc.)     
 

 Other: specific variables such as total intersection were used to 
control for type of intersection or similar characteristics, however, the 
first three were the predominant ones.  

 
After checking for possible correlations between the existing and newly 
created ratio variables, the final variable subsets were constructed. These 
subsets were selected by the project team in consultation with NYCDOT 
staff, based on statistical characteristics and the suitability of the variables 
to the study’s objectives. Subsets were chosen at the zip code level and 
census tract level.  These groups of variables were used for the initial 
models, given that they possess the appropriate statistical characteristics 
(correlations ρ ≤ 0.3 for census tract level dataset and ρ ≤ 0.4 for zip code 
level dataset). These subsets are shown below in tables 3-1 and 3-2, for the 
zip code and census tract level respectively. 
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               Table 3-1. Final Variable Subset for Zip Code Level Models 

Variable Description Variable Description

POP2000 Population 2000 POP2000 Population 2000
BL_POP Black/Population NS25_POP No Education/Population
FCC_A2 Primary Road/Length BL_POP Black/Population
FCC_A1 Primary Hgwy/Length INT_5W 5Way Intersection

SUM_OFFI Office/Total Area TRAV_1 One Lanes/Length
W_LT_30 Less 30ft Width/Length TRAV_2 Two Lanes/Length
W_40_49 40 to 49ft Width/Length SUBRDR Sub Ridership/Population
W_50_59 50 to 59ft Width/Length SIG_DEN Signal/Tot Intersection

COM Commercial Vehicles BUS_RTS Total Bus Stop
MED_AGE Median Age

PARKS Parks

Subset 1 Subset 2

Variable Subset for Zip Code Level of Aggregation

 
 

Table 3-2. Final Variable Subset for Census Tract Level Models         

 

Variable Description Variable Description
BL_POP Black/Population BL_POP Black/Population
HIS_POP Hispanic/Population HIS_POP Hispanic/Population

MED_AGE Median Age MED_AGE Median Age
NS25_POP No Education/Population No Education/PopulationNS25_POP
HSG_POP High School Grad/Population HSG_POP High School Grad/Population
RES_LU Residential/Total LU RES_LU Residential/Total LU
IND_LU COMOF_LU Commercial/Total LUIndustrial/Total LU

OPEN_LU Open/Total LU SUM_OFFI Office/Total Area
SCHOOLS Schools SUM_RETA Retail/Total Area
PRK_ACRE Acres of Parks PARKS Parks

AWS All way stop SCHOOLS Schools
SIG Signalized Intersection W_LT30 Less 30ft Width/Length

INT_3W 3Way Intersection W_50_59 50 to 59ft Width/Length
INT_5W 5Way Intersection SUBRDR Sub Ridership/Population
FCC_A1 Primary Hgwy/Length INT_5W 5Way Intersection
FCC_A2 Primary Road/Length FCC_A4 Local-Rural Road/Length
FCC_A4 Local-Rural Road/Length FCC_A7 Other Throughfare/Lengh
FCC_A7 Other Throughfare/Lengh POP2000 Population 200
TRAV_2 Two Lanes/Length AWS All way stop
TRAV_4 Four Lanes/Length SIG Signalized Intersection
TRAV_5 Five Lanes/Length
PRK_1 One Parking Lane/Length

SUBRDR Sub Ridership/Population
BUS_LENG Bus Length/Length
POP2000 Population 2000

Subset 1 Subset 2 

Final Variable Subset for Tract Aggregation Level 
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3.1.2. Models for Frequency Analysis 
Negative Binomial models were estimated with the final variable subsets 
obtained from previous sections. Negative Binomial are the most widely 
applied models in traffic safety studies due to their ability to account for 
between-location heterogeneity or over-dispersion of crash variations, and 
their computational simplicity for model calibration and application. 
Different studies have used this formulation in the modeling of pedestrian 
safety9.   

 
As a more general form of the Poisson regression, the Negative Binomial 
model allows the mean and the variance to be unequal; that is E[yi] ≠ VAR[yi]. 
E[yi] denotes the predicted count (mean) of pedestrian-vehicle crashes, and 
VAR[yi] denotes variance. When (E[yi] > VAR[yi]) holds, the data is said to be 
under-dispersed; otherwise the data is over-dispersed, i.e., (E[yi] < VAR[yi]). 
When the mean and variance are not equal, the parameter vector estimated 
with a Poisson regression is biased. This error can be corrected using 
Negative Binomial models. Thus, we employ this modeling technique by 
rewriting the Poisson regression form: 
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Where P(yi) is the probability of census tract or zip i having yi crashes, and λi 
is the Poisson parameter [λi = EXP(βXi)] for census tract or zip i. In this 
Poisson parameter, Xi is a vector of explanatory variables and β is a vector of 
estimable parameters. Then, by including an error term into the parameter 
we can account for over-dispersion and use the Negative binomial model 
parameter [(λi= EXP(βXi + εi)] where EXP(εi) is a gamma-distributed error term 
with mean 1 and variance α². As mentioned before, this term allows the 
variance to differ from the mean. The Poisson is a limiting model of the 
negative binomial regression model as α approaches zero.  The symbol α is 
called the over-dispersion parameter. The negative binomial has the form: 
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9 For instance, see Bowman, et al., op cit.; Lee and Abdel-Aty, op cit.; Loukaitou-Sideris et al., op cit. 
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Where Г(.) is a gamma function, and the other parameters are as previously 
defined. Therefore, by using this form we allow the error term to become 
inflated as over-dispersion and the estimated variance increase. The 
negative binomial with heterogeneity in dispersion parameter (NB+) is an 
extension of the above simple negative binomial model. Here, the dispersion 
parameter α, is assumed to be a function of covariates. Therefore the 
dispersion is allowed to vary (is heterogeneous) depending on the covariate 
values. α = EXP(β'z) where z is a set of covariates and β is the vector of  
parameters that can be estimated in the model. 

 
Given the characteristics of large urban areas, several zero values are 
expected in the dependent variables, since several zip codes and census 
tracts have zero pedestrian crashes (as shown in Figures 3-1 through 3-4). 
This may happen in places where no pedestrian movement is occurring (i.e., 
some industrial areas) or where no pedestrian-vehicle interaction exists (i.e. 
inside some large parks). These are often called zero-count states and lead 
to over-dispersion if considered as part of a single normal count process. 
This could be taken into account in the modeling process by the use of Zero 
Inflated Models (ZIM). Zero Inflated Negative Binomial (ZINB) regression 
models assume that the number of crashes per census tract or zip, 
Y=(y1,y2,…,yn), are independent and the model is defined by: 
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(4) 
 
Where y is the number of crashes per census tract or zip   and ui=(1/α)/[(1/ 
α)+λi]. Maximum likelihood estimates are used to estimate the parameters of 
the ZINB regression model and confidence intervals are constructed by 
likelihood ratio tests.  
 



    

Zero-inflated models imply that the underlying data-generating process has 
a splitting regime that provides for two types of zeros. The splitting process 
is assumed to follow a logit (logistic) or probit (normal) probability process, or 
other probability processes. To use this type of model there should be a 
good understanding of the reasons of the high number of zero values, as 
identified previously in this report. 
 
3.1.3. Frequency Modeling Results 
This section presents frequency modeling results. The models were 
developed at two levels of spatial aggregation: the zip code and census tract 
levels. Since the number of crashes was few at the census tract level (as 
shown in Figures 3-1 and 3-2) and, as a result, a higher dispersion (i.e. higher 
COV shown in Tables B-1 and B-3), the researchers developed a single 
model for the total number of KSI crashes at the census tract level in order 
to ensure a good model fit. At the zip code level, on the other hand, separate 
models were estimated for fatal crash counts and severe injury crash 
counts. Three different modeling methodologies were employed: a simple 
negative binomial model (NB), negative binomial model with heterogeneity in 
dispersion parameter (NB+), and the zero-inflated negative binomial model 
(ZINB). Each of the models was estimated for the two different subsets. A 
systematic process of eliminating variables and building a parsimonious 
model was carried out. Likelihood ratio tests were employed to test 
hypotheses. The best models for the two subsets of variables were then 
combined to identify a final model, given that it provided better statistical 
parameter estimates. The descriptive statistics for the final sets of variables 
contained in the final models are presented in Table B-11 of Appendix B. 
Variables in the final model were checked again to avoid correlations (Table 
B-12).  
 
