NOISE

CHAPTER 19

Noise, in its simplest definition, is unwanted sound. While high noise levels may cause hearing loss, the levels associated with environmental noise assessments are often below this hazardous range. However, noise levels that are not considered hazardous should not be overlooked since they can cause stress-related illnesses, disrupt sleep, and interrupt activities requiring concentration. In New York City, with its high concentration of population and communicial activities, such problems may be common.

This chapter discusses the topic of noise as it relates to regulations and guidelines that govern activities in New York City. It defines technical terms, discusses the appropriateness of a noise analysis, and provides information related to study area definitions, technical subareas, models, and detailed noise analysis techniques. Also discussed are methods used by agencies for projects within and outside New York City as well as a technical industry practices for environmental noise assessments applicable to New York City projects. With respect to noise, the goal of CLOR is to determine both (1) a proposed project's potential effects on sensitive noise receiptors, and uding the effects on the level of noise inside residential, commercial, and institutional facilities (if applicable), and at open spaces, and (2) the effects of ambient noise levels on new sensitive uses introduced by the proposed project. If significant adverse impacts are identified, CEQR requires such impacts to be mitigated or avoided to the greatest extent tracticable.

As mentioned throughout the Manual, it is important for an applicant to work closely with the lead agency during the entire environmental review process. In addition, the New York City Department of Environmental Protection (DEP) often works with the lead agency during the CEQL projects to provide echarcal review, recommendations, and approvals relating to noise. When the review identifies the need for ong-term measures to be incorporated after CEQR (prior to or during development), the lead agency, in coordination with DEP, determines whether an institutional control, such as an (E) Designation, may be placed an the affected site. The Mayor's Office of Environmental Remediation (OER) has the authority and responsibility to administer post-CEQL (E) Designations and existing Restrictive Declarations, pursuant to Section 11-15 (Environmental Requirement), of the Zoning Resolution of the City of New York and Chapter 24 of Title 15 of the Rules of the City of New York.

100. DEFINITIONS

In addition to defining technical terms used in a noise assessment, this section provides background information to better understand such an assessment.

110. SOURSES OF NOISE

or SECR purposes, the three principal types of noise sources that affect the New York City environment are molife stationary, and onstruction sources.

111. MC BILL SO UPCE NOISE

Mobile cource are those noise sources that move in relation to a noise-sensitive receptor—principally automobiles, buses, trucks, aircraft, and trains. Each has its own distinctive noise character, and, consequently, an associated set of noise assessment descriptors. The details of these signatures and descriptors are discussed in following sections.

112. STATIONARY SOURCE NOISE

Stationary sources of noise do not move in relation to a noise-sensitive receptor. Typical stationary noise sources of concern for CEQR include machinery or mechanical equipment associated with industrial and man-

ufacturing operations; or building heating, ventilating, and air conditioning systems. In addition, noise produced by crowds of people within a defined location, such as children in playgrounds or spectators attending concerts or sporting events, and noise produced by concerts or by announcements using amplification systems, are considered stationary sources.

113. CONSTRUCTION NOISE

Construction noise sources comprise both mobile (e.g., trucks, bulldozers) and stationary (e.g., compressors, pile drivers, power tools) sources. Construction noise is examined separately in Chapter 22, "Construction," because it is temporary, even though the duration of construction activities may last years. The duration of each phase of construction is a factor that should be considered when assessing noise from construction activities. See Chapter 22, "Construction," for more guidance.

120. BACKGROUND DISCUSSION

This section provides the reader with a background of the terminology used it noise assessment discussions, the basic physical characteristics of noise, the types and appropriate use of noise descriptors, and the types of locations that may be considered receptors (noise-sensitive locations) in the conduct of noise analyses.

121. CHARACTERISTICS OF NOISE

The first step in understanding the impact of sound, its perceition, and control peacures is gaining an understanding of the source, path, and receptor. The source is the equipment a process directly responsible for the sound generation. The path is the medium of sound propagation, such as air, water, or solid materials. The receptor is the final destination of concern for the sound in question. For CEQR purposes, the receptor is usually persons being affected; the ear of an affected person is the final destination of the noise source of concern. Each link of this chain plays a role in producing a resultant sound resource level at the receptor.

122. SOUND LEVELS: PROPAGATION FLOUTY, WAVELENGTHS AND FREQUENCIES, AND DIFFRACTION

Sound pressure is the parameter that is normally measured in noise assessments. People's ears respond to "acoustic" pressures that represent the range from the threshold of hearing to the threshold of pain. This vast range is represented as a logarithmic scale.

A basic measure of sound is the sound pressure it led (SPL), which is expressed in decibels (denoted dB). When the SPL = 0 dB, the assure is the same as the threshold of hearing, or the SPL at which people with healthy hearing can just begin to hear a sound.

Sound is entitled as a wave of valcing length and frequency. A higher frequency sound is perceived as a higher pitch—for example, the sound of the flute. A lower frequency is heard as a lower pitch—for example, the sound of the bass drum. The requency is expressed in cycles per second or Hertz (Hz): one Hz is one cycle per second July as the ear danner hear sound pressure levels below a certain range, it cannot hear some frequencies above a certain range. The normal range of hearing is 20 Hz to 20,000 Hz or 20 kiloHertz (kHz).

The velocity of sound which is constant in air, is governed by the relationship "velocity equals wave length times frequency." Merefore, since sound travels at a constant velocity in air, the longer the wavelength, the shorter the frequency, and vice versa. The wavelength determines how the sound interacts with the physical environment, lince sound is a wave phenomenon, it is also subject to "diffraction," such as "bending" around corners. This is why a person continues to hear some sound from a source on the other side of a wall that is higher than the individual in question.

In general, hearing is such that a change of 3 dB is just noticeable, a change of 5 dB is clearly noticeable, and a change of 10 dB is perceived as a doubling or halving of sound level. In a large open area with no obstructive or reflective surfaces, SPL drops from a point source of noise at a rate of 6 dB with each doubling of distance from the source. For "line" sources (such as vehicles on a street), the SPL drops off at a rate of 3 dB(A) with each doubling of the distance from the source. Over distances greater than 1,000 feet, this may not hold true,

as atmospheric conditions cause changes in sound path and absorption. The drop-off rate also varies with both terrain conditions and the presence of obstructions. In the urban canyon environment present in New York City, drop-off rates along city streets generally range from 2 to 4 dB per doubling of distance from the source because of sound reflections from buildings. The drop-off rate should be verified by field measurements whenever ideal open situations do not exist and a drop-off rate is required in the analysis.

123. NOISE DESCRIPTORS

Many descriptors are commonly used in environmental noise assessments. The choice of specific descriptors is related to the nature of the noise "signature" (SPL, frequency, and duration) of the source and the potential effect it may have on the surrounding environment.

123.1. Sound Weighting

Sound is often measured and described in terms of its overall energy, (al. in all frequencies into account. However, the hearing process is not the same at all frequencies. Over the normal hearing range, humans are most sensitive to sounds with frequencies between 100 Hz and 10 kHz. Therefore, noise measurements are often adjusted or weighted as a function of frequencies account for human perception and sensitivities. The most common weighting networks used are the A- and C-weighting networks.

These weight scales were developed to allow social level meters to simulate the frequency sensitivity of the ear. They use filter networks that approximate nearing. The A-weighted network is the most commonly used and sound levels measured using this weighting are noted as dB(A). The letter "A" indicates that the sound has been filtered to reduce the strength of very low and very high frequency sounds, much as the human ear does. A listing of common noise sources with their associated typical dB(A) values is shown in Table 19-1. If one that the table presents a representative range of noise levels, where 0 dB(A) corresponds to the timeshold of hearing and 120 dB(A) corresponds to an air raid siren at 50 feet.

