
Citywide Policy for Performance Testing of Public-Facing
Applications

Category: Applications Policy No.: 2012-01

Issuance Date: 3/10/2025 Version No: 2.1

Data Classification: Non-Restricted

This policy has been developed to guide Citywide agencies in the performance
testing of applications and it is based on information technology (IT) industry
standards and best practices. The primary purpose of application performance test-
ing activities are to validate application stability and scalability, and to collect rel-
evant information to help stakeholders make informed decisions related to the
overall quality of the application being tested.

Performance testing also helps to identify bottlenecks in a system, establish a base-
line for future testing, and determine fulfillment of performance goals and re-
quirements. In addition, analysis of performance testing results can help to esti-
mate the hardware and software configurations required to support an application
when it “GOES LIVE” to production. For these reasons, performance testing is
strongly recommended for all applications.

For any public-facing applications, however, performance testing is manda-
tory in all circumstances, including mobile applications serving multiple users
through the connection to server-based application infrastructure. Performance
testing for public-facing applications is required for many reasons, including, but
not limited to:

• Poorly performing applications that damage the City’s IT reputation, regardless
of what team or agency developed them.

• Far greater public traffic than the intended user base, which may cause unex-
pected load increases. This is especially the case when applications are covered
by the media through public announcements, news outlets, or other public
communications vehicles.

By providing definite standards for compliance, this policy ensures that the pre-
deployment assessment of public-facing applications is performed consistently and
reliably.

The purpose of this Policy is to define the Policy and Standards to be followed dur-
ing performance testing of all public-facing applications.

This document is written for City agency employees and external contractors, con-
sultants, and business partners, including architects, system integrators, or tech-
nical leads, who will be responsible for the performance testing of public-facing
systems and applications before deployment.

Overview

Purpose

Audience

Citywide Policy for Performance Testing of Public-Facing
Applications

Citywide Policy for Performance Testing of Public-Facing Applications Page 2 of 27

These Policies and Standards apply to all City agencies.

The Policies and Standards in this document apply to all new or modified public-
facing systems and applications. This document can also be used as guidance for
testing internal applications, although such tests are not mandated by this Policy.

Chapter 48 of the City Charter and Executive Order 3 of 2022 authorize OTI to is-
sue Citywide technology policies.

See Appendix G for a glossary of terms and definitions that apply to this docu-
ment, performance testing terminology, and OTI QA Testing. Defined terms are
displayed in bold text when they appear for the first time.

All Citywide public-facing applications, including mobile applications, must be
subject to performance testing that meets the requirements set forth below (see Per-
formance Testing Requirements).

City agencies can leverage OTI skillsets and existing licenses by using OTI’s cen-
tralized QA testing service (OTI QA). By using OTI to conduct performance test-
ing, agencies can maximize efficiency and mitigate the cost of tools, training, and
testing environments. A City agency may also use its own QA services or enlist a
third party to conduct performance testing.

Regardless of who conducts the performance testing, OTI QA must approve all
performance testing standards for Citywide public-facing applications prior to de-
ployment, including validation of the testing procedures and exit criteria. In any
scenario, the OTI QA team is equipped to provide guidance and resources for
meeting performance testing requirements.

Required Performance Tests

The expected load of an application is determined during the application’s business
analysis phase. Once that expected load is established, the following tests are man-
datory for all public-facing applications:

• Stress Test: A stress test is executed to determine if the application will per-
form sufficiently if its load goes well above the expected maximum. This helps
application administrators determine the application’s robustness, availability,
and error handling under heavy load scenarios, such as an extreme load. It
must be executed with at least 3 hours of steady state run (with ramp up/ramp

Scope

Authority

Terms &
Definitions

Policy Content

Performance
Testing

Requirements

Citywide Policy for Performance Testing of Public-Facing
Applications

Citywide Policy for Performance Testing of Public-Facing Applications Page 3 of 27

down time excluded) with an applied load of at least 120% of the estimated ex-
pected load.

• Stability/Soak/Endurance Test: Soak testing determines if the application can
sustain the continuous expected load without performance getting degraded
over time. The applied load can be the same as the stress test or lower, but must
be at least equal to the expected load. The test must run for at least 12 hours in
a steady state.

• Note: For more technical detail, please refer to Appendix A for entry and exit
criteria on performance testing.

The following test is not mandatory, but highly advisable:

• Breakpoint Test: The goal of the breakpoint test is to determine the maximum
load the system can support. It is done by gradually increasing load and it con-
tinues to run until the system’s behavior reaches an unacceptable level (e.g.
significant increase of response time; CPU usage nears 100%, etc.). It is rec-
ommended to run a breakpoint test before a stress test.

Required Performance Standards

OTI QA standards for performance testing must be met according to the Entry
and Exit Criteria outlined in Appendix A.