Census Tract Level Models 
First, the census tract level models are presented. To illustrate the 
systematic process of model building, the development of the NB model with 
Subset 1 is shown step-by-step. For the remaining models, only the final 
modeling results are presented.  
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Figure 3-5. Flowchart of Modeling Process for NB Subset 1 
 
The above flow chart presents the systematic model building process. The 
base model has all the variables listed earlier in subset 1 (p.7). The log 
likelihood value for this base model is -4305.116. The first restricted model 
is obtained by restricting the parameter coefficients of variables RES_LU 
(residential land use) and SUBRDR (subway ridership/population) to zero, 
given that insight of their significance were obtained from the preliminary 
analysis. The restricted model’s log likelihood value is -4305.346. The 
likelihood ratio (LR) test statistic to accept or reject the hypothesis is -2 (log 
likelihood of unrestricted model – log likelihood of restricted model). The LR 
test statistic is compared to the chi-squared statistic distributed with the 
degrees of freedom equal to difference in the number of parameters in the 
restricted and unrestricted model. If the LR test statistic is greater than the 
corresponding chi-squared statistic, then the hypothesis is rejected. 
Otherwise, the hypothesis (and the restricted model) is accepted. 
Proceeding in this manner, we arrive at the final parsimonious model. 
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Table B14 in Appendix B lists the final model estimates for the census tract 
level model. The dependent variable here is the total number of crashes at 
the census tract level. The table lists the variable name followed by the 
parameter estimate (and t-statistic) for the three types of models (NB, NB+, 
ZINB) for the two different subsets of variables and a final subset which 
includes significant variables from both subset 1 and 2. Since the census 
tract level is a smaller level of aggregation than the zip code level, there are 
more variables available for inclusion in the model. There is greater 
variability at the census tract level in terms of the independent variable 
values than at the zip code level. A richer model can therefore be specified 
at the census tract level. The independent variables can broadly be 
classified into four categories: exposure, socio-demographic, land-use, and 
road network and travel characteristics.  
 
The exposure variables capture the inherent likelihood of crashes due to 
greater risk from pedestrian-vehicle interactions. The population (POP2000) 
and number of signalized intersections (SIG) in a census tract directly affect 
the number of crashes. Greater population and more signals, which 
correspond to higher traffic volumes, also correspond to greater exposure 
and a higher likelihood of crashes. It is important to first control for exposure 
before interpreting other effects. Both of these exposure variables are 
highly significant.  
 
In terms of socio-demographics, both race and education levels were 
examined. The variables were modified as fraction variables. For example, 
the Black population variable (BL_POP) is the fraction of Black population in 
the census tract. The results show that census tracts with a greater fraction 
of Black and Hispanic population have a higher likelihood of crashes. In 
terms of education, a greater fraction of residents whose educational 
attainment is at the high school graduation level or less increases the 
likelihood of crashes in the tract. Both the exposure variables and the socio-
demographic variables are significant across all models tested indicating the 
robustness of the estimates. 
 
Land use is another important category of factors for explaining crash 
frequency. The results indicate that tracts with a greater fraction of 
industrial, commercial/office, and open space land use types have a greater 
likelihood of crashes while a significantly higher residential land use fraction 
reduces the likelihood of crashes (this effect was not significant in all 
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models). Residential land use may be associated with lower speed limits as 
well as fewer pedestrians. Industrial areas, on the other hand, might have 
more high speed vehicles and therefore have greater risk of pedestrian 
crashes. Commercial areas are likely to have more pedestrian activity 
(measured here by transit use); therefore, have greater risk of crashes. Two 
other land use variables that were significant were number of schools and 
park areas. A greater number of schools in a census tract are likely to 
increase the chances of crashes while crash likelihood reduces in tracts with 
more park coverage. These effects may be linked directly to higher exposure 
due to the presence of schools and lack of exposure due to less density of 
roads in parks. 
 
The final category of variables analyzed was road network and travel 
characteristics. In terms of intersection geometry, three-way intersections 
were associated with reduced likelihood of crashes while the presence of 
five-way intersections increased crash likelihood. These results may again 
be attributed to the risk of exposure which is greater in five-way 
intersections compared to three-way intersections. Several different 
variables were available to study the type and width of roadway. Census 
tracts with greater fraction of primary roadways with limited access, local 
roads, and other thoroughfares had lower likelihood for crashes while a 
greater fraction of primary roadways without access restriction increased 
the likelihood of crashes. This finding clearly outlines the importance of 
traffic calming on high speed, high volume roadways. Further, a greater 
fraction of roads with four or more lanes also increased the likelihood of 
crashes, while narrow roads (width less than 30 feet) reduced the likelihood. 
Finally, a measure of transit density—the fraction of bus route lengths to 
total roadway length—also increased crash likelihood.  
 
In terms of the different modeling methods, the zero-inflated negative 
binomial (ZINB) model with the final subset of variables performed the best. 
The Vuong statistic, which measures the appropriateness of using ZINB over 
traditional count models, for this model is 4.3259.  This figure is significant 
and favors the use of the ZINB model (assuming a 95% confidence level, 
Vuong statistics > 1.96 means the appropriateness of ZINB)10. Further, the 
negative binomial model with heterogeneity in dispersion parameter (NB+) 
performed better than the ordinary negative binomial model. In particular, it 
was observed that census tracts with a greater fraction of black population 
                                                      
10 Washington, S.P., Karlaftis, M.G., and Mannering, F.L., 2003. Statistical and Econometric Methods for Transportation Data 
Analysis. Chapman & Hall/CRC. 



    

had less dispersion (variability in terms of number of crashes) while tracts 
with more length of roadways had greater dispersion. In other words, 
pedestrian crashes at census tracts with greater black population have less 
variability than that at census tracts with more length of roadways. There 
were no major differences both in terms of significance and parameter 
estimate across the three models indicating the robustness of the 
estimates.  
 
Zip Code Level Models 
The zip code level model was estimated separately for the two different 
crash severities: severe injury and fatal. We present the model for severe-
injury crash frequencies first (Table B-15 in Appendix B) and then the fatal  
frequencies model (Table B-16). Since most variables average out at the 
higher spatial aggregation level of zip codes (as compared to census tracts), 
the number of independent variables available for model estimation is lesser. 
Furthermore, as can be observed from table B-15, the model specification 
affects both the parameter estimates the significance values. The 
interpretation presented here is for the best model, which is the negative 
binomial model with heterogeneity in dispersion parameter (NB+).  
 
(1) Severe-Injury Crash Frequency Model 
Population and the number of registered commercial vehicles were used as 
control variables for capturing risk exposure. With the increase of 
population, we expect that the pedestrian activities increases and hence the 
likelihood of pedestrian crashes also increases. On the other hand, with the 
increase of registered commercial vehicles truck-level traffic activities 
increase with greater risk for pedestrian crashes. Both of these variables 
were found highly significant in model results. Another potential risk 
exposure variable considered in variable selection, the number of registered 
passenger vehicles per zip code, was not found significant. Given the high 
use of transit in New York, owning a passenger vehicle does not 
automatically translate to greater vehicle miles traveled using the vehicle. 
The remaining categories of variables included are similar to census tract 
level but fewer in total number of variables.  
 
Similar to results at the census tract level, a greater fraction of Black 
population translates to a greater likelihood of severe-injury crashes. A 
greater fraction of population without school education also translates to a 
greater likelihood of severe-injury crashes in both levels of aggregation (zip 
code and census tract). 
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The effects of land use are less prominent at the zip code level compared to 
the census tract level. This may be an effect of the diversity of land use in 
New York City at the zip code level; while census tracts typically have one 
dominant land use, a zip code may encompass multiple land use types. The 
only land use variable significant across all models is the fraction of 
industrial land use type; the likelihood of severe-injury crashes increases 
with an increase in the fraction of industrial land use.      
 