Table N-1 Noise Levels of Common Sources					
Sound Source	SPL (dB(A))				
ir Kail Siren at 50 fee	120				
Maximum Levels at no k Concerts (Rear Seats)	110				
On Platform Passing Suoway Train	100				
On Sidev 1 k by Pa sing Heavy Truck or Bus	90				
On Sidewalk by Typical Highway	80				
On ewalk by Passing Automobiles with Mufflers	70				
Typical Orban Area	60-70				
Typica Suburban Area	50-60				
Quiet Suburban Area at Night	40-50				
Typical Rural Area at Night	30-40				
Isolated Broadcast Studio	20				
Audiometric (Hearing Testing) Booth	10				
Threshold of Hearing	0				

Notes: A change in 3 dB(A) is a just noticeable change in SPL. A change in 10 dB(A) is perceived as a doubling or halving in SPL.

Sources: Cowan, James P. Handbook of Environmental Acoustics. Van Nostrand Reinhold, New York, 1994. Egan, M. David, Architectural Acoustics. McGraw-Hill Book Company, 1988.

The C-weighted network provides essentially the unweighted microphone sensitivity over the frequency range of maximum human sensitivity. C-weighted measurements, denoted as dB(C), are used

in some ordinances and standards, usually when dealing with stationary mechanical noise sources; however, dB(A) are normally used for environmental assessments. Since C-weighting does not attenuate frequency levels below 1,000 Hz the way A-weighting does, comparison of dB(A) and dB(C) readings may give a quick estimate of the low frequency contribution of the sound source in question.

The most common descriptors used in environmental noise assessments are (i) time-equivalent level (L_{eq}) ; (ii) day-night level (L_{dn}) ; (iii) percentile level (L_x) ; (iv) sound exposure level (SEL); and (v) maximum instantaneous level (SPL). Each is typically based upon A-weighted measurements and described briefly below.

- L_{eq} is the continuous equivalent sound level, defined as the single SPL that, if constant over a stated measurement period, would contain the same sound energy as the actual most tored sound that is fluctuating in level over the measurement period. L_{eq} is widely ranginized as the descriptor of choice for most environmental notice as assements. In addition to its simplicity, it is easy to combine with other readings or predictions to detive a total noise level. L_{eq} is an energy-average quantity that must be contrasted with an average of median sound level. L_{eq} must be qualified in terms of a time period to have meaning. The normal representation for the time period is placing it is parentheses in terms of hours (e.g., L_{eq(1)} refers to a 1-hour measurement and L_{eq(24)} lefers to a 24-hour measurement).
- L_{dn} is the day-night equivalent sound le cl. de fined as a 244 pour continuous L_{eq} with a 10 dB adjustment added to all hourly noise levels recorded between the hours of 10 PM and 7 AM. This 10 dB addition accounts for the extra sensitivity people have to noise during typical sleeping hours. Aircraft noise a pund airporte in usually mapped out in terms of yearly L_{dn} contours (note that FAA maps refer to yearly L_{dn} as DNL), which are constant lines of L_{dn} mapped similarly to elevations of topographical maps.
- L_x is the percentile level; where x is any number from 0 to 100. Here, x is the percentage of the measurement time that the stated sound level has been exceeded. For example, $L_{10} = 80 \text{ dB(A)}$ means that SPL measurements exceeded 80 dB(A) 10 percent of the time during the measurement period. As with L_{eq} , the measurement time period must be specified and is denoted in pa entheses (e.g., $L_{10(1)}$ corresponds to the SPL exceeded 10 percent of the time during a one-hour period).
 - The most commonly u ed. Values are L_1 , L_{10} , L_{50} , and L_{90} . L_1 , the SPL exceeded 1 percent of the time, is usually regarded as the average maximum noise level when readings are an hour or less in sturation. L_{10} is usually regarded as an indication of traffic noise exposure with a strady flow of evenly-spaced vehicles. L_{50} provides an indication of the median sound levels L_{90} is usually regarded as the residual level, or the background noise level without the source in question or discrete events.
- Sound power level (Lw) is a logarithmic measure of the power of a sound relative to a reference value, and is expressed in decibels, which may or may not be A-weighted. Unlike the sound pressure level, the sound power level is not distance-dependent and therefore remains constant at any distance. The sound power level descriptor is often used to rate product noise. For environmental assessments, sound power levels are most commonly used to define source noise levels associated with mechanical equipment (e.g. HVAC) to be used in predicting sound pressure levels at receptors.
- SEL is the sound exposure level, defined as a single number rating indicating the total energy of a discrete noise-generating event (e.g., an aircraft flyover) compressed into a 1-second time duration. This level is handy as a consistent rating method that may be combined with other SEL and L_{eq} readings to provide a complete noise scenario for measurements and predictions. However, care must be taken in the use of these values since they

- may be misleading because their numeric value is higher than any sound level which existed during the measurement period.
- The maximum instantaneous SPL is the highest single reading over the measurement period. It is useful to note this level because if it is very high, it elevates the L_{eq}, perhaps making it appear spurious. In instances where uses may be particularly sensitive to single event noise events, the lead agency should also consider analyzing potential noise impacts on a single event basis, particularly if the single event would be entirely new to the receptor, or where the receptor would experience a significant increase in the number of these single events.

Recommended descriptors for characterizing various types of noise are plovided below. The discinsion includes a notation of major agencies that use different descriptors for loise analysis our cass. It should be noted that the Noise Exposure Guidelines recommended by DZP (see Section 120, below) are expressed in terms of L₁₀ for vehicular noise, daily L_{dn} for train sources, and yearly L_{dn} for aircraft. The New York City Noise Control Code specifies maximum allowable sound pressure levels for designated octave bands emanating from a commercial or business enterprise as neasured within a receiving property (see Section 711, below). In addition, the New York City Zoning Resolution uses maximum instantaneous octave band sound pressure levels as its noise descriptor for industrial noise sources (see Section 712, below). Detailed analyses in these areas, if required should include these descriptors for those assessments.

123.2. Descriptors for Mobile Sources

Each type of mobile source noise generator in duces a distinct noise. The use of different descriptors for each is appropriate, as described below.

VEHICULAR TRAFFIC

Because vehicular traffic on local streets is not steady—vehicles often move in groups or platoons—its noise signature is characterized by fluctuating levels. If the traffic stream is characterized by sporadic heavy vehicles such as tracks, the noise revels could contain "spikes" associated with these events. For that reason it if generally best to use $L_{eq(1)}$ or $L_{10(1)}$ as descriptors in a noise assessment. $L_{eq(1)}$ captures an hot's total noise one \mathbf{z} at the location, and $L_{10(1)}$ represents the level exceeded 10 percent of the tink. The $L_{10(1)}$ descriptor may be considered an average of the peak noise levels at a given location. If the noise fluctuates very little, then L_{eq} approximates L_{50} , or the median level. If the noise fluctuates broadly, then held a is about equal to the L_{10} value. If extreme fluctuations are present the L_{eq} could exceed L_{90} , on the background level, by 10 or more decibels. Thus, the relationship between L_{eq} and the levels of exceedance depend on the character of the noise. In community noise measurements, L_{eq} generally lies between L_{10} and L_{50} , but is often closer to L_{10} where fluctuating traffic this is the dominant noise source.