If OTI QA does not perform the testing itself, it must validate that the Exit Criteria
have been met in order to approve any testing conducted by a City agency or third
party before the application is deployed.

Required Activities for Performance Testing

Detailed descriptions and suggested guidelines for these activities can be found in
Appendix B. If OTI QA does not perform the testing itself, it must review the test-
ing scenarios and validate that the required activities have been conducted by the
City agency or third party doing the test before the application is deployed.

Performance Testing Tools

OTI maintains test infrastructure and test tools to conduct performance testing for
agencies. These resources are also available to agencies choosing to conduct their
own testing. If an agency chooses to use alternative tools, those tools are expected
to include 1) monitoring and reporting capabilities necessary to conduct the

Citywide Policy for Performance Testing of Public-Facing
Applications

Citywide Policy for Performance Testing of Public-Facing Applications Page 4 of 27

required performance testing activities; and 2) capabilities to collect and report the
required data to determine if exit criteria are met as outlined in Appendix A.

If OTI Conducts Performance Testing

OTI: conduct required performance tests through its testing services.

City Agency: submit a request for performance testing directly through the
Citywide Service Desk Portal, or contact an OTI Agency Relations Management
representative for help. The agency will be required to complete a brief question-
naire, an example of which can be found in Appendix C.

IMPORTANT: Because OTI performance testing resources are limited, agencies
should contact OTI six weeks before Go-Live to give OTI’s QA team enough time
to meet agency requirements and expectations.

Agencies MUST NOT publicly commit to an application launch date until comple-
tion of the performance testing and OTI QA signoff.

If the City Agency or Third Party Conducts Performance Testing

OTI: review and approve performance testing as conducted by the City agency or
third party prior to deployment. OTI remains on-hand with expertise, tools, and
resources to aid any City agency in its effort to conduct performance testing.

City Agency: notify OTI that it plans to conduct performance testing on a public-
facing application by contacting OTI QA via the owners of this Policy (see Owner-
ship and Contact section).

The City agency or contracted third party must adhere to the required tests, activi-
ties, and standards in this Policy (see Performance Testing Requirements).

The following documentation must be submitted to OTI six weeks before Go-Live
so that OTI can review and approve the application’s test requirements prior to de-
ployment:

a) Brief description of application (or provide demo);
b) Description of application environment and infrastructure (infrastructure dia-

gram is sufficient);
c) Description of the test approach, expected load and test scenarios (test scenario

should follow guidelines in Appendix B), and list of transactions to be meas-
ured for performance;

Roles and
Responsibilities

https://cwitservice.nyc.gov/sp?id=sc_cat_item&sys_id=755cf9aa1b597010ea07b95fdc4bcbba
http://cityshare.nycnet/html/service-offering/html/help/managers.shtml

Citywide Policy for Performance Testing of Public-Facing
Applications

Citywide Policy for Performance Testing of Public-Facing Applications Page 5 of 27

d) Request OTI performance testing access (if OTI toolset is needed), which can
be done through the OTI Citywide Service Desk Portal; or provide a descrip-
tion of the tools being used (name, license type, infrastructure description);

e) Provide OTI with performance test results in an acceptable format, sufficient to
validate that the application satisfies performance requirements. See Appen-
dix D for sample sheet and explanation.

If the required tests have been run, the required activities have been followed, and
the test results show that the application performance is satisfactory, OTI QA will
sign off. This approval must be achieved before the application is deployed.

Engaging OTI early and often for guidance and resources during the performance
testing process will reduce the risk that an application will not receive OTI QA
signoff.

IMPORTANT: Agencies should submit performance test results and documentation
to OTI QA six weeks before Go-Live to give OTI adequate time for review and
potential retest.

Agencies MUST NOT publicly commit to an application launch date until comple-
tion of the performance testing and OTI QA signoff.

This Policy is owned by the OTI Applications division, QA Testing Unit. Please
contact your Agency Relations Manager with questions.

 In addition to Appendices A through G, below are links to OTI resources:
- OTI Citywide Service Portal Performance Testing Request

Ownership
Information

Links and
Resources

https://cwitservice.nyc.gov/sp?id=sc_cat_item&sys_id=755cf9aa1b597010ea07b95fdc4bcbba
https://cwitservice.nyc.gov/sp?id=sc_cat_item&sys_id=755cf9aa1b597010ea07b95fdc4bcbba

Citywide Policy for Performance Testing of Public-Facing
Applications

Citywide Policy for Performance Testing of Public-Facing Applications Page 6 of 27