There are several road network and travel characteristic variables in the 
final best-fit model. Zip codes with a greater number of five-way (complex) 
intersections are more likely to have severe pedestrian crashes. The 
likelihood of severe pedestrian crashes is also higher in zip codes with a 
greater fraction of primary roads without access restrictions.   Finally, signal 
density (number of traffic signals divided by area) and number of bus stops, 
both of which represent the likely exposure of pedestrians to conflicts, have 
significant effects on the frequency of severe crashes. Greater signal 
density and larger number of bus stops both correspond to a higher 
likelihood of severe crashes. Zip codes with a greater fraction of single-lane 
roads are also correlated with an increased likelihood of severe pedestrian 
crashes. Signal density, one-lane streets and bus stop density are all 
associated with higher-density areas with higher pedestrian activities, which 
may be the root cause of the correlation.   
 
Comparing across the models, there is substantial variability in parameter 
values and significance levels. Therefore, model specification is more of an 
issue at the zip code level than at the census tract level. All the above 
interpretations are based on the best-fit model that allowed for 
heterogeneity in dispersion parameters. In general, a greater fraction of 
Black population, a higher number of signals, and a greater fraction of 
residential land use, all translated to lower values of dispersion.  
  
(2) Fatal Crash Frequency Model 
The model for fatal crash frequency at the zip code level has fewer 
significant independent variables compared to the severe-injury crash 
frequency model (Table B-16). Once again, the NB+ model is the best fit 
model. The interpretations are mainly restricted to this model. The control 
variable is again the population residing in the zip code. None of the other 
control variables were significant while the total number of signals was 
highly correlated with several other variables and was therefore not 
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included. Contrary to the census tract level result, we find here that zip 
codes with a greater fraction of Hispanic population are less likely to 
experience fatal crashes. The effect was reverse for the model at the tract 
level and was only marginally significant in one of the models for severe 
crashes at the zip code level. Industrial land use continued to have a similar 
effect as above (correlated to higher crash frequency) while another variable 
measuring the area under office land use type had a negative effect; this 
effect is contradictory to that observed in earlier models. 

The results suggest that the causal factors for severe-injury crashes 
are not always the same for fatal crashes, implying that the two severity 
types need to be analyzed differently. The road network and travel 
characteristics results were similar to earlier models: the likelihood of fatal 
crashes is higher in zip codes with a greater fraction of primary roads 
without access restrictions (i.e non-expressway arterial streets), higher 
signal density, and more bus routes. Finally, the heterogeneity in dispersion 
parameter had only one significant variable – fraction of Black population. 
Once again, the effect is contrary to the effect observed in severe crashes 
model – the greater the fraction of Black population is, the greater the 
dispersion parameter value. 

 
3.1.4. Summary and Conclusions 
To summarize the frequency models, three different modeling 
methodologies (negative binomial, NB with heterogeneity in dispersion 
parameter, and the zero-inflated negative binomial) were estimated for 
different subsets of variables at both the census tract level and zip code 
level. The census tract level model treated the total number of severe and 
fatal pedestrian crashes as the dependent variable while the zip code level 
models were estimated separately for severe and fatal crashes. The 
following results were consistent in all the different models estimated: 
 

 The greater the fraction of industrial and commercial land use, greater 
the likelihood of crashes 

 The greater the number of five way intersections, greater the 
likelihood of crashes 

 The greater the fraction of primary roads without access restrictions 
(non-highway arterial streets), the higher the likelihood of crashes 

 The greater the transit density (bus routes and stops), the higher the 
likelihood of crashes 
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The above results make a strong case for focusing on engineering and 
education efforts in areas with significant commercial and industrial land 
use, complex intersections, on major arterial streets, and on bus routes.  
 
The following results had significant support at the census tract level model 
and for severe crashes at zip code level: 
 

 Areas with a greater fraction of Black population (and to a lesser 
extent, Hispanic population) have a greater likelihood of crashes 

 A greater fraction of population without any school education also 
translates to a higher likelihood of crashes 

 
The above results provide a target population base (Black, Hispanic/Latino, 
and pedestrians lacking any school education) for education and outreach 
efforts.  
 
3.2. Severity Analysis                             
The analysis of the severity of pedestrian crashes complements safety 
studies by targeting investments in locations based upon the number and 
severity of crashes that occur. Severity analysis can help identify design 
mitigation issues, such as design of crosswalks and intersections that 
influence the outcomes of pedestrian crashes. Moreover, severity models 
can provide additional insight into pedestrian behavior (e.g. impairment by 
alcohol or drugs) that contributes to the likelihood of a fatality in a crash. 
While frequency models were built at the aggregated geographic level, the 
severity models analyzed individual crash records. Thus, we can identify the 
specific characteristics that made the crash more or less severe. For this 
reason, previous research has focused on estimating the injury level or 
severity according to pedestrian risk taking.11 Thus, the analysis of the 
causal factors that affect the fatality likelihood of pedestrian crashes will 
help assess the implementation of countermeasures that may improve 
pedestrian safety in New York City. It is important to note that this study is 
the first to understand severity modeling using comprehensive factors in an 
urban area. As such, this study will provide guidance for future studies in 
New York State and other states in the United States. 

                                                      
11 Preusser, D.F., Wells, J.K., Williams, A.f., Weinstein, H.B., 2002. Pedestrian crashes in Washington, DC and Baltimore. Accident 
Analysis and Prevention, vol. 34, pp. 703-710. 
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3.2.1 Preliminary Analysis  
Before estimating level of severity, a good understanding of the dependent 
and independent variables affecting vehicle-pedestrian crashes is needed to 
perform a more comprehensive approach. In this section, descriptive 
statistics and cross tabulations are performed to understand the 
classification and tradeoffs among the different affecting variables.  

 
Figure 3-6 below, and Figures 1-4 and 1-6 in Section 1 plot the variation of 
crashes by year, day and month. These graphs demonstrate an approximate 
uniform distribution for the different years that is appropriate for the 
modeling purposes, given that it provides a robust set of data for the city 
overall.  Monthly and daily patterns have small peaks and valleys, 
respectively; this may be because of variations in travel patterns. For 
example, the summer vacation seasons (May-July) and the fall/winter 
holidays (November and December) are associated with an increased 
pedestrian flow, which increases the pedestrian exposure to vehicle traffic, 
is likely. Similarly, the smaller number of crashes on Sundays is likely 
associated with lower vehicle and pedestrian traffic volume. 
 

 
 
Figure 3-7 illustrates the variation of crashes by borough. The greatest 
number of observations is for Brooklyn and Manhattan. Additionally, a cross 
tabulation of crashes by borough is presented in Table 3-3. From this cross 
tabulation, we expected that Brooklyn would be the borough value that most 
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affected the probability of non-fatal crashes. However, additional analysis 
had to be performed through the models before stating conclusions. 

 

 
Figure 3-7. Histogram of Crashes by Borough (2002 – 2006) 

 
 
Table 3-3: Severity of Crashes by Borough 
Borough/ 
Crash type 

Bronx Brooklyn Manhattan Queens Staten 
Island 

Total  

Fatal Crash 43 127 95 84 18 367 
Severe-

Injury Crash 
522 1,077 946 649 116 3,310

Total 
Crashes 

565 1,204 1,041 733 134 3,677

  
The effect of individual variables is interesting for severity analysis. Details 
of descriptive statistics and cross tabulations are presented in appendix H. 
Pedestrian crashes are observed to be comparatively more fatal when they 
occur at an intersection (60%) then when they occur at other places (40%) 
(Table B-17). The data also shows a greater amount of fatal and severe 
crashes occurring at intersections with traffic signals than any other type of 
control (i.e. yield or stop sign) (Table B-18). Other roadway characteristics, 
such as roadway width, increase the total number of fatal and severe 
crashes, while roadway widths from 30 to 60 feet correspond to the 
greatest quantity of crashes reported (Table B-19). Finally, land use 
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characteristics show that commercial and residential land use may have a 
greater effect on the severity of pedestrian crashes, meaning they 
correspond to a greater amount of reported crashes (Table B-20). Additional 
analysis is provided in appendix B.4. 
 