AIRCRAFT

Aircraft noise consists of a series of single events over time. Depending on the location of and ambient noise levels at the receptor, these single events may be easily distinguishable from background oise levels. This is particularly true, for example, where the receptor is close to an airport or heliport and in the flight path. The Federal Aviation Administration (FAA) currently averages daily L_{dn} levels to use the yearly L_{dn} , or DNL, as its preferred noise descriptor. In some cases, assessing aircraft noise using $L_{eq(1)}$ may be necessary, particularly when assessing peak hour levels or when determining cumulative effects of several noise sources, i.e. in combination with vehicle, train and/or industrial process noise.

TRAINS

Similar to aircraft noise, train noise is comprised of a series of single events over time. Depending on the location of the receptor and ambient noise levels, these single events may be easily distinguishable from background noise levels. This is particularly true, for example, at noise receptors close to elevated train lines. The Federal Transit Administration (FTA) uses $L_{eq(1)}$ or L_{dn} as its principal noise descriptors for mass transit noise, depending on the adjacent land use. The Noise Exposure Guidelines (see Section 420 below) for noise assessments require the use of the daily L_{dn} for impact assessment. Because of these standards, it is recommended that the L_{dn} be used in the analysis of train noise. In some cases, assessing train noise using $L_{eq(1)}$ may be necessary, particularly when assessing peak how levels or when determining cumulative effects of several noise sources, i.e. in combination with tehicle, aircraft, and/or industrial process noise.

123.3. Descriptors for Stationary Sources

Stationary source noise is usually associated with mechanical equipment used for man facturing purposes or building mechanical systems. Other stationary sources worth noting are crowd loise, as related to playgrounds or spectator events, and noise from amplification systems. In many cases, the nature of this noise is fairly uniform. The recommended descriptor for this type of noise source is the $L_{eq(1)}$ descriptor. In order to develop noise attenuation measures for mechanical equipment, the noise analysis should generally be performed using the octave back components of the sound. The analysis should include the 31.5, 63, 125, 250, 500, 1000, 200, 4000, and 800. Hz actave band center frequencies.

The New York City Noise Control Code specifies maximum allowable sound pressure levels for designated octave bands emanating from a communical or business enterprise as measured within a receiving property (see Section 711, below). In addition, the New York City Zoning Resolution uses maximum instantaneous octave band sound pressure levels as its noise descriptor for industrial noise sources (see Section 712, below). Detailed analyses in these areas, if required, should include these descriptors for those assessments.

124. RECEPTORS

Receptors are generally the subject of most noise impact analyses. A noise-sensitive location (known as a "receptor") is usually refined as an area where human activity may be adversely affected when noise levels exceed predefined thresholds of acceptability or when noise levels increase by an amount exceeding predefined thresholds of change. Receptors after a grantly exist or would be introduced by the project. These locations may be indoors or outdoors. Indoor receptors include, but are not limited to, residences, hotels, motels, health are facilities, nursing homes, chools, houses of worship, court houses, public meeting facilities, museums libraries, and theater. Outdoor receptors include, but are not limited to, parks, outdoor theaters, golf courses, zoes, campgrounds, and beaches.

and use and zoning maps are usually helpful in initially targeting receptors that should be analyzed; however, it eld inspection of the area in question is the most appropriate way to identify all receptors that may be afterted by the proposed project. In some cases, additional receptor sites may need to be identified after the initial analysis has been performed to ensure that the extent of the area where significant impacts may occur has been defined.

130. NOISE CHARACTERISTICS OF TYPICAL NOISE SOURCES

131. MOBILE SOURCES

131.1. Vehicular Traffic

Vehicular traffic includes automobiles, buses, and trucks. The noise generated by these vehicles comes from the operation of engines and the sound of tires passing over the roadbed. Buses and

trucks are similar in their respective noise generating characteristics, while cars have unique characteristics.

Automobile noise is a function of vehicle speed and engine noise. With changing gears, the noise levels tend to increase in a sawtooth kind of pattern as vehicular speed increases. The interaction of the road surface with the tires generates noise that increases with vehicle speed. At vehicular speeds below 30 miles per hour, the typical automobile noise spectrum is dominated by engine noise. At speeds higher than 30 miles per hour, the automobile noise signature is composed of a combination of lower frequency engine noise and higher frequency tire noise. The engine and tire noise for vehicular speeds above 30 miles per hour are comparable in noise level.

Noise generated by buses and heavy trucks is also composed of engine and tire noise, but tire noise tends to dominate the noise signature at vehicular speeds above 30 miles per hour in truck (and buses). Cargo load normally does not significantly affect noise levels because in creased load usually esults in decreased vehicular speed and the effects cancel each other our Because individual trucks and buses are noisier than individual automobiles, the concept of passenger car equivalents (PCEs) is used (see Subsection 332.1).

131.2. Aircraft Operations

The principal noise sources from conventional aircraft (a places and he icopter) using New York City airspace are the propulsion system and aerodynamic roise. There are generally three types of engines in use on contemporary airplanes —turbojet, syrbofan, and grape ler. For turbojets and turbofans, the dominant noise source is the exhaust generating the characteristic low frequency roar of the jet engine. Propeller aircraft have combinations of engine whaust noise and propeller noise, with the propeller component usually domination. This produces the typical whining sound of propeller-driven aircraft.

Aerodynamic noise is generated by aiMlow around the fuselage, cavities, control surfaces, and landing gear of the aircraft. Ae odynamic noise is usually only dominant during cruise conditions (frequencies above 600 Hz). Conditions during tak off and landing normally cause propulsion system noise to dominate the aerodynamic component.

Helicopter noise is generated by the engine and main rotor system. The engine noise is similar to that discussed for airpoine, but on a smaller scale. Rotor noise is characterized by slaps or cracks caused by the sharp variations in pressure in countered by the rotating rotor blades as they pass through the aerodynamic wake produced by tech adjacent blade. For rotor noise, the frequency of the rotor noise is proportional to the tip speed and the number of blades in the rotor system.

131.3. Train Operations

In general, the principal moise sources of train systems are the interaction between wheels and rails, the propulsion system of the train cars, brakes, and auxiliary equipment (ventilation and horns). The dominant cause of train car noise over most of the typical speed range is the interaction between the wheels and rails. In general, noise increases with train speed and train length.

Yoise Lyes, are dependent upon the rail guideway configuration (i.e., whether the track is at-grade, a velded rail, a joined track, an embedded track on grade, or an aerial structure with slab track) and whether there are any noise barriers or berms in place.

When train cars travel on tight curves, the dominant noise emitted may be a high pitched squeal or screech. This is usually caused by metal wheels sliding on the rail and scraping metal on metal when the train negotiates a curve.

Other concerns relating to train operations that may need to be addressed include noise from train crossovers and switches, as well as noise from train warning horns. In some limited situations, noise from new or increased train yard operations may also have to be examined.

132. STATIONARY SOURCES

The principal stationary noise sources encountered in the City are mechanical equipment associated with industrial and manufacturing operations and building ventilating systems. Other stationary sources worth noting are crowd noise related to playgrounds or spectator events, and noise from amplification systems. The basic characteristics of these sources are described below.

Mechanical equipment generally includes machinery used for industrial purposes, such as motors, controllers, sors, boilers, pumps, transformers, condensers, generators, cooling towers, and wntilating equipment. Such machinery commonly generates noise mechanically (through gears, bearing), bolts, fans, or other rot ting components), aerodynamically (through air or fluid flow), and magnetically (through magnetostriction or periodic forces between rotors and stators).