Change Details

Version Change Description Author(s) Effective Date

1.0 Final Draft Robert Quinones, Gary
Alden

6-11-12

1.1 Updated Appendix E - De-
ployment Readiness Check-
list

Gary Alden 8-14-12

1.2 Updated Entry 10: De-
ployment Package in Ap-
pendix E – Deployment
Readiness Checklist

Gary Alden 10-3-12

1.3 Reformatted and revised Laura Adler 7-1-13

1.4 Public version information
added

Laura Adler 6-25-14

2.0 Performance testing must
be approved by OTI but
not mandated to be con-
ducted by OTI

Daynan Crull, Gregory
Dvorkin

2-3-2016

2.1 Branding updated, minor
grammatical changes,
reformatted

Gregory Dvorkin, Doug
Dolan, Vidhya Shanmu-
gam

3-10-2025

Change History

Appendix A – Entry/ Exit Criteria

Citywide Policy for Performance Testing of Public-Facing Applications Page 7 of 27

The following standards for performance testing entry and exit criteria must be met

for all public-facing applications. If OTI is not conducting the test, it must confirm

that exit criteria have been satisfied prior to application deployment.

Performance testing is ready to begin when:

• The application is near its final build with medium and high priority defects

addressed/fixed and at least one iteration of system test pass occurring during

the script execution process

• The staging environment has been configured

• The appropriate test tools are set up and ready for test execution

• When OTI services and tools are used, LoadRunner Controllers and load gen-

erators, or Performance Center are validated and reserved

• The appropriate performance test scripts have been coded and reviewed

Exit criteria out of Performance Test are as follows:

• Execution of the following mandatory tests are fully complete (see Required

Performance Tests):

o Stress Test

o Stability/Soak/Endurance Test

• System parameters measured during the tests are as follows:

o Peak CPU utilization is 65% or lower

o 40/60 distribution between load balancers

o Memory utilization not exceeding 80%

o No memory use build up during the test and immediately after

o No memory leak recognized after the test is complete

o Database is not exhausted during the test, no errors occur, and the applica-

tion is functioning as expected throughout the duration of the test execution

o Page response time under 3 seconds on average

o Page response time 90% under 5 seconds

o For pages based on forms, web services, or built with EMC Documentum:

• Response time under 30 seconds on average

• Response time 90% under 50 seconds on average

o Upload valid picture file type (about 2.92MB size) response time under 30

seconds on average

o Upload valid picture file type (about 2.92MB size) response time 90% un-

der 50 seconds on average

o All defects of priority 1 and 2 have been resolved

o OTI QA Director and Business Project Managers approve the performance

test results

Introduction

Entry Criteria

Exit Criteria

Appendix B – Required Activities for Performance Testing

Citywide Policy for Performance Testing of Public-Facing Applications Page 8 of 27

The following eight activities are required when performance testing is done. The

key to effectively implementing these activities is applying them in the manner

most valuable to each individual project context.

Starting with knowledge of the project context, the QA team must begin identify-

ing the test environment and the performance acceptance criteria more or less in

parallel. This is because all the remaining activities are affected by the information

gathered in these first two activities. Generally, the team will revisit these activities

periodically as the team learns more about the application, its users, its features,

and any performance-related risks it might have.

For performance testing to be successful, the testing itself must be relevant to the

context of the project. Without an understanding of the project context, perfor-

mance testing risks focusing on only those items that the performance tester or test

team assumes to be important, as opposed to those that truly are important to the

business owner and other stakeholders. This misapplication of focus frequently

leads to wasted time, frustration, and conflicts.

The project context is therefore relevant to achieving project success. This may in-

clude, but is not limited to:

• The overall vision or intent of the project;

• The performance testing objectives;

• The performance success criteria;

• The development life cycle;

• The project schedule;

• The project budget;

• The available tools and environments;

• The skill set of the performance tester and the team;

• The priority of detected performance concerns; and

• The business impact of deploying an application that performs poorly.

Standard

Project Context

Citywide Policy for Performance Testing of Public-Facing Applications Page 9 of 27

Performance testing tools and infrastructure can be used for the single user appli-

cation on any platform; however, the focus of this Policy is performance testing of

complex applications with n-tier architecture serving multiple users simultane-

ously. When applications of this type respond to users’ actions, the function and

resource use of all application components and infrastructure may vary depending

on the number of users acting simultaneously. As a result, the response time may

vary as well.

There are several infrastructure and application architecture components affecting

user experience for the n-tier multiuser application. These may include, but are not

limited to the following:

• User workstation, mobile device, or other server of the other application (for

system-to- system connection);

• Any type of network (internal or public, wired or wireless, etc.);

• Multiple tiers of servers including web, application and database servers and

load balancers.

This Policy and OTI QA performance testing services focus on measuring re-

sponse time and resource utilization as well as proper functioning of the server

tier of the application architecture, which applies mainly to load balancing. Any

other application components (e.g. end user device or network) are simulated by

the performance test infrastructure and are not the subject of the test.

To prepare the test, a tester creates and customizes a script that simulates the load

provided by end-user equipment, and then uses this script during test execution to

generate the appropriate amount of load. The load simulation can be based on the

data recorded by specialized recording tools or in some cases can be generated by

creating custom code for the simulation.