3.2.2 Models of Binary Outcome 
“Discrete outcome models often play a dominant role in transportation 
safety analysis because of the policy-sensitive analyses they provide.”12 
From a conceptual perspective, such data can be classified to describe 
discrete outcomes of a physical event (i.e. type of pedestrian crash).13 
Models of physical phenomena are derived from simple probabilistic theory; 
unlike behavioral phenomena which are derived from economic theory that 
often lead to additional insights in the analysis of the modeling results.14 
 
The first studies of probabilistic choice theories were in the field of 
psychology.15 These arose from the explanation of experimental observation 
of inconsistent and non-transitive preferences through the use of utility 
functions that define the different alternatives with their characteristics.16 
This probabilistic mechanism can be used to capture the effects of 
unobserved phenomena taking into account pure random behavior as well as 
errors due to incorrect perception of attributes, alternatives, and data 
sampling errors made by the analyst. Therefore, from the modeler’s 
perspective, the utilities of the different alternatives are viewed as random 
variables. The users are expected to behave with choice probabilities 
defined by the alternative utilities that are comprised of a group of 
parameters, this affect the final choice or physical outcome. Therefore, a 
decision maker n would choose alternative i from a set of alternatives j with 
different attributes Cn. This is denoted by P(i|Cn). The usual theorems of 
probability theory are assumed to hold, and are shown in Ben Akiva and 
Lerman17 as follow: 

( , | ) 0nP i j C              ni j C   
And  

( , | ) ( | ) ( | )n nP i j C P i C P j Cn         ni j C   
The inconsistencies in choice behavior are taken to be a result of 
experimental observations. This assumption leads to the notion of random 

                                                      
12 Washington, et al., op. cit. p. 257. 
13 Ibid.  
14 Ibid. 
15  Thurstone, L.L., 1927. A Law in Comparative Judgment. Psychological Review, vol. 34, pp. 273-286.  
16 Luce and Suppes (1965). 
17 Ben Akiva and Leerman 
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utility theory, defined by Manski (1977). 18 Here, models where the 
probability of any alternative i being selected by a person n from choice set 
Cn is given by the following: 

( | ) Pr( , )n in jnP i C U U nj C     
Where the utility of alternative i, Uin, is greater than or equal to the utilities of 
all other alternatives in the choice set. We ignore the probability that Uin=Ujn 
for any i and j in the choice set. Formally, if the distribution of Uin and Ujn can 
be characterized by a probability density function, Pr(Uin=Ujn)=0. For the 
modeling of severity of pedestrian crashes in New York, we consider the 
special case: Cn contains exactly two alternatives, fatal and severe crashes. 
 
3.2.3. Models of Binary Logit 
The estimation of any binary outcome model is conceptually straightforward. 
The difference between discrete binary outcome models is made by the 
different assumptions made of the disturbance terms of the respective 
functions. For the modeling of severity of pedestrian safety, a Binary Logit 
Model was selected. A complete presentation on this type of model can be 
found in Ben Akiva and Lerman. The binary logit model arises from the 
assumption that the data is logistically distributed (defined by a logistic 
function), namely: 

1
( ) , 0,
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Where μ is a positive scale parameter, under the assumption that n  is 
logistically distributed, the choice probability of alternative i is given by: 

'( )

1
( )

1 in jnn x xP i
e  


 

 
Therefore, the probability of severe crash, Ps, will be given by the previous 
probability function, and the probability of a fatal crash would be provided by 
the subtraction of the probability function (Pf = 1-Ps). 
 
3.2.4. Severity Modeling Process  
The modeling process followed a comprehensive approach that considered 
the individual and combined effect of variables on the dependent variable. 
As demonstrated previously, preliminary analysis was performed in order to 
                                                      
18 Manski 1977. 



    

obtain insights of the individual effects of variables, and the correlation 
between them. Later, preliminary models were developed. This preliminary 
modeling process was divided into three modeling phases: I, II and III. Each 
of these phases captured the individual effect, the combined effect, and the 
interacting effect of variables. Finally, after the preliminary models were 
developed and presented to NYCDOT, a final set of models was performed 
to address comments and observations obtained from the feedback of 
safety researchers and planners in the agency familiar with local conditions. 
A complete picture of the modeling process and detailed description is 
presented in Figure 3-8. 
  

 
Figure 3-8. Severity Modeling Process Flowchart 

The severity models developed throughout the process captured specific 
characteristics that affect the outcome. For this process, a binary logit was 
used with two outcomes: fatal crashes and severe injury crashes. For the set 
of models, the utility estimated was for the severe crashes (dependent 
variable); therefore the probability obtained was for severe crashes. The 
probability of fatal crashes can be obtained by the subtraction of the 
probabilities (Pfatal = 1 – Psevere). Therefore, a positive sign on the models will 
represent a less severe crash, and a negative sign will represent a more fatal 
crash.  
 
The first set of models was developed based on insights obtained from the 
preliminary analysis and on the Teams’ experience in the field. The primary 
focus of the first preliminary models (Phase I) was to obtain a sense of how 
the data was behaving and the significance of each individual variable. No 
combination or fraction variables were created, given that the focus was to 
capture the individual effect of variables on the severity of pedestrian 
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crashes. Following, the continuing modeling process (Phase II) concentrated 
on adding some additional characteristics (e.g. pedestrian and vehicle 
characteristics) by creating new variables (e.g. pedestrian action variables). 
Finally, the final preliminary models were obtained by creating higher order 
variables that captured the interactive effect of individual variables (e.g. 
crossing multilane roads x pedestrians with over 65 years of age). This final 
set of variables was presented to the NYCDOT in order to obtain some 
insights on any effect that they were particularly interested in capturing with 
the severity models. Appendix B.5 contains the set of variables included in 
the preliminary models (see Tables B-25 through B-31), and the preliminary 
models for Phase I, II, and III of the severity modeling process (see Tables B-
32 through B-35). 
 
The final set of models was obtained after addressing the comments made 
by the NYCDOT. The agency’s interest was on the effect or network 
characteristics (e.g. roadway width, control type, etc.) on the severity of 
crashes. Additionally, pedestrian and driver characteristics (e.g. inebriated 
pedestrian or driver) and the variance by boroughs were of particular 
interest. The agency’s comments were addressed for the final set of models. 
Additionally, more restrictive levels of significance were taken (t > |1.3|) in 
order to increase the accuracy and robustness of the model. 
 
3.2.5. Severity Modeling Results 
In this section, we present the results for the modeling of severity of 
pedestrian crashes in the City of New York. The models were estimated 
using a binary logit model with two outcomes: fatal crashes and severe 
crashes. In the presented model, the dependent variable is estimated for 
severe crashes against fatal crashes. The model specification is summarized 
in Table 3-4.  
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Table 3-4. Severity Model for Pedestrian Crashes in New York City 
Binary Logit Model For Severity of Pedestrian Crashes 
Dependent Variable: Crash Survivability (Crash Severity)19 
Variable Description Coefficient Significance
Constant Severity Model Constant 1.776 7.166
BRNX_INT Bronx x Intersections 0.794 3.421
MANT_INT Manhattan x Intersections 0.592 3.582
WINTER Winter Season -0.31 -2.206
AUTUMN Autumn Season -0.307 -2.226
CT_STRT City Streets 0.821 3.428
CHL_SIG Children x Signalized Inter. -1.178 -2.145
PLAY_RD Playing on Road 1.347 1.327
STR_GR At Grade Streets (Grade = 0%) -0.609 -2.781
DARK_LGT Dark Lighted Street -0.329 -2.725
DARK_UN Dark Unlighted Street -0.994 -2.753
DAWN Dawn -0.726 -2.057
AVE_SPD Average Speed -0.617 -2.206
SPD_ABOV Speed Above 0.007 2.031
TRUCK Crash with Truck -1.424 -6.61
BIKE_ONS Bike lane on Street 0.431 1.684
LN_CHAN Lane Changing Action -1.299 -1.82
ELDER Pedestrian/Driver 65+ years -0.316 -1.316