Assuming proper maintenance, mechanical machinery noise is usually characterized by discrete mid- to high-frequency tones. These tones are usually caused by friction, vibration of components, and aerodynamic flow generation. Even when large machinery is properly maintained, noise levels may exceed 100 dB(A) within 10 feet of the equipment. Badly maintained machinery may increase mechanical noise levels by as much as 20 dB(A); this represents a quadrupling of the perceived louches.

Ventilating systems are also common mechanical stationary noise sources in the City. These systems usually have fans that generate tones at high operating peods. These tors, may propagate through ducts in a building and produce noise in rooms far away from the original source. Air conditioning units may generate noise that could affect adjacent buildings. If not itolated from the building structure by properly tuned springs or resilient materials, ventilating systems and other machinery may generate vibrations that may be sensed throughout a building and possibly a teight orhood.

Aerodynamic noise usually becomes an issue when the air (or other fluid) flows through ducts in a restrictive, unsmooth path, and turbulence is generated. Boilers and steam turbines have liquids and steam flowing through them at high speeds, generating a histing noise or roaring noise that may exceed 100 dB(A) within 10 feet.

While people are no usually thought of a stationary noise sources, children in playgrounds or spectators at outdoor sporting events or concarts may cause annoyance in communities. Instantaneous crowd noise levels at outdoor events may exceed $10 \, \text{dB}(L)$. In addition, measurements taken at $10 \, \text{school}$ playground sites in 1987 candialed that maximum $L_{\text{eq}L}$ Levels at school playground boundaries in the New York City area are 75 dB(A). The equations for calculating playground noise may be obtained from DEP.

Potential moise impacts due to amplification systems at outdoor concert or performance facilities, ballparks, muser lent facilities, etc., may be avoided if the system is properly designed and operated.

200. DETERMINING WHETHER A NOISE ANALYSIS IS APPROPRIATE

In many instances, it is possible to determine that a project would not have the potential for a significant noise impact simply from its proposed physical characteristics and, therefore, no further analysis is necessary. Recommended guidelines for the screening assessment and the rationale behind these guidelines are presented below for mobile and stationary sources.

The initial impact screening considers whether the project would: (1) generate any mobile or stationary sources of noise; and/or (2) be located in an area with existing high ambient noise levels. If the proposed project is located in areas with high ambient noise levels, which typically include those near highly-trafficked thoroughfares, airports, heliports,

train facilities, or other loud activities, further noise analysis may be warranted to determine the attenuation measures that are appropriate for the proposed project.

210. MOBILE SOURCES

211. VEHICULAR TRAFFIC NOISE

An initial noise assessment, described in Subsection 311.1, may be appropriate if a proposed project would:

- Generate or reroute vehicular traffic; or
- Introduce a new receptor near a heavily trafficked thoroughfare.

212. AIRCRAFT NOISE

An initial noise impact screening analysis, described in Subsection 311.2, is appropriate if the proposed project would:

- Introduce a new receptor within one mile of an existing flight path; or
- Cause aircraft to fly through existing or new flight paths over or within one mile (horizontal distance parallel to the ground) of a receptor.

213. TRAIN NOISE

Based on previous studies, unless existing ambient to see levels are very two and there are no structures that provide shielding, it is unusual for train activity to have a significant impact at distances beyond 1,500 feet in New York City. Therefore, a detailed analysis, as disclosed in Subsection 332.3, may be appropriate if the proposed project would:

- Be located within 1,500 feet of existing train activity and have a direct line of sight to that train facility; or
- Add train activity to exiting or new train line within 1,500 feet of, and have a direct line of site to, a receptor.

220. STATIONARY SOUPCES

Based upon previous studies, unless exist igrambient noise levels are very low and/or stationary source levels are very high, and there are no structures that provide shielding, it is unusual for stationary sources to have significant impacts at distances beyond 1,500 feet in New York City. Examples of substantial stationary source noise generators include menclosed choing of ventilation equipment (other than single-room units), truck loading docks, loudspeaker systems, stationary diesel engines (typically more than 100 horsepower), car washes, or other similar types of uses. The distance by tween a receptor and a substantial stationary source may be measured from any reliable source (such as a Support map or similar real estate or insurance atlas). Therefore, a detailed analysis, as rescribed in Subsection 333, may be appropriate if the proposed project would:

- Cause a substantial stationary source (e.g., unenclosed mechanical equipment for manufacturing or building ventilation purposes, playground) to be operating within 1,500 feet of a receptor, with a direct one of sight to that receptor; or
- Introduce a receptor in an area with high ambient noise levels resulting from stationary sources, such as unenclosed manufacturing activities, building ventilation, or playgrounds.

300. ASSESSMENT METHODS

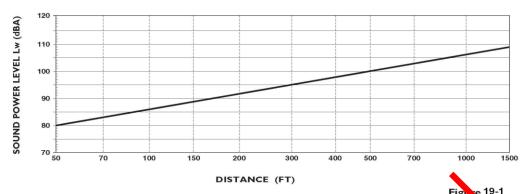
If the proposed project does not screen out in the initial noise impact screening analysis below, a more detailed noise analysis, which begins with establishing the study area in Section 320, may be appropriate.

310. NOISE IMPACT SCREENING

For most sources of noise (except train noise), the initial impact screening noise analysis identifies whether the potential exists for the project to generate a significant noise impact at a receptor or be significantly affected by high ambient noise levels. If the basic analysis does not identify the potential for significant impacts, to further noise analysis is necessary and it may be stated that the proposed project would not result in a significant noise impact.

311. MOBILE SOURCES

311.1. Vehicular Traffic Noise


In coordination with the traffic studies (see Chapter 16, "Transportation"), traffic volumes should be estimated for the expected hour or hours with the great stanise level change at sansitive receptors likely to be most affected by the proposed project. Fursoine projects, the wost-case hour or hours may occur during non-typical time periods (e.g., string the nighttime for projects which produce significant traffic volumes or truck traffic when baseline traffic levels and (or ambient noise levels are low.) The method for assigning noise passenger car equivalent (Noise PCE) values to vehicle type is discussed in Subsection 332.1, below. If exilting Noise PCE values are increased by 100 percent or more due to a proposed project (which is equivalent to an increase of 3 dB(A) or more), a detailed analysis is generally performed. Conversely if existing Noise PCE values are not increased by 100 percent or more, it is likely that the proposed project would not cause a significant adverse vehicular noise impact, and therefore, in further vehicular noise analysis is needed.

311.2. Aircraft Noise

DNL contours should be obtained or calculated for the build year(s) of the proposed project. Calculation of the DNL contours is seldom necessary, since these contours are updated periodically by the Port Authority of New York and New Yersey (PANYNJ) for the three major metropolitan airports; PANYNJ may be contacted for the later contours. If calculations are necessary, they may be performed using the latest version of the FAL A viation Environmental Design Tool (AEDT). If the proposed project would generate or resoute a rcraft, or if the proposed project would introduce a receptor within a SS NB(A) DNL contour, a certaled analysis may be appropriate. No further aircraft noise analysis is needed if the proposed project would not generate or reroute aircraft or not introduce a receptor within an existing of NB(A) DNL contour.