To execute the server performance tests mentioned above, the process of applying

the load during the test does not depend on the computer or device where the load

was originally recorded. The load is applied from the computers called load gener-

ators, which are part of the reusable performance testing infrastructure and are

maintained by the performance testing team.

Defining the Test
Scope

Citywide Policy for Performance Testing of Public-Facing Applications Page 10 of 27

The team must identify the test environment to completely understand the similari-

ties and differences between the test and production environments. Some critical

factors to consider are:

• Hardware

- Configurations

- Machine hardware (processor, RAM, etc.)

• Network

- Network architecture and end-user location

- Load-balancing implications

- Cluster and Domain Name System (DNS) configurations

• Tools

- Load-generation tool limitations

- Environmental impact of monitoring tools

• Software

- Other software installed or running in shared or virtual environments

- Software license constraints or differences

- Storage capacity and seed data volume

- Logging levels

• External factors

- Volume and type of additional traffic on the network

- Scheduled or batch processes, updates, or backups

- Interactions with other systems

Further guidelines when identifying the test environment include:

• Identify the amount and type of data the application must be seeded with to

emulate real-world conditions.

• Identify critical system components. Do any of the system components have

known performance concerns? Are there any integration points that are beyond

the team’s control for testing?

• Check the configuration of load balancers.

Identify the Test
Environment

Citywide Policy for Performance Testing of Public-Facing Applications Page 11 of 27

• Validate name resolution with DNS. This may account for significant latency

when opening database connections.

• Validate that firewalls, DNS, routing, and the like treat the generated load simi-

lar to a load that would typically be encountered in a production environment.

Classes of characteristics that frequently correlate to a user or stakeholder’s satis-

faction typically include:

• Response time – For example, the product catalog must be displayed in less

than three seconds.

• Throughput – For example, the system must support 25 payments per second.

• Resource utilization – For example, processor utilization is not more than 75

percent. Other important resources that need to be considered for setting objec-

tives are memory, disk input/output (I/O), and network I/O.

Consider the following when identifying performance acceptance:

• Business requirements

• User expectations

• Contractual obligations

• Regulatory compliance criteria and industry standards

• Service Level Agreements (SLAs)

• Resource utilization targets

• Various and diverse, realistic workload models

• The entire range of anticipated load conditions

Planning and designing performance tests involve identifying key usage scenarios,

determining appropriate variability across users, identifying and generating test

data, and specifying the metrics to be collected.

The team’s goal should be to create real-world simulations in order to provide reli-

able data that will enable the agency to make informed business decisions. Real-

world test designs will significantly increase the relevancy and usefulness of data

results.

Identify
Performance

Acceptance
Criteria

Plan and Design
the Test

Citywide Policy for Performance Testing of Public-Facing Applications Page 12 of 27

Key usage scenarios for the application typically surface during the process of

identifying the desired performance characteristics. If this is not the case for the

test project under evaluation, the team will need to explicitly determine the usage

scenarios that are the most valuable to script. The team must consider the follow-

ing when identifying key usage scenarios:

• Contractually obligated usage scenario(s)

• Usage scenario(s) implied or mandated by performance-testing goals and ob-

jectives

• Most common usage scenario(s)

• Business-critical usage scenario(s)

• Performance-intensive usage scenario(s)

• Usage scenario(s) of technical concern

• Usage scenario(s) of stakeholder concern

• High-visibility usage scenario(s)

The team must consider the following when planning and designing tests:

• Realistic test designs are sensitive to dependencies outside the control of the

system, such as humans, network activity, and other systems interacting with

the application.

• Realistic test designs are based on what the team expects to find in real-world

use, not theories or projections.

• Realistic test designs produce more credible results and thus enhance the value

of performance testing.

• Extrapolating performance results from unrealistic tests can create damaging

inaccuracies as the system scope increases and frequently leads to poor deci-

sions.

The details of creating an executable performance test are extremely tool-specific.

Regardless of the tool being used, creating a performance test typically involves

scripting a single usage scenario and then enhancing that scenario and combining it

with other scenarios to ultimately represent a complete workload model.

Implement the
Test Design

Citywide Policy for Performance Testing of Public-Facing Applications Page 13 of 27

The biggest challenge involved in a performance-testing project is getting the first

relatively realistic test implemented with users generally being simulated in a way

that the tested application cannot legitimately tell the difference between the simu-

lated users and real users.

The team must consider the following when implementing the test design:

• Ensure that test data feeds are implemented correctly. Test data feeds are data

repositories in the form of databases, text files, in-memory variables, or spread-

sheets that are used to simulate parameter replacement during a load test. For

example, even if the application database test repository contains the full pro-

duction set, the load test might only need to simulate a subset of products being

bought by users due to a scenario involving, for example, a new product or

marketing campaign. Test data feeds may be a subset of production data reposi-

tories.