OLD_SIG 
Over 65+ years x Signalized 
Inter 0.845 1.331

OLD_MULT 
Over 65+ years x Multilane 
Road 1.268 2.182

ALCOH 
Pedestrian/Driver under 
alcohol -0.959 -2.517

DRINA1 Driver inattention -1.391 -2.513
YIELD Yield Control Sign -2.546 -1.784
BUS_WI Bus x Road Width over 60 feet -1.664 -3.683
MULT_LN Multilane Road -0.467 -3.534
**A negative sign indicates greater likelihood of a fatal crash (less 
survivability) and a positive sign indicates a smaller likelihood of a fatal 
crash (more survivability) 

 

                                                      
19 Here, Pfatal = 1 – Psevere  and accordingly a positive sign on the models will represent a less severe 
accident, and a negative sign will represent a more fatal accident 
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Table 3-4, above, lists the different effects of the different influencing 
variables. In the model, seasonal characteristics were captured; winter 
(WINTER) and autumn (AUTUMN) were the seasons that represented an 
increased level of fatalities in the crashes of pedestrians. There may be 
higher levels of pedestrians and traffic during the vacation and holiday 
seasons that increase exposure; however, more pedestrians do not 
necessarily mean a greater level of severity. Thus, the effect of weather 
conditions may also contribute to increasing the level of risk in pedestrian-
vehicle crashes. Additionally, intersections in the Bronx and Manhattan were 
less likely to experience fatal crashes compared to other boroughs. This 
finding was obtained by analyzing the individual effect and the interaction 
effect of crashes at intersections and in each borough, and then combining 
this effect in higher order variables (BRNX_INT and MANT_INT).  

 
Further, roadway and pedestrian/driver characteristics were analyzed in 
order to obtain their effects on the severity of pedestrian crashes. The use 
of zero grade or level streets (STR_GR) augments the fatality rate of crashes 
by allowing higher speeds. Similarly, dark lighted (DARK_LGT; which are 
streets with illumination in dark environments) and unlighted streets 
(DARK_UN; which are streets without illumination on dark environment) 
increase the likelihood of a fatality in pedestrian crashes since they reduce 
the visibility in the streets. The same effect is observed in early morning 
where lighting conditions are poor (DAWN); here there is less visibility and an 
increase in number of vehicles returning from the home-to-work direction. 
This may be a causal reason for higher risk for pedestrians on roadways. 
Increased ranges of average speed (AVE_SPD) negatively affect the 
outcome of pedestrian crashes. This coincides with previous models which 
have found this variable to be significant and with the same effect.20 The 
presence of a bike lane on the street (BIKE_ONS) reduced the likelihood of a 
fatality. This result may be attributed to a reduction in vehicle speeds when 
traffic calming strategies, such as bike lanes, are implemented and 
increased caution by drivers due to the presence of bicyclists. Also, streets 
with yield traffic controls (YIELD) also have higher fatal crashes than any 
other control type signal. Because of the geometry of theses spots, these 
sites become dangerous for pedestrians.   

 
Other pedestrian/vehicle characteristics can be combined with different 
variables to obtain additional insights. The results demonstrate that 
                                                      
20 Kim, J., Ulfarsson, G., Shankar, V. and Kim, S., “Age and Pedestrian Severity in Motor-vehicle Crashes: A Heteroskedastic Logit 
Analysis,” Accident Analysis & Prevention 4(5): 1695-1702. 



    

pedestrians over 65 years of age (ELDER) are more likely to die in the 
crashes. However, when analyzing signalized intersections and multilane 
roads together with age characteristics, we can see that the combined 
effect of signalized intersection crashes (SIG(+)) and pedestrian over 65 
years (ELDER), and multilane roads (MULT_LN(-)) and pedestrian over 65 
years (ELDER) results in less fatal crashes (OLD_SIG and OLD_MULT, 
respectively). This observation may indicate older pedestrians are more 
careful when crossing intersections and multilane roads. Moreover, children 
under the age of 15 years (CHILD) have a higher likelihood of being involved 
in a fatal crash when crossing intersections against the traffic signal 
(AG_SIG); therefore, the outcome (CHILD_SIG) is more likely to be fatal than 
severe. Other pedestrian actions such as playing in the roadway (PLAY_RD) 
increase the likelihood of a fatal crash rather than a severe crash. 
Additionally, vehicle and vehicle/pedestrian actions augment the negative 
impact on the crashes. Lane changing actions (LN_CHAN), driving without 
attention to roadway (DRINA1), and driving or walking under the influence of 
alcohol (ALCOH) increase the fatality rate of the pedestrian crashes. From 
the data, a differentiation between an inebriated driver or an inebriated 
pedestrian was not possible, thus we had to consider the effect of alcohol as 
a combined effect for driver and pedestrians. 

 
Finally, vehicle characteristics have individual and combined effects on the 
severity of crashes. For example, crashes incurred with trucks (TRUCK) are 
more likely to be fatal, as expected given the dimensions of a truck. 
Furthermore, streets with roadway widths over 60 feet (WI60UP) and bus 
traffic (BUS) have a combined effect (BUS_WI) of increasingly the likelihood 
of a fatality. 
 
The findings can now be applied for practical implementations in order to 
reduce the severity of pedestrian crashes in New York City. Given the 
previous conclusions, several policy, engineering, education, and 
enforcement measures can be recommended to reduce fatal and severe-
injury pedestrian crashes. These measures, along with major findings from 
this section, are summarized in the New York City Pedestrian Safety Study 
and Action Plan. 
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Table 3-5: Summary Review of Comparable Literature 
 
 

Review of Previous Methodologies for Safety Models 
Reference Variables Methodology  Important Findings 

Dependent Crashes in segments of rural interstate 
Panagiotis Ch. 
Anastasopoulos, 
Fred L. Mannering 
Crash Analysis and 
Prevention 41 
(2008) 153–159 

Independents 

Roughness index (IRI); segment length; median 
indicator variable; interior shoulder width 
indicator variable (if 5 ft or wider); degree of 
curvature per mile; AADTof passenger cars; 
median types and width; and the percent of 
combination trucks widths. 

Random-
Parameters 
Negative Binomial 
Model 

The technique allowed one 
to account and correct for 
heterogeneity. 

Dependent Number of crashes in each segment Nataliya V. 

Malyshkina , Fred 

L. Mannering, 
Andrew P. Tarko 

Independents 

Pavement quality, length (in miles); ramps; median 
(dummy); median barrier (dummy); interior 
shoulder presence (dummy); AADT; posted speed 
limit (in mph); maximum of reciprocal values of 
horizontal curve radii; percentage of single unit 
trucks; seasonal dummies. 

Two-state Markov 
Switching 
Negative Binomial 

Safety varies under 
different environmental 
conditions, driver 
reactions and other 
factors.Zero-inflated 
models, is applied on the 
existence of two-state 
process: a safe and an 
unsafe state 

Dependent 
Annual road traffic fatalities, and monthly car 
casualties  

Mohammed A. 
Quddus 

Independents Broad, higher level variables; will not be useful in 
our study 

ARIMA, Negative 
Binomial, 
Negative Binomial 
with a time trend, 
and INAR(1) 
Poisson models 

An crash model should 
contain an exposure to 
crash variable to control 
for total road traffic 
movements within the 
road network. 

Dependent 
The spatial units of the analysis are the 633 
census wards. 

Mohammed A. 
Quddus 

Independents 

Traffic speed and flow; number of registered 
cars; ward-level exposure to risk variable in a 
crash prediction model. ; VMT; the total number 
of registered cars in each ward; roundabouts and 
length of various types of roads such as 
motorways, average road curvature; socio-
demographic variables; percentage of 
households with no cars. 

Negative Binomial 
model and spatial 
models including  
SAR or SEM and a 
Bayesian 
hierarchical 
model. 

Develop a series of 
relationships between 
area-wide different traffic 
casualties and the 
contributing factors 
associated with ward 
using Negative Binomial 

Dependent High and low individual severity 
Huang Helai, Chin 
Hoong Chor, Md. 
Mazharul Haquea, 
Crash Analysis and 
Prevention 40 
(2008) 45–54 

Independents 

Day of Week, Time of Day, Intersection Type, 
Nature of Lane, Road Surface, Street Lighting, 
Road Speed Limit, Vehicle Movement, Presence 
of Red Light Camera, and Pedestrian Involved, 
Vehicle Type, Driver Age, Driver Gender, 
Involvement of Offending Party, Passenger 
Involved. 