12. STATIONARY TOURCES

Amore refined schemes determine whether a detailed noise analysis is necessary considers whether noise from a stationary, source would produce potentially significant levels at nearby receptor sites. Figure 19-1 shows noise levels it sound power levels versus distance. If the sound power level exceeds the curve shown in Figure 19-1 at a given distance, then a detailed analysis is necessary

Curve for Estimating Lw vs. Distance in Screening Noise maysis

320. ESTABLISHING STUDY AREAS AND IDENTIFYING RECEPTOR

Guidelines for determining the appropriate study area size a to noise receptor locations are described below. Selection of a study area depends on the noise source. Both the effect of noise generated on surrounding receptors as a result of the proposed project and the effect of noise form surrounding success on the proposed project need to be considered. Receptor sites should generally include all locations when significant impacts may occur. Therefore, if significant impacts are identified during the analysis, additional receptor sites, sometimes farther from the noise source than the distance suggested in these guidelines, may have to be added to the analysis. For rezoning purposes, please consult with the Department of City Planning (DCP) prior to selection of sensitive receptors (see Subsection 124), which are identified has deep land use in the study area as a result of the proposed project.

321. MOBILE SOURCES OF NON

321.1. Vehicular Traffic Source.

The study area for premial noise illupants from vehicular sources includes the locations of receptors along traffic route to and from the situation which project vehicular trips are assigned, and the proposed site itself, if a receptor would be located there. Of particular importance are routes where traffic levels without the proposed project would be light and made up of lighter vehicles, and where the proposed project would be sult in a significant number of new trips. Typically, the selection of sensitive noise ecceptors for analysis goes hand in hand with the traffic and transportation trip generation and assignment process. Once the vehicular trips have been assigned to the roadway network, the notantial locations where significant noise impacts could occur may be identified. Typically, this is done by driving the routes to and from the site to identify noise receptors along those routes.

When selecting these receptor locations, the vehicular classification as well as the vehicular volume mix and the rehicular mix that would be generated by the proposed project should be considered. Inder rolse analysis procedures, vehicles are converted to Noise PCEs, which in turn are used to compute the noise levels for future conditions (See Subsection 332.1). If a significant increase in the number of Noise PCEs is expected (*i.e.*, more than a doubling of Noise PCEs) along any given route that proposed project-related vehicles would use going to and coming from the site within a given hour, then representative receptors should be selected along that route for analysis.

If the proposed action would include noise-sensitive uses, then the project site itself should also be considered as a receptor. Usually at this stage, these judgments are made without firm data in hand. It is therefore prudent to be conservative in the judgment regarding the analysis locations (*i.e.*, analyze any receptor that may conceivably be affected as a noise analysis location). The actual selection

of the potential noise receptor sites may be narrowed if more data are available because potential noise increases along these routes may be calculated.

321.2. Aircraft Sources

Two types of projects require study areas for aircraft-related noise sources: (i) a proposed project that would generate or reroute aircraft and (ii) introduce a new receptor within an existing 65 dB(A) DNL contour. For airport/heliport expansions or any proposed projects that would increase the number of aircraft at the facility or reroute aircraft, the study area should include affected areas along the route, assuming the proposed expansion was fully operational. Representative receptor locations are then selected from within these areas for detailed noise impact analysis. Every receptor need not be selected for this purpose. For example, if there were a number of residential buildings within this rea, then one or more representative receptor sites may be selected within the area of marginally, acceptable, marginally unacceptable and clearly unacceptable exposure levels.

For proposed projects that introduce a new receptor within a next ting 65 dB(A) DNL entour, the study area is the site of the proposed project.

321.3. Train Sources

Two types of projects generally require study areas for rail-related poiss sources: (i) a proposed project that introduces a receptor within approximately 1,500 feet of an existing rail facility and generally having a direct line of sight to the rail facility; or (i) a propose typic, at that would include a new train facility or that would add trains to an existing facility. Similar to aircraft facilities, for projects that would provide new train facilities of would add trains to an existing rail facility, representative locations should be selected from within the areas most likely to be impacted by the proposed project. Not every receptor need be selected for this purpose, nowever, sufficient data should be collected to define the entire area that may be significantly impacted by the noise level changes.

If a proposed project is vitain 1,300 feet of, and has a direct line of sight to, an existing train facility, and the proposed project would be a receptor, the study area should encompass the proposed project site.

322. STATIONARY OUR S

The study area for stationary sources it by d on proximity of a receptor to the site of the proposed project, or the proximity of the proposed project to a major stationary noise source in the area. When the project would result in new sensitive ecept r within 1,500 feet of a stationary noise source, with a direct line of sight to that source, the receptor and source should be considered for analysis. Generally, when the proposed project would result in any synificant stationary noise sources, receptors within a 1,500-foot radius of the proposed project that yould be within a direct line of sight of the proposed project should be considered for malysis Receptors close 💥 a proposed project containing a significant stationary source noise generator re the first candidates for inclusion in the analysis. If there is more than one such receptor within this disnce from the site the analysis may be phased to analyze the closest receptor first —if no significant impact is found at the coest site, then it is reasonable to conclude that receptors farther from the site would likewise net be affected by the proposed project. Otherwise, it is necessary to extend the analysis to the farthest receptor have no significant impact is found. A similar relationship between the proposed project and existing and future No-Action stationary sources should be described, as appropriate. Although these sources may not have to be analyzed separately (because they are included in ambient noise levels) they should be generally identified. It is possible that one or more may be close enough to the site of the proposed project and loud enough to require consideration of noise mitigation at the project site.

330. MODELS AND ANALYSIS TECHNIQUES

The basic analysis techniques used for noise impact analysis follow the same basic procedures as for other impact analysis areas —existing conditions are first characterized, then No-Action conditions are projected and analyzed, and finally, the With-Action condition is projected and analyzed. Impact assessments are then made by comparing the No-Action and With-Action conditions. The following discussion outlines this procedure for mobile and stationary sources of noise.

Proprietary models may be used for analysis purposes only if they have been deemed appropriate by the reviewing agency or agencies, and information about the model and its operation is fully disclosed, and all data are made available to the reviewing agency or agencies. Information on proprietary models may not be to be treated as confidential. Consequently, the use of proprietary models should be discussed with the lead and reviewing agency prior to their use.

331. NOISE MEASUREMENT PROCEDURES

The first procedure for each noise source is the characterization of existing conditions at selected receptor locations within the noise study areas. As a first step within this process, existing noise levels at receptors are established through a noise measurement program. This noise measurement program described below follows a method consistent for all sensitive receptors.

331.1. Noise Measurement Instrumentation

The most common instruments used for environmental noise crossments are sound level meters and spectrum analyzers. The American National Standards Institute (ANSI) has published standards on types of meters and methods of sound measurement, and defines three types of meters—Type 0, having the most stringent tolerance, tarteted for lab ratory ise; Type 1, called a precision meter; and Type 2, a general-purpose meter having the least stringent tolerances acceptable for SPL monitoring. Sound level meters without at least Type 2 tolerances are not appropriate for SPL monitoring. Many sound level meters available for use today calcine sure and store in their memory the various statistical and average sound evel parameters described earlier. These parameters may be read directly from the sound level meter or downloaded to a computer. Many of these devices may be programmed to carry out there measurements for a user-defined period at regular intervals, making long term monitoring even more convenient instrumentation used for the measurements must meet appropriate ANSI standards. To be suite that the sound level meter is working properly, it should be factory-calibrated periodically.