• Ensure that application data feeds are implemented correctly in the database

and other application components. Application data feeds are data repositories,

such as product or order databases, that are consumed by the application being

tested. The key user scenarios, run by the load test scripts may consume a sub-

set of this data.

• Ensure that validation of transactions are implemented correctly. Many transac-

tions are reported successful by the web server, but they fail to complete cor-

rectly. Examples of validation are, database entries inserted with the correct

number of rows, product information being returned, correct content returned

in html data to the clients, and etc.

• Ensure hidden fields or other special data are handled correctly. This refers to

data returned by the Web server that needs to be resubmitted in a subsequent

request, like session IDs or product IDs that need to be incremented before be-

ing passed on to the next request.

It makes sense that the process, flow, and technical details of test execution are ex-

tremely dependent on the tools, environment, and project context. Even so, there

are some fairly universal tasks and considerations that need to be kept in mind

when executing tests.

Execute the Test

Citywide Policy for Performance Testing of Public-Facing Applications Page 14 of 27

Test execution can be viewed as a combination of the following sub-tasks. The QA

team must:

1. Coordinate test execution and monitoring with all appropriate members of the

team.

2. Validate test configurations, and the state of the environments and data.

3. Begin test execution.

4. While the test is running, monitor and validate scripts, systems, and data.

5. Upon test completion, quickly review the results for obvious indications that

the test was flawed.

6. Archive the tests, test data, results, and other information necessary to repeat

the test later if needed.

7. Log start and end times, the name of the result data, and so on. This will allow

the team to identify data sequentially after the test is done.

As the team prepares to begin test execution, it is worth taking the time to double-

check the following items. The team must:

• Validate that the test environment matches the configuration that the team was

expecting and/or designed the test for.

• Ensure that both the test and the test environment are correctly configured for

metrics collection.

• Before running the real test, execute a quick smoke test to make sure that the

test script and remote performance counters are working correctly. In the con-

text of performance testing, a smoke test is designed to determine if the appli-

cation can successfully perform all of its operations under a normal load condi-

tion for a short time.

• Reset the system (unless the scenario calls for doing otherwise) and start a for-

mal test execution.

• Make sure that the test scripts’ execution represents the workload model the

team wants to simulate.

• Make sure that the test is configured to collect the key performance and busi-

ness indicators of interest at this time.

Citywide Policy for Performance Testing of Public-Facing Applications Page 15 of 27

The team must consider the following when executing the test:

• Validate test executions for data updates, such as orders in the database that

have been completed.

• Validate if the load-test script is using the correct data values, such as product

and order identifiers, to realistically simulate the business scenario.

• If possible, execute every test three times. Note that the results of first-time

tests can be affected by loading Dynamic-Link Libraries (DLLs), populating

server-side caches, or initializing scripts and other resources required by the

code under test. If the results of the second and third iterations are not highly

similar, then the test must be executed again. The team must try to determine

what factors account for the difference.

Managers and stakeholders need more than just the results from various tests —

they need conclusions, as well as consolidated data that supports those conclu-

sions. Technical team members also need more than just results — they need anal-

ysis, comparisons, and details behind how the results were obtained. Team mem-

bers of all types get value from performance results being shared more frequently.

Before results can be reported, the data must be analyzed. The team must consider

the following important points when analyzing the data returned by the perfor-

mance test:

• Analyze the data both individually and as part of a collaborative, cross-func-

tional technical team.

• Analyze the captured data and compare the results against the metric’s accepta-

ble or expected level to determine whether the performance of the application

being tested shows a trend toward or away from the performance objectives.

• If the test fails, a diagnosis and tuning activity are generally warranted.

• If any bottlenecks are fixed, repeat the test to validate the fix.

• Performance-testing results will often enable the team to analyze components

at a deep level and correlate the information back to the real world with proper

test design and usage analysis.

• Performance test results should enable informed architecture and business deci-

sions.

Analyze Results,
Report, and Retest

Citywide Policy for Performance Testing of Public-Facing Applications Page 16 of 27

• Frequently, the analysis will reveal that, in order to completely understand the

results of a particular test, additional metrics will need to be captured during

subsequent test-execution cycles.

• Immediately share test results and make raw data available to the entire team.

• Talk to the consumers of the data to validate that the test achieved the desired

results and that the data means what the team thinks it means.

• Modify the test to get new, better, or different information if the results do not

represent what the test was defined to determine.

• Use current results to set priorities for the next test.

• Collecting metrics frequently produces very large volumes of data. Although it

is tempting to reduce the amount of data, the team must always exercise cau-

tion when using data- reduction techniques because valuable data can be lost.