Hierarchical 
binomial logistic 

About how data was 
obtained/cleaned: 
weather condition was 
excluded because of its 
high correlation with road 
surface. 

Naveen Eluru a,1, 
Chandra R. Bhat Dependent 

Injury severity of each individual involved in the 
crash  

Mixed generalized 
ordered response 

The most important 
variables influencing non-
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a, ,2, David A. 

Hensher b,3 
Independents 

Non-motorist characteristics; motorized vehicle 
driver characteristics; motorized vehicle 
attributes; roadway characteristics; 
environmental factors, and crash characteristic; 
vehicle driver characteristics; alcohol 
consumption; vehicle type; environmental 
factors. 

model motorist injury severity 
are the age of the 
individual , the speed limit, 
location of crashes , and 
time-of-day. 

Dependent 
Not clear what the frequency model dependent 
variable is  

Chris Lee, 
Mohamed Abdel-
Aty 
Crash Analysis & 
Prevention Volume 
37, Issue 4, July 
2005, Pages 775-
786 

Independents 
Age, sex, veh type, traffic control, location, traffic 
control-location interaction, DUI, lighting, DUI-
lighting interaction 

In the analysis of 
crash frequency, 
log-linear models 
were used. ; For 
injury severity, an 
ordered probit 
model was used 

Some counter-intuitive 
results may be attributed 
to the way the modeling 
was done:more crashes at 
intersections with traffic 
control, and more crashes 
when no DUI was 
reported. 

Dependent 
One for pedestrian mortality and another with 
pedestrian ISS  

Michael F. 
Ballesteros, 
Patricia C. 
Dischinger, Patricia 
Langenberg 
Crash Analysis & 
Prevention Volume 
36, Issue 1, 
January 2004, 
Pages 73-81 

Independents Vehicle type, while controlling for vehicle weight 
and speed 

Logistic 
regression  

The overall increased 
danger sport utility 
vehicles and pick-up 
trucks present to 
pedestrians may be 
explained by larger vehicle 
masses and faster 
speeds. 

Dependent 
The dependent variable was the degree of 
severity of injury  Anne Vernez 

Moudon, Lin Lin, 
Junfeng Jiao, Philip 
Hurvitz, Paula 
Reeves. 
TRB 09-3673 
Annual Meeting 
CD-ROM (2009)  

Independents 

Age, gender, inebriety, action and location, 
number of pedestrians, number of vehicles, peak 
times, light, road functional class, location, 
distance to the closest intersection, distance to 
the closest traffic signal, number of lanes, count 
of traffic signal in 0.5km buffer, total length of 
sidewalk in 0.5km buffer, and distance to closest 
bus stop within 1.5km buffer.  

Statistical 
analyses used 
binary logistic 
regression  

One socio-demographic 
and three action variables 
significant at the p < 0.05: 
the pedestrian’s age, right 
turn, ADT (average daily 
traffic). 

Dependent 
A safety index was developed using regression 
analysis  

Charles V. Zegeer, 
Daniel L. Carter, J. 
Richard Stewart, 
Herman Huang, 
Ann Do Laura 
Sandt. TRB  06-
0944 Annual 
Meeting CD-ROM 
(2006)  

Independents 

Number of through lanes, 85th percentile vehicle 
speed, type of intersection control (signal or stop 
sign), main street traffic volume, and area type. 

Multiple linear 
regression 

All significant variables in 
the ratings model—signal 
and stop control, number 
of through lanes, vehicle 
speed, and commercial 
area type—were included 
in the final safety index 
model.  

Dependent 
The dependent variable was the degree of 
severity of injury. Robert J. 

Schneider, Asad J. 
Khattak,  Rhonda 
M. Ryznar 
TRB 00482 
Annual Meeting 
CD-ROM (2002)  

Independents 

Exposure, roadway, and land use 
(spatial/environmental) variables were included in 
the model specification. The most statistically 
significant variables are reported. In this study, 
we generally use a 10% significance level (or 
90% confidence interval) to argue that certain 
independent variables have a significant 
influence. 

Poisson and 
negative binomial 
crash models are 
estimated  

Findings show that longer 
segments/intersections 
and higher pedestrian 
volumes are significantly 
related to higher levels of 
police-reported crashes,. 

Dependent 
The expected number of vehicle pedestrian 
collisions per year 

Craig Lyon, 
Bhagwant Persaud 
TRB 00824 Independents Pedestrian and vehicle volumes. These two 

Negative Binomial 
Model 

Models calibrated without 
pedestrian volume 
information as an 
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Annual Meeting 
(2002) - Ryerson 
University, Canada  

variables are correlated to some degree but, for a 
prediction model, this is not a problem as long as 
including them both significantly increases the 
estimation accuracy. A separate set of models 
was developed using only vehicle volume data to 
assess the importance of including pedestrian 
volume information in the models. 

explanatory variable 
proved to be inferior to 
models that include both 
vehicle and pedestrian 
volume information.  

Dependent 
Total reported crashes, pedestrian vs vehicles, 
and others 

Aaron Roozenburg, 
Shane Turner. 
Beca 
Infrastructure – 
New Zealand. 

Independents 

Intersection geometry and layout (e.g. number of 
through lanes, right turn bay offset and 
intersection depth); Right-turn signal phasing (e.g. 
filtered turns); and Forward visibility to opposing 
traffic. A number of the variables included in the 
models were correlated and hence explain the 
same variability in the crash observations. 

The models were 
generalised linear 
models and 
typically have a 
negative binomial 
or Poisson error 
structure 

The study found flow-only 
models that are now 
available for: total 
reported crashes, 
pedestrian vs vehicles, 
ciclysts vs vehices, and 
major crash types. 

Dependent 
Crash prediction of ‘injury’ crashes and ‘fatal 
injuries’ crashes 

Arun Chatterjee, 
Joseph E. Hummer, 
Vasin Kiattikomol, 
Mary Sue Younger. 
Center of 
Transportation 
Research 2005 – 
Southeastern 
Transportation 
Center 

Independents 

A multiplicative form using traffic volume and 
segment length with exponential terms were 
used to determine the prediction models.  A major 
consideration for the selection of independent 
variables of the models was planners’ ability to 
forecast future values of the variables for 
alternative highway networks. 

Negative-binomial 
regression 
modeling  

It was found that crash 
rates for freeway 
segments influenced by 
interchanges are 
considerably higher than 
those for segments 
located away from 
interchanges, this justified 
the two types of modes 
used. 

Dependent 
Pedestrian-vehicle collisions per signalized 
intersections 

Douglas W. 
Harwood, et al. 
National 
Cooperative 
Highway Research 
Program - 
Transportation 
Research Board 
(2008) 

Independents 

Pedestrian-vehicle volumes, pedestrian collision 
data, roadway segments, number of bus stops, 
presence of schools, presence of parks, number 
of alcohol sales, neighborhood per capita income, 
number of commercial structures, number of 
traffic lanes. 

Multiple 
Regression 
Models 

Methodology for vehicle-
pedestrian collisions at 
signalized intersections 
has been developed. This 
methodology includes 
base models for three- 
and four- leg signalized 
intersections. 
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4. NYCDOT Supplementary Study 
 
This chapter reports crash characteristics studied by NYCDOT, supplementing the NYU 
Rudin Center research team’s findings in Chapters 1 – 3.  Material in this chapter includes 
long-term fatality and severe-injury data outside the five-year scope of the NYU Rudin 
Center study, and summary crash characteristics investigated in response to model 
findings.   
 