Most sound level meter have here time response characteristics: slow, fast, and impulsive. Slow, corresponding to a one second time constant, is usually recommended for environmental noise assessments, such as those performed for CEQR. Fast, corresponding to a one-eighth second time constant is only recommended to monitor discrete events to obtain a better indication of peak levels. Impulsive, corresponding to 1/30 second, is used for assessing human loudness response to impulsive sounds. Generally, noise measurements performed under CEQR are documented in A-weighting and slow response.

331.2. Moise Neaswement Procedures

NSI also provides guidelines for SPL measurement practices to provide reliable data. Basic measurement procedures are defined by these standards and accepted industry practices.

These guidelines account for microphone placement, calibration of instruments, and precautions pertaining to meteorological conditions, principally wind speed. The following are general guidelines for reference.

CALIBRATION. In addition to periodic factory calibration of the sound level meter, sound level calibrators or acoustic calibrations should be used to check the sound level meter before and after

each series of noise readings. Typical sound level calibrators are small hand-held devices with adapters to fit the measuring microphone of the meter being used. With a properly operating meter and calibrator, the meter should not vary by more than 0.5 dB. Any variation beyond 0.5 dB that cannot be accounted for is an indication that the device should be returned to the manufacturer for adjustment and calibration. The manual adjustment of the sound level meter should not be done in the field unless a new microphone is being fitted. Calibrators and sound meters should be factory-calibrated at least once a year.

MICROPHONE PLACEMENT. The measuring microphone should be placed with a direct line of sight to the noise source, generally 5 feet above the ground to avoid distortion, a minimum of 3 to 4 feet away from any reflecting surfaces, such as walls and the body of the person performing the measurements. Failure to do so may introduce errors as high as 6 dB from reflected sound. Whenever feasible, the meter should be mounted on a tripod to permit the monitoring personnel to stand away from the instrument. Complete records of the measurement, including specifics of the measurement location(s), a map of the monitoring location(s), time of measurement(s), meteorological conditions during the measurement(s), identification of significant sound sources, model and serial numbers of all equipment used, and calibration results should be made. The electronic log files from the sound level meter should also be provided. This allows for accurate duplication of the measurements, if necessary, die to extitanding questions, changes in conditions, or inconsistencies. In some cases, the inside meter may need to be placed at a higher elevation to obtain a direct line of sight to the noise source (e.g., elevated train sources).

Accounting FOR WIND. When measurements are performed outdoors or in areas where airflow may be sensed, the movement of air may skew the nontering results because wind may introduce errors of as much as 20 dB over at taal noise levels. Therefore, a windscreen designed to fit the specific instrument should be used. These vindscreens are typically open cell foam spheres and are designed to block wind noise without attenuating the signal being measured. Even with a windscreen in place, wind speeds above 12 miles per hour may cause erroneous readings. Therefore, wind speed should be monitored and readings should not be taken when wind speeds exceed 12 miles per hour.

ACCOUNTING FOR THE MEMATURE. According to ANSI Standard S1.13-2005, the acceptable temperature range for me surements is 14 degrees Fahrenheit to 122 degrees Fahrenheit. In addition, the temperature should not be butside the ranges recommended for operation by the sound level meter manufacturer on a dividual instruments in the measurement system.

ACCOUNTING FOR RAIN. During periods of inclement weather (rain, snow, etc.), measurements should not be taken. Measurement should be performed when the ground is dry, and not when the ground is wet a snow covered.

Noise MEASUREMEN PERIODS AND NOISE PEAK HOUR SELECTION. Noise measurements should be made in accordance with the expected times that the proposed activity at the site would be greatest, or when sure inding receptors may otherwise be most likely to experience significant impacts because of me proposed project. While this generally occurs for most projects during the peak typical veekday traffic hours (i.e., the AM, midday, and/or PM peak periods), peak weekday traffic hours may not be appropriate for some projects. Rather, it may be necessary to gather data during weekend, late night hours, or for all 24 hours. For example, noise generated by traffic leaving a large multiplex movie theater may result in significant noise impacts during late night hours; maximum project impacts from truck traffic generated by solid waste transfer stations may occur either during late night or early morning hours; and noise from power generation facilities may be most likely to cause significant impacts during late night or early morning hours when background levels are low. Traffic data collection should be coordinated with the noise studies to ensure that, where necessary for analysis purposes, traffic data is available for late night, weekend,

and/or all 24 hours. Traffic data collection should be conducted in accordance with the methods described in Chapter 16, "Transportation." Vehicular trip assignments and their hourly distribution should be defined before the hours for noise analysis are determined. Care must be exercised in selecting the noise measurement period and, as detailed information about a project is developed, it may be necessary to supplement initial noise measurements by including additional time periods. Noise levels may vary seasonally. For example, noise during the summer months from flights and from playgrounds are elevated due to increased travel and outdoor activities compared to other seasons. Therefore, the noise measurements should be taken during the peak season.

other activities during noise measurement periods. While each of the noise measurements is being taken, events that contribute to the monitored values should be noted. At locations when traffic on the adjacent street is a significant noise source, a traffic courting and classification program should be conducted that records the following: total vehicles total number of trusce (i.e., vehicles having two or three axles and designed to carry more than nine passengers); total number of heavy trucks (i.e., cargo vehicles with three or more take and a gross vehicle weight of more than 26,400 pounds); total number of medium trucks (i.e., cargo vehicles with two axles and six tires and a gross vehicle weight of between 9,900 and 26,400 pounds), and total number of passenger vehicles or light trucks (i.e., vehicles having two axless and four tires and a gross vehicle weight of less than 9,900 pounds).

At locations where train noise is a significant noise source, the number of trains passing by during the measurement period should be recorded, and if possible, the number of cars on the train should be noted. Otherwise, if noise train a train facility or aircraft becomes audible during the measurement program, measurements should be suspended until that sound is no longer audible.

In general, noise from unrequal events that occur during the measurement period should be excluded from the reported noise level. Typically, unusual events include noise from sirens of emergency vehicles, construction activities or other sources that may be atypical for the study area. However, it may include noise from other non-dominant sources (e.g., train noise when vehicular traffic is the dominant noise to under

DURATION OF NECE MEASUREMENTS. The duration of noise measurements should be sufficient to ensure that the measurements are representatives of ambient conditions. For example, at locations where traffic is the dominant noise source, measurements made for shorter time periods are generally sufficient single noise is relatively insensitive to minor fluctuations in changes in Noise PCEs. For example, at takes a doubling of Noise PCEs to equal a 3 dB(A) change (*i.e.*, just perceptible) in could levels. For that reason, it is generally not necessary to conduct noise measurements for more than a 20-minute period during any hour at any given location, provided that a traffit count and vehicle classification is conducted simultaneously with the noise measurement at the measurement site. When assessing a proposed transit project, measurement durations should be consistent with FTA methodologies provided within the FTA's September 2018 guidance of the consistent with ETA methodologies provided within the FTA's September 2018 guidance of the consistent with ETA methodologies provided within the ETA's September 2018 guidance of the consistent with ETA methodologies provided within the ETA's September 2018 guidance of the consistent with ETA methodologies provided within the ETA's September 2018 guidance of the consistent with ETA methodologies provided within the ETA's September 2018 guidance of the consistent with ETA methodologies provided within the ETA's September 2018 guidance of the consistent with ETA methodologies provided within the ETA's September 2018 guidance of the consistent with ETA methodologies provided within the ETA's September 2018 guidance of the consistent with ETA methodologies provided within the ETA's September 2018 guidance of the consistent with ETA methodologies provided within the ETA's September 2018 guidance of the consistent with ETA methodologies provided within the ETA's September 2018 guidance of the consistent with ETA methodologies provided within the ETA's September 2018 guidance of

Tyr cally, one-hour measurements are recommended for train facilities. Shorter measurements (e.g., 20-minute) may be allowed for certain train facilities, such as subways, provided the measurements include typical train operation events. Because of train scheduling, the duration of measurements at these locations should be determined on a site-specific basis. It is important to ensure that the duration of the measurement period is sufficiently long to include typical events and conditions. When doubts arise about whether the measurement duration is sufficiently long to be representative of conditions, 20-minute measurements may be compared to one-hour values to see if there are discrepancies in the values.