Most reports fall into one of the following two categories:

• Technical Reports

- Description of the test, including workload model and test environment

- Easily digestible data with minimal pre-processing

- Access to the complete data set and test conditions

- Short statements of observations, concerns, questions, and requests for col-

laboration

• Stakeholder Reports

- Criteria to which the results relate

- Intuitive, visual representations of the most relevant data

- Brief verbal summaries of the chart or graph in terms of criteria

- Intuitive, visual representations of the workload model and test environ-

ment

- Access to associated technical reports, complete data sets, and test condi-

tions

- Summaries of observations, concerns, and recommendations

Performance testing involves a set of common core activities that occur at different

stages of projects. Each activity has specific characteristics and tasks to be accom-

plished. These activities have been found to be present — or at least to have been

part of an active, risk-based decision to omit one of the activities — in every

Summary

Citywide Policy for Performance Testing of Public-Facing Applications Page 17 of 27

deliberate and successful performance-testing project. It is therefore important to

understand each activity in detail and then apply the activities in a way that best

fits the project context.

In performing all of the required activities outlined above, and considering all of

the suggested Guidelines, the testing agent ensures that performance testing of all

new or modified public-facing City applications will be consistently and reliably

accomplished to high standards. As one important part of pre-deployment QA test-

ing, this helps to make certain that these applications can “GO LIVE” with confi-

dence.

Appendix C – OTI Performance Test Service Questionnaire

Citywide Policy for Performance Testing of Public-Facing Applications Page 18 of 27

Project Name:

Agency:

Service Requested:

Agency Project Manager/Contact(s):

Project URL:

Requested Start Date:

Requested Finish Date:

Request Description:

Staging Environment Ready:

Projected # of Users

Can a demo of the application be given?

Additional Information:

Security Accreditation Completed:

Appendix D – Performance Test Results Sample Sheet

Citywide Policy for Performance Testing of Public-Facing Applications Page 19 of 27

This template is an example of an acceptable form of Stress Test results (and can be adapted for other test

results as well). An Excel template can be found here:

Application: xxxx Release No: xxx Stress Test Results

CPU Usage Report

Test Execution Date xx/xx/xxxx xx/xx/xxxx

Release xx xx

Execution Cycle Pass x Pass x

of Users xxx xxx

Servers

prtl-stg-w eb1 10-15% 10-15%

Memory Usage Report

Test Execution Date xx/xx/xxxx xx/xx/xxxx

Release xx xx

Execution Cycle Pass x Pass x

of Users xxx xxx

Servers

prtl-stg-w eb1

Other Usage Report

Date Load Bal-
ance

VM Build Up Memory

Leak

Database

Errors

7.26.2006 49.9%/50.1
%

No No No

Stress Test Results - Transaction Response Times

Test Execution Date xx/xx/xxxx xx/xx/xxxx xx/xx/xxxx xx/xx/xxxx

Release xx xx xx xx

Execution Cycle Pass x Pass x Pass x Pass x

Build # xxx xxx xxx xxx

Logging Level ERROR ERROR ERROR ERROR

Of Vusers xxx xxx xxx xxx

Duration 3Hrs 3Hrs 3Hrs 3Hrs

Transaction Name Average 90 Percent Average 90 Percent

SCRIPT: Script1

Application_Script1a_step1

Application_Script1b_step2

Application_Script1c_step3

Application_Script1d_step4

Application_Script1e_step5

Application_Script1f_step6

Citywide Policy for Performance Testing of Public-Facing Applications Page 20 of 27

SCRIPT: Script2

Application_Script2a_step1

Application_Script2b_step2

Application_Script2c_step3

Application_Script2d_step4

Application_Script2e_step5

Application_Script2f_step6

Appendix E – Risks Addressed by Performance Test Types

Citywide Policy for Performance Testing of Public-Facing Applications Page 21 of 27

 A full glossary of definitions is available in Appendix G.

Performance Test
Type

Risk(s) Addressed

Capacity • Is system capacity meeting business volume under both normal
and peak load conditions?

Component • Is this component meeting expectations?
• Is this component reasonably well optimized?
• Is the observed performance issue caused by this component?

Endurance (or Soak

or Stability Test)

• Will performance be consistent over time?
• Are there slowly growing problems that have not yet been de-

tected?
• Is there external interference that was not accounted for?

Breakpoint • How many users can the application handle before undesir-
able behavior occurs when the application is subjected to a
particular workload?

• How much data can my database/file server handle?
• Are the network components adequate?

Smoke • Is this build/configuration ready for additional performance test-
ing?

• What type of performance testing should I conduct next?
• Does this build exhibit better or worse performance than the last

one?

Stress • What happens if the production load exceeds the anticipated load?
• What kinds of failures should we plan for?
• What indicators should we look for in order to intervene

prior to failure?