Introduction  
 
4.1.1 New York City, U.S., and Peer Cities Traffic Fatality Rates 
 
A comparison of traffic fatality and pedestrian fatality rates in New York City and its peers 
was calculated based on 2008 fatality and population data, and 2000 journey-to-work 
data.  For the purposes of this report, Peer Cities include all U.S. cities with 2008 
populations over 500,000, and with either at least 5,000 residents per square mile, or at 
least 20% non-car commuting, or both.  These cities are Atlanta, Baltimore, Boston, 
Chicago, Detroit, Los Angeles, Milwaukee, Philadelphia, Portland, San Francisco, Seattle, 
and Washington D.C.  Their combined population in 2008 was 14,096,467. Their traffic 
fatality rate (6.55 per 100,000 residents) was approximately twice New York City’s (3.49 
per 100,000 residents).  Their pedestrian fatality rate in 2008 was 2.13, compared with 
New York City’s rate of 1.81.  However, pedestrian exposure implies that New York City is 
an even safer place to walk than these numbers indicate. Even this group of Peer Cities has 
a lower non-car commuting population, with 27% taking transit, walking, or biking to work, 
compared with 66% in New York City.  New York City has 44% more non-car commuters 
than all twelve Peer Cities combined, but has half as many pedestrian fatalities.    
 
2008 Traffic and Pedestrian Fatalities and Fatality Rates  
(Fatalities per 100,000 residents) 
 

 New York City Peer Cities U.S. 
Population 8,363,710 14,096,467 304,374,846 

Pedestrian Fatalities 151 300 4,378 
Pedestrian Fatality Rate 1.81 2.13 1.44 

All Traffic Fatalities 292 923 37,261 
All Traffic Fatality Rate 3.49 6.55 12.24 

Population Density (population/sq. 
mi) 27,576 8,526 86 

Non-Car Commuters 66% 27% 8% 
Non-Car Commuting Population 5,482,412 3,785,314 24,349,988 

 
Sources: Fatality data for the U.S. and cities outside New York City: NHTSA Fatal    

           Accident Reporting System (FARS) 
    2008 Population:  U.S. Census Bureau Population Estimates, including successful      
  population estimate challenges  (Boston and Philadelphia) 
    Commuting Mode: Census 2000 Journey-to-Work Tables 

 

New York City Pedestrian Safety Study & Action Plan: Technical Supplement 72



    

4.1.2 New York City Traffic Fatalities by Year and Mode, 1910-2009 
Year Total Pedestrian   Year Total Pedestrian 

1910 332 232  1960 616 406 
1911 378 265  1961 608 400 
1912 344 241  1962 677 452 
1913 486 341  1963 676 424 
1914 486 340  1964 736 501 
1915 481 337  1965 695 390 
1916 575 403  1966 652 347 
1917 674 471  1967 726 427 
1918 818 573  1968 900 486 
1919 864 605  1969 911 503 
1920 811 568  1970 944 517 
1921 923 646  1971 989 485 
1922 952 664  1972 922 467 
1923 1,012 708  1973 824 418 
1924 1,029 720  1974 712 351 
1925 1,092 764  1975 641 306 
1926 1,117 783  1976 596 317 
1927 1,117 782  1977 656 347 
1928 1,090 763  1978 629 360 
1929 1,360 952  1979 541 294 
1930 1,145 679  1980 617 337 
1931 1,116 676  1981 694 386 
1932 1,037 749  1982 552 298 
1933 1,113 743  1983 527 304 
1934 1,126 750  1984 559 305 
1935 954 730  1985 575 343 
1936 838 677  1986 562 285 
1937 888 677  1987 623 323 
1938 839 577  1988 632 357 
1939 814 675  1989 642 377 
1940 880 699  1990 701 366 
1941 NA 677  1991 626 304 
1942 825 700  1992 592 291 
1943 685 603  1993 536 284 
1944 570 467  1994 488 246 
1945 671 554  1995 485 243 
1946 680 542  1996 426 235 
1947 612 502  1997 493 254 
1948 568 463  1998 368 183 
1949 590 467  1999 420 202 
1950 554 429  2000 380 187 
1951 574 417  2001 393 193 
1952 596 447  2002 386 186 
1953 641 457  2003 362 177 
1954 605 432  2004 297 155 
1955 668 487  2005 321 157 
1956 617 441  2006 324 168 
1957 644 448  2007 274 139 
1958 655 462  2008 292 151 
1959 737 515   2009 256 155 

Sources: 1910-1929 NYCDOHMH; 1930-1939 NYPD; 1940-1982 NYSDMV; 1983-
1995 NYCDOT; 1996-2009 NYCDOT & NYPD  
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4.1.2   New York City Traffic Fatalities by Year by Mode, 2000-2009 
 

Year Pedestrian Bicyclist Motorcyclist Driver Passenger Total 
2000 187 18 21 95 59 380 
2001 193 13 41 88 58 393 
2002 186 21 46 79 54 386 
2003 177 18 35 77 55 362 
2004 155 16 27 63 36 297 
2005 157 22 34 63 45 321 
2006 168 18 31 61 46 324 
2007 139 24 36 37 38 274 
2008 151 26 39 48 28 292 
2009 155 12 28 36 25 256 

Source: NYCDOT-NYPD Reconciled Fatality Data 
   
4.1.3 International Comparison 
 

City 
(2008 data unless 
otherwise noted) Population 

Total 
Traffic 

Fatalities

Fatalities per 
100,000 

Population 
Atlanta, GA 537,958 59 10.97 
Detroit, MI 912,062 94 10.31 

Los Angeles, CA 3,833,995 293 7.64 
Baltimore, MD 636,919 48 7.54 

Philadelphia, PA 1,447,395 90 6.22 
Chicago, IL 2,853,114 168 5.89 

Washington, DC 591,833 34 5.74 
Milwaukee, WI 581,099 33 5.68 

San Francisco, CA 808,976 35 4.33 
Boston, MA 613,411 26 4.24 
Seattle, WA 582,490 24 4.12 

Copenhagen (2007) 509,861 20 3.92 
New York, NY 8,363,710 292 3.49 
Portland, OR 560,194 19 3.39 

Amsterdam (2007) 743,411 25 3.36 
Paris 2,200,000 51 3.09 

London 7,619,800 205 2.69 
Hong Kong 7,008,900 162 2.10 

Tokyo 12,790,000 218 1.70 
Berlin 3,431,700 55 1.60 

Stockholm 810,120 10 1.23 
Source: U.S. cities: Fatality Analysis Reporting System (FARS), U.S. Census 
Copenhagen, Amsterdam, London: European Traffic Safety Council 
Paris: http://sujetdujour.free.fr/index.php/les-statistiques-des-accidents-de-la-route-a-paris-560 
Berlin: Berlin Urban Development Administration 
Tokyo: Tokyo Metropolitan Police Dept. 
Hong Kong: Hong Kong Transport Dept. 
Stockholm: Stockholm Traffic Planning Dept. 
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4.1.4 Probability of Fatality by Mode 
 
All Injuries: Risk of a Fatality by Mode 

2004-2008 
averages Motorcyclists Pedestrians Bicyclists 

Motor Vehicle 
Occupants 

Injuries + Fatalities 1,341 10,826 2822 65,570 

Fatalities 33 154 21 93 

Probability of Fatality 
if Involved in an Injury 

Crash 2.5% 1.4% 0.8% 0.1% 
 
Severe Injury Crashes: Risk of a Fatality by Mode 

2004-2008 
averages Motorcyclists Pedestrians Bicyclists 

Motor Vehicle 
Occupants 

Severe Injuries + 
Fatalities 266 1,433 346 2,273 

Fatalities 33 154 21 93 

Probability of 
Fatality if Involved 
in a Severe Injury 

Crash 12.5% 10.7% 6.1% 4.1% 
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4.1.5 Leading Causes of Death, Ages 1-24 
New York City (2002-2006) 

 
Leading causes of death in New York City are compiled annually by the New York City 
Department of Health & Mental Hygiene (NYCDOHMH).  Tables for the 10 leading causes of 
death and the 10 leading causes of injury-related death for the period 2002-2006 are 
available on the NYCDOHMH website.  Total fatalities in each age group may not equal 
fatalities by age group reported based on NYSDMV or NYCDOT-NYPD data sources.  
NYCDOHMH data generally includes deaths categorized as traffic fatalities by 
NYCDOHMH based on death certificate information, but categorized as non-traffic 
fatalities by NYCDOT and NYPD during statistical reconciliation.  
 