If the proposed project is expected to generate traffic or stationary source noise over a 24-hour period, it may be necessary to take 24-hour noise measurements at one or more receptor locations.

When there is extreme variability in measured data from the noise sources, they should be calculated rather than measured.

MONITORING RESULTS. At a minimum, the summary of noise measurements recorded and downloaded from the noise meter should include the following descriptors: L_{max} , L_{min} , L_1 , L_{10} , L_{50} , L_{90} , and $L_{eq(1)}$. The raw data log should also be saved. If the measurement is called into question during the review, these descriptors and review of raw data files may assist in determining whether any anomalous conditions occurred during the measurement. If monitoring results are to be used in the placement of noise (E) Designations, 1/3 octave bands should also be recorded. Field that sheets should be attached to the environmental assessment. Field data sheets should detail lotable events and atmospheric conditions during the measurement prood, provide a description of the dominant noise source(s) and any anomalous events as were as include a sket n of the measurement set-up. A noise measurement photo log should also be included. A copy of the current sound level meter calibration certificate should also be provided.

332. MOBILE SOURCES ANALYSES

332.1. Vehicular Traffic Noise

For most projects reviewed under CEQR, a disktop analysis may be employed using a logarithmic equation (described below). However, the latest version of the approved Federal Highway Administration (FHWA) Traffic Noise Model (THM) should be used when:

- Conditions result in new or significant change in roadway or street geometry;
- Roadways currently carry no or very low raffic volumes are involved;
- Ambient noise the result of multiple sources including traffic; or
- A detailed analysis of changes due to the traffic component of the total ambient noise levels in cessary.

The TNM andel takes into account various factors that influence vehicular noise, including traffic volumes, vehicle classifications, source/receptor geometry, shielding (including barriers and terrain), ground attenuation, etc. according to the FHWA, the TNM model requires validation to verify the accuracy. The model is validated when differences between the measured and the modeled noise levels are within +/- 3 dB(A).

On coarticularly users application of the TNM model is for situations where traffic is one of the components of the total ambient noise. In such situations, the TNM model may be used to compute the traffic component of the noise, and may then be subtracted from the measured ambient noise levels to determine the non-traffic components of the total ambient noise levels.

complete and models, such as CadnaA and SoundPLAN, have developed algorithms that incorporate the TNI model for vehicular noise calculations; they may be utilized for CEQR analyses. Note that February or Federal-aid highway projects being undertaken pursuant to 23 CFR 772 must use TNM.

While the TNM model often yields accurate prediction results for first level screening purposes as well as for assessing project impacts, it is more convenient and easier to use the logarithmic equation described below.

EXISTING CONDITIONS. Analysis of existing noise conditions uses monitored noise levels and observations made during the monitoring period to assess noise levels and their sources. A validated TNM model can be used to identify existing noise conditions for additional sites other than the

measurement locations. Results of the noise monitoring program at measurement locations are reported as existing conditions in the environmental assessment.

If noise levels cannot be measured at a receptor location, measured data from a site in the area may sometimes be adjusted assuming a 3 dB(A) attenuation per doubling of distance to estimate existing noise levels at the receptor location.

FUTURE NO-ACTION CONDITION. To arrive at the No-Action noise condition, the results of the No-Action traffic analysis (see Chapter 16, "Transportation") are used to compute total Noise PCEs passing each receptor site. From the existing and No-Action traffic data, existing and No-Action Noise PCEs are calculated in the following manner (see Subsection 331.2 under "Other Action During the Conduct of the Noise Measurements" for definitions of vehicle types):

Each Automobile or Light Truck: 1 Noise PCE

• Each Medium Truck: 13 Noise PCEs

Each Bus: 18 Noise PCEs

• Each Heavy Truck: 47 Noise PCEs

Note: These values were obtained using the TNN model, assuming speed of 25 mph and a distance of 30 feet from the roadway. For speeds below 25 mph, the TNM model should be run to develop project-specific screening values. For projects with traffic moving at higher speeds and/or receptors at more than 30 feet from the loadway, either the default values shown above or project-specific values obtained using the TNM model may be used for purposes of screening.

After the Noise PCEs are calculated at databased at each eceptor site, the No-Action noise levels are calculated using the following equation:

FNANL = 13 log NAPCE / EPCE + ENL where: FNANL = Forum No-Action Noise Level NAPCE = No-Action Noise PCEs EPE = Existing Noise PCEs EN = Existing Noise Level

The calculation is conducted using the $L_{eq(1)}$ noise measurement results. $L_{10(1)}$ values are calculated by adding the difference between the $L_{10(1)}$ and $L_{eq(1)}$ descriptors found to exist in the measurement program to the calculated No-Action $L_{eq(1)}$ noise level. The results of the No-Action noise ever calculation are then reported in the environmental assessment.

Ac on condition, with calculated total Noise PCEs derived from the With-Action traffic analysis. To determine potential significant impacts, the With-Action condition noise levels are compared with the No-Action noise levels, applicable standards and impact thresholds at each receptor (see Sections 410 and 710, below).

332.2. Aircraft Noise

EXISTING CONDITIONS. FAA DNL noise levels are the preferred descriptor. This descriptor tends to average out high hourly values. DNL values may be calculated using the latest version of the FAA Aviation Environmental Design Tool (AEDT) computer model or other acceptable models such as CadnaA and

SoundPLAN may be utilized for CEQR analyses. When necessary to combine noise sources or determine peak hour, measured Leq during peak aircraft activities can be utilized.

NO-ACTION CONDITION. Generally, under the No-Action Condition, aircraft noise levels should remain the same as under Existing Conditions; however, if increased aircraft activity would occur under the No-Action Condition, future noise levels may be calculated, following FAA methodologies.

with-action condition. The same analysis methods used to estimate existing aircraft noise levels are to be used in the With-Action scenario using the With-Action aircraft fleet mix. To determine potential significant impacts, the With-Action condition noise levels are compared with the No-Action noise levels, applicable standards, and impact thresholds at each of the receptors (see Sections 410 and 710, below).

332.3. Train Noise

EXISTING CONDITIONS. Noise from train operations is calculated using the detailed noise analysis methodology contained in the Federal Transit Administration (FTA) guidance manual, Transit Noise and Vibration Impact Assessment Manual (September 2018). This manual includes several measurement options for residential and non-residential land use to identify existing noise exposure in terms of the L_{eq} and L_{dn} descriptors. Per FTA guidance, noise measurement should be performed at representative receptor locations or at each individual receptor considered in the impact analysis, depending on the project.

Computerized models, such as CadnaA and SoundPLAN, either have developed or are in the process of developing algorithms that incorporate the FLA and/or Federal Ralroad Administration (FRA) algorithms for rail transit noise calculations. Up in erification that these algorithms produce comparable results to the FTA algorithm, they may be unized for CE IR analyses based on measurements during periods of peak train activity that should be used to valid the me models.

NO-ACTION CONDITION. The same analysis methods used to estimate existing train noise levels are used in the No-Action scenario using the No-Action train mix.

with-action condition. The same analysis methods used to estimate existing train noise levels are used in the With-Action so nario using the With-Action train mix. To determine potential significant impacts, the With Action condition haise levels are compared to the No-Action noise levels, applicable standards and impact thresholds at each of the receptors (see Sections 410 and 710, below).

333. STATIONARY SOURCES

sensitive receptors cosest to the source. If the stationary source in question would be part of the proposed project and ones not currently exist, noise measurements should be performed at the property line of the site closest to the proposed stationary source(s) and at the closest noise-sensitive receptors to ensure that spatial coverage and receptor "type" coverage is adequate. For example, if there is a parky earby and residential units nearby, both need to be monitored for existing conditions.

in be durie without the project, the noise contribution from these facilities is predicted at the noise-sensitive receptors and/or the project site and logarithmically added to existing noise levels to obtain the No-Action condition. The calculations are based on operational information from the entity responsible for the new stationary noise sources.

WITH-ACTION CONDITION. If the project under consideration involves locating a potential noise sensitive receptor near an existing stationary noise source, then measurements made at the site location of the existing stationary source are generally used for the impact evaluation. Where the proposed pro-

ject involves a new stationary source, the analysis should focus on determining the highest maximum $L_{eq(1)}$ values at receptor locations (including the property line) with the stationary source operating. The first step in this calculation is acquiring project-specific noise emission data from the manufacturer, or, lacking that, estimating the emission levels from a literature review. Often the data is provided in terms of sound power level. This noise descriptor, expressed in decibels, is a measure of the total acoustic power of a source. It may be used to predict the sound level at a given distance using the formula:

$$L_p = L_w - 20 \log d - A_e$$

where:

Lp is the sound pressure level

Lw is the sound power level

d is the distance from the source to the receiver in feet $A_{\rm e}$ is excess attenuation caused by environmental and terrain features

While noise emission data from the manufacturer of the itationary economent is always the best source, when this is not available, information may be available from indust y groups such as the Electric Power Research Institute (EPRI) (3420 http://www.Avenue, Pale Alex Carfornia 94304 USA), in publications such as Electric Power Plant Environmental Noise Gride no lished by the Edison Electric Institute, or in industry-sponsored computer models. Please note that the manufacturer data may only include the noise from motor/enging. It most of the apprational noise is not attributable to the motor/engine, then either supplementation or nation should be added to the manufacturer's data or alternative source of noise data should be used for modeling. Other alternatives include locating an operating facility with similar equipment and performing measurements at that facility, preferably at similar distances and under sinular conditions to those applicated for the proposed project.

Once data are acquired, the next step is predicting the sound levels at the noise sensitive receptors. Where a single or several discrete sources exist, and where the distances are moderate and have an unobstructed line of sight, this may be accomplished using basic noise fundamentals for calculation (i.e., the addition of sound levels, frequency adjustments to get A-weighted values). For example, if sound posses data is available, the squadion given above may then be used. If sound level data are available, the following equation in ay we used to estimate sound levels at a receptor:

Equation 19-3

$$L_{p1} = L_{p2} - 20\log\frac{d_1}{d_2}$$

where:

 L_{p1} is sound pressure level at the receptor L_{p2} is sound pressure level at the reference location d_1 is the distance from the source to the receptor d_2 is the distance at which the source sound level data is known

Any attenuation by structures around the source or noise control measures (e.g., silencers, acoustic barriers) that are to be used must be considered in calculating sound levels at the receptors.

Where there are many individual sources associated with the project, and when there is varying land-scape (e.g., parks, buildings, trees) between the source and receptors, calculations become even more complicated. In addition, data provided by manufacturers and/or the literature are often pre-

sented in octave bands. While it is useful to perform the calculations in octave bands, particularly when designing noise control features, the calculated octave band values should be converted to equivalent A-weighted values for impact evaluation purposes. Both ANSI and International Organization for Standardization (ISO) have documents that describe techniques and considerations for carrying out these calculations. Following these procedures often involves programming a computer spreadsheet to automate the details (*i.e.*, sound power level to sound pressure level conversion as a function of frequency and distance; application of attenuation of buildings, barriers, terrain, noise control as a function of frequency; summation of contributions of the various sources; and conversion to A-weighted sound levels).

Computer models are also available that are based upon the various standards and allow the calcultions to be carried out. These models also often include databases of source sound levels or use in the model. Programs such as CadnaA developed by DataKustik, NOISECA C seveloped by the N w York State Department of Public Service, SPM9613 developed by Prove Acoustics Inc, Sounds LAN developed by Braunstein + Berndt GmbH, Electric Utility Environmental Noise Program developed by the Empire State Electric Energy Research Corporation, and Aredicca 7810 developed by Brüel & Kjær are examples of such programs. These programs are not specifically endersed, and other programs may be available to perform similar functions.

In all cases, rather than using theoretical modeling techniques, it is preferable to use actual facility data. Therefore, if a facility comparable to the preposed project can be incoming and its levels can be adjusted to account for differences in conditions between its site and the proposed project site, that is generally a preferred modeling approach.

As previously mentioned, noise generated by mildren in playgrounds or people using parks is considered stationary source noise. For locations adjacent to playgrounds or parks, utilize noise source levels provided in the 1992 study performed for the school Construction Authority (SCA) at eight New York City public schools. The cludy categorized playgrounds into early childhood, elementary, intermediate, and high school. Recommendations for playground noise source levels are provided within the study in the Appendix. In most cases, it would be necessary to cumulatively add play-ground noise levels to other study and play-ground future conditions.

To determine potential significant in cases, the With-Action condition noise levels are compared with the No-Action noise Levels, applicable standards, and impact thresholds at each of the receptor locations or within contours developed to indicate noise levels within varying distances from a source (see Sections 410 and 717, below).

334. Compined Effects of Nobile and Stationary Noise Sources

Each mobile and stationary source analysis yields a maximum $L_{eq(1)}$ noise level. These values are logarithmically added to yield a total maximum-possible $L_{eq(1)}$ level. To determine the potential for significant impacts and by the proposed project, the totals in the With-Action condition are compared to the No-Action total poice levels at the respective receptor locations, the applicable standards, and the impact thresholds.

335. US. OF ROW IETARY MODELS

Proprie ary models may be used for analysis purposes only if they have been deemed appropriate by the reviewing agency or agencies, and full disclosure of the model, the model's operation, and all data are made available to the reviewing agency or agencies. Information on proprietary models may not be able to be treated as confidential. Consequently, the use of proprietary models should be discussed with the reviewing agency or agencies.

400. DETERMINING IMPACT SIGNIFICANCE

The following section provides guidelines and recommendations for the determination of impact significance. Depending on the project, using either one, or both, of the following approaches to determine impact significance may be appropriate. The first approach describes the use of absolute noise level limits (absolute noise impact criteria). The second approach describes the use of an incremental change from No-Action conditions (relative impact criteria). For either approach, two questions must be considered:

- Are the existing and future receptors experiencing noise levels above absolute limits? Absolute limits in this case, relate to published standards (see Section 710, below).
- Would the proposed project become a sensitive receptor in the area?

410. IMPACT THRESHOLDS AT RECEPTORS

The selection of incremental values and absolute noise levels should be responsive to the numance levels of noise and critical time periods when nuisance levels are most acute. During daytime hours (between 7 AM and 10 PM), nuisance levels for noise are generally considered to be more than 45 (B(A) indoors