Appendix F – Risk Types Addressed by Performance Tests

Citywide Policy for Performance Testing of Public-Facing Applications Page 22 of 27

Risks Performance test types

Capacity Component Endurance Breakpoint Smoke Stress

Speed-related risks

User satisfaction

X X

X

Synchronicity

X X X

X

Service Level Agreement (SLA)

violation

X

X

Response time trend

X X X X

Configuration

X X X X

Consistency

X X X

Scalability-related risks

Capacity X X X X

Volume X X X X

SLA violation

X X

Optimization X X

Efficiency X X

Future growth X X

X

Resource consumption X X X X X X

Hardware / environment X X X X

X

Performance Testing Standards and Guidelines for Public-Facing Applications Page 23 of 27

Risks Performance test types

Capacity Component Endurance Breakpoint Smoke Stress

Service Level Agreement (SLA)
violation

X

X

X

X

Stability-related risks

Reliability

X X X

X

Robustness

X X X

X

Hardware / environment

X X

X

Failure mode

X X X

X

Slow leak

X X X

Service Level Agreement (SLA)
violation

X

X

X

X

Recovery

X

X

Data accuracy and security

X X X

X

Interfaces

X X X

X

 Appendix G - Glossary

Citywide Policy for Performance Testing of Public-Facing Applications Page 24 of 27

The glossary below includes OTI abbreviations used in this document, performance testing terminology,

and terms with specific OTI QA Testing definitions.

Term Definition

Capacity The capacity of a system is the total workload it can handle without violating prede-
termined key performance acceptance criteria.

Capacity test A capacity test complements load testing by determining the server’s ultimate fail-
ure point, whereas load testing monitors results at various levels of load and traffic
patterns. Capacity testing is performed in conjunction with capacity planning, which
is used to plan for future growth, such as an increased user base or increased volume
of data. For example, to accommodate future loads, the QA team needs to know how
many additional resources (such as processor capacity, memory usage, disk capacity,
or network bandwidth) are necessary to support future usage levels. Capacity testing
helps to identify a scaling strategy in order to determine whether the application
should scale up or scale out.

Component test A component test is any performance test that targets an architectural component
of the application. Commonly tested components include servers, databases, net-
works, firewalls, and storage devices.

DEV Application Development

Endurance test An endurance test (also referred to as soak or stability test) is a type of performance
test focused on determining or validating performance characteristics of the product
under test when subjected to workload models and load volumes anticipated during
production operations over an extended period of time. Endurance testing is a subset
of load testing.

Guideline A guideline provides general advice and/or best practices supporting a policy, pro-
cedure, standard or bulletin. Guidelines are not mandatory.

Investigation Investigation is an activity based on collecting information related to the speed,
scalability, and/or stability characteristics of the product under test that may have
value in determining or improving product quality. Investigation is frequently em-
ployed to prove or disprove hypotheses regarding the root cause of one or more ob-
served performance issues.

NYC3 New York City Cyber Command

Latency Latency is a measure of responsiveness that represents the time it takes to complete
the execution of a request. Latency may also represent the sum of several latencies
or subtasks.

Citywide Policy for Performance Testing of Public-Facing Applications Page 25 of 27

Term Definition

Metrics Metrics are measurements obtained by running performance tests as expressed on a
commonly understood scale. Some metrics commonly obtained through performance
tests include processor utilization over time and memory usage by load.

Performance Performance refers to information regarding the application’s response times,
throughput, and resource utilization levels.

Performance
budgets or allo-
cations

Performance budgets (or allocations) are constraints placed on developers regarding
allowable resource consumption for their component.

Performance
goals

Performance goals are the criteria that the team wants to meet before product release,
although these criteria may be negotiable under certain circumstances. For example, if
a response time goal of three seconds is set for a particular transaction but the actual
response time is 3.3 seconds, it is likely that the stakeholders will choose to release
the application and defer performance tuning of that transaction for a future release.

Performance
objectives

Performance objectives are usually specified in terms of response times, throughput
(transactions per second), and resource-utilization levels and typically focus on met-
rics that can be directly related to user satisfaction.

Performance re-
quirements

Performance requirements are those criteria that are absolutely non-negotiable due
to contractual obligations, service level agreements (SLAs), or fixed business needs.
Any performance criterion that will not unquestionably lead to a decision to delay a
release until the criterion passes is not absolutely required―and therefore, not a re-
quirement.

Performance
targets

Performance targets are the desired values for the metrics identified for the project
under a particular set of conditions, usually specified in terms of response time,
throughput, and resource- utilization levels. Resource-utilization levels include the
amount of processor capacity, memory, disk I/O, and network I/O that the application
consumes. Performance targets typically equate to project goals.

Performance
test

A performance test is a technical investigation done to determine or validate the
speed, scalability, and/or stability characteristics of the product under test. Perfor-
mance testing is the superset containing all other subcategories of performance testing
described in this chapter.

Performance
testing objec-

tives

Performance testing objectives refer to data collected through the performance-test-
ing process that is anticipated to have value in determining or improving product
quality. However, these objectives are not necessarily quantitative or directly related
to a performance requirement, goal, or stated quality of service (QoS) specification.

Citywide Policy for Performance Testing of Public-Facing Applications Page 26 of 27

Term Definition

Performance
thresholds

Performance thresholds are the maximum acceptable values for the metrics identi-
fied for the project, usually specified in terms of response time, throughput (transac-
tions per second), and resource-utilization levels. Resource-utilization levels include
the amount of processor capacity, memory, disk I/O, and network I/O that the applica-
tion consumes. Performance thresholds typically equate to requirements.

PM Project Management

Policy A Policy is a statement of mandatory rules to inform decisions and achieve rational
and consistent outcomes.

Procedure A procedure is a process or series of actions or operations that are executed in the
same manner to implement a policy, policies or other governing rule or law.

Prod Support Production Support

QA Quality Assurance

Resource uti-

lization

Resource utilization is the cost of the project in terms of system resources. The pri-
mary resources are processor, memory, disk I/O, and network I/O.

Response time Response time is a measure of how responsive an application or subsystem is to a cli-
ent request.

Saturation Saturation refers to the point at which a resource has reached full utilization.

Scalability Scalability refers to an application’s ability to handle additional workload, without
adversely affecting performance, by adding resources such as processor, memory,
and storage capacity.

Scenarios In the context of performance testing, a scenario is a sequence of steps in the appli-
cation. A scenario can represent a use case or a business function such as searching a
product catalog, adding an item to a shopping cart, or placing an order.

SCM Software Configuration Management

Smoke test A smoke test is the initial run of a performance test to see if the application can per-
form its operations under a normal load.

Spike test A spike test is a type of performance test focused on determining or validating per-
formance characteristics of the product under test when subjected to workload mod-
els and load volumes that repeatedly increase beyond anticipated production opera-
tions for short periods of time. Spike testing is a subset of stress testing.

Stability In the context of performance testing, stability refers to the overall reliability, robust-
ness, functional and data integrity, availability, and/or consistency of responsiveness
for the system under a variety conditions.

Citywide Policy for Performance Testing of Public-Facing Applications Page 27 of 27

Term Definition

Standard A Standard is an established norm or requirement, presented as a formally docu-
mented statement that establishes uniform criteria, methods, and practices designed to
define how to implement a policy, policies or other governing rule law. Generally,
standards are technical in nature.

Stress test A stress test is a type of performance test designed to evaluate an application’s be-
havior when it is pushed beyond normal or peak load conditions. The goal of stress
testing is to reveal application bugs that surface only under high load conditions.
These bugs can include such things as synchronization issues, race conditions, and
memory leaks. Stress testing enables the QA team to identify the application’s weak
points, and shows how the application behaves under extreme load conditions.

Throughput Throughput is the number of units of work that can be handled per unit of time; for
instance, requests per second, calls per day, hits per second, reports per year, etc.

UAR User Acceptance Test

Unit test In the context of performance testing, a unit test is any test that targets a module of
code where that module is any logical subset of the entire existing code base of the
application, with a focus on performance characteristics. Commonly tested modules
include functions, procedures, routines, objects, methods, and classes. Performance
unit tests are frequently created and conducted by the developer who wrote the mod-
ule of code being tested.

Utilization In the context of performance testing, utilization is the percentage of time that a re-
source is busy servicing user requests. The remaining percentage of time is consid-
ered idle time.

Validation test A validation test compares the speed, scalability, and/or stability characteristics of
the product under test against the expectations that have been set or presumed for
that product.

Workload Workload is the stimulus applied to a system, application, or component to simu-
late a usage pattern, in regard to concurrency and/or data inputs. The workload in-
cludes the total number of users, concurrent active users, data volumes, and transac-
tion volumes, along with the transaction mix. For performance modeling, the QA
team associates a workload with an individual scenario.

	Performance Testing of Public-Facing Applications 03202025.pdf
	Overview
	Purpose
	Audience
	Scope
	Authority
	Terms & Definitions
	Policy Content
	Performance Testing Requirements
	Roles and Responsibilities
	Ownership Information
	Links and Resources
	Change History
	Change Details

	Appendix A FINAL
	Introduction
	Entry Criteria
	Exit Criteria

	Appendix B Final
	Standard
	Project Context
	Defining the Test Scope
	Identify the Test Environment
	Identify Performance Acceptance Criteria
	Plan and Design the Test
	Implement the Test Design
	Execute the Test
	Analyze Results, Report, and Retest
	Summary

	Appendix C Final
	Appendix D
	Appendix E FINAL
	Appendix F Final
	Appendix G