 

Age 1-4 Age 5-9 
Age 

10-14 
Age 

15-24 
Total 

Age 1 - 24 
Homicide 46 16 22 981 1065 
Malignant 
Neoplasms (Cancer) 69 100 80 334 514 

Traffic Fatalities  24 29 33 325 387 
Other Unintentional 
Injuries 47 38 38 172 248 

 
Source: NYC DOHMH Leading Cause of Death Tables 
http://www.nyc.gov/html/doh/downloads/pdf/ip/ip-all-death-rank.pdf 
http://www.nyc.gov/html/doh/downloads/pdf/ip/ip-inj-death-rank.pdf 
 
4.1.6 Crash Cost Estimates 
  
Crash cost estimates for the United States by state for the year 2000 were calculated in an 
NHTSA report (The Economic Impact of Motor Vehicle Crashes, 2000; Blincoe, et al. 
2002).   This report estimated the total social cost of traffic crashes, including medical and 
emergency services costs, market and household productivity, administrative costs, travel 
delay, and property damage.   Costs were estimated for crashes of each severity level on 
the Abbreviated Injury Scale.  For example, an average critically injured survivor of a crash 
(AIS level 5) cost $1.1 million, while a minor injury  (AIS level 1) cost an average of $49,000.  
These estimates do not include costs for which estimation is difficult or impossible, 
including some mental health costs to the crash victims and others. 
 
Crash cost estimation for New York City was performed by assigning a share of New York 
State costs to New York City, on the basis of New York City’s share of New York State 
fatalities. (USDOT’s crash cost estimates include the cost of injury crashes; this method 
assumes the ratio of injury crashes to fatal crashes is similar in New York City and New York 
State.)   A cost-to-fatalities ratio (not a cost per fatality) was calculated for New York State 
and applied to New York City to estimate crash costs in 2000.  The ratio was inflated to 
year 2009 costs based on the Consumer Price Index, and applied to New York City traffic 
fatalities in 2009 to calculate a 2009 crash cost for New York City. 
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2000 Cost 
Estimate 
($millions) 

Fatalities 
(2000) 

2000 Cost : 
Fatalities 

ratio 
($millions) 

2009 Cost : 
Fatalities 

ratio 
2009 

Fatalities 
2009 cost 
($millions) 

U.S. 230,600 41,821 5.51 - - - 
New 
York 
State 19,490 1,448 13.46 - - - 
New 
York 
City 5,115 380 13.46 16.77 256 4,293 

 
 
4.2 Findings: Where 
 
4.2.1 Severity-Weighted Injury Analysis 
  
The severity-weighted number of injuries per mile, for each street segment in New York 
City, was calculated from NYSDOT crash data and NYCDCP street geography data to 
produce the map shown on page 31 of the New York City Pedestrian Safety Study & Action 
Plan.  This analysis assigned values to each crash based on the most severe injury that 
resulted from the crash.  These values were based on approximate relative crash costs.  
Setting a C (or ‘apparent’ injury) crash to a weight of 1, a B (non-severe injury) crash was 
assigned a weight of 4, an A (severe-injury) crash was assigned a weight of 16, and a fatal 
crash was assigned a weight of 36.  Property-damage-only crashes were assigned a weight 
of 0.04.  These crash values were summed by street segment, and divided by the length of 
the segment, to produce a severity-weighted injury ‘cost’ per mile for each street segment 
(i.e. each block) of New York City.   The resulting map illustrates the significance of safety 
issues on arterial streets in New York City.   

New York City Pedestrian Safety Study & Action Plan: Technical Supplement 77



    

 
 
 
 
 
 
 
 
 
 
 

New York City Pedestrian Safety Study & Action Plan: Technical Supplement 78



    

4.2.2 Residential & Daytime Population by Borough 
 
 

 Bronx Brooklyn Manhattan Queens 
Staten 
Island 

Commuters into 
Borough 111,607 234,295 1,445,691 224,056 33,407 

Residents Leaving 
Borough for Work 246,172 469,468 121,982 563,886 104,948

Residential 
Population 1,391,903 2,556,598 1,634,795 2,293,007 487,407

Daytime Population 1,257,338 2,321,425 2,958,504 1,953,177 415,866
Source: http://www.census.gov/population/www/cen2000/commuting/index.html   
             http://www.nyc.gov/html/dcp/html/census/popcur.shtml 
 
 
 
4.2.3 Manhattan Major Two-Way Streets 
  
Pedestrian Fatalities and Severe Injuries on Major Manhattan Two-Way Streets 

 
Major Two-

Way Streets* 

All 
Manhattan 

Streets 

Major Two-Way 
Streets as Percent 

of Total  
Street Length 350,752 3,041,489 12% 

Total Fatalities 2004-
2009 117 298 39% 

Pedestrian Fatalities 
2004-2009 94 202 47% 

Pedestrian Severe 
Injuries 

2002-2006 651 1907 34% 
* Includes two-way arterial sections of: Canal St, Delancey St, Houston St, 14th St, 23rd St, 
34th St, 42nd St, 57th St, Central Park South, 72nd St, 79th St, 86th St, 96th St, 106th St, 
110th St/Central Park North, 116th St, 125th St, 135th St, 145th St, 155th St, 165th St, 
181st St, 207th St, 3rd Ave, 10th Ave, 11th Ave, Adam Clayton Powell Blvd, Allen/Pike St, 
Amsterdam Ave, Bowery, Broadway, Central Park West, Dyckman St, La Guardia Pl, La 
Salle St, Lenox Ave, Morningside Ave, Park Ave, Park Row, Pearl St/Water St/St. James Pl, 
St. Nicholas Ave, West End Ave, and York Ave. 
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4.2.4 Pedestrian Severe Injury Crashes and Fatalities by Roadway Type 
 

Pedestrian Severe Injury Crashes and Fatalities
By Roadway Type with Percent Fatal, 2002-2006
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4.3   Findings: When 
 
Pedestrian Fatalities and Severe Injuries by Time of Day 

Time of Day 
Midnight -  

3 am 3 - 6 am 6 - 9 am 
9 am-
Noon 

Noon -3 
pm 3 - 6 pm 6 - 9 pm 

9 pm -
Midnight

KSI  338 322 528 634 829 1,190 1,145 784 

Fatalities  46 61 58 84 90 85 87 82 

% Fatal  14% 19% 11% 13% 11% 7% 8% 10% 

% of Daily KSI 6% 6% 9% 11% 14% 21% 20% 14% 
 
 
4.4 Findings: How 
 
2004-2008 Pedestrian Turning Vehicle Crashes 
Fatalities and Severe Injuries by Vehicle Pre-Action 

 Left Turn Crash Right Turn Crash 
Severely Injured 1131 386 

Fatalities 99 47 

Total KSI 1230 433 
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4.5  Findings: Who 
 
 
4.5.1 Gender  

 Male Female Total  
Traffic Fatalities 

 2004-2008 
(All Modes) 1056 440 1496 

Average Annual Traffic 
Fatalities 211 88 299 

Population (2006-2008) 3,963,820 4,344,343 8,308,163 
Annual Fatalities per 
100,000 Residents 5.3 2.0 3.6 

Source: American Community Survey (ACS) 2006-08  3 year estimate 
http://www.nyc.gov/html/dcp/pdf/census/boro_demo_06to08_acs.pdf 
 
 
4.5.2 Licensed and Unlicensed Drivers 
 
Driver license status for drivers involved in fatal pedestrian crashes in New York City was 
obtained from NHTSA’s Fatal Accident Reporting System (FARS) data.   U.S. data on 
pedestrian fatalities involving unlicensed drivers was not available; total fatality data is 
substituted.  
 
License Status of Drivers Involved in Fatal Crashes, 2006-2008 

 

Pedestrian 
Fatalities 

(FARS data) 
Unlicensed Non-

CDL Driver 

Driver Not 
Present / 
Unknown 

% Known Unlicensed 
Drivers of Pedestrian 

Fatalities 
New 
York 
City 442 28 80 7.7% 

 

Source: Fatal Accident Reporting System (FARS).  

Total Fatalities 
Fatalities Involving Unlicensed 

Drivers 
% Unlicensed Drivers 

in Fatal Crashes
U.S. 110,100 19,854 18% 
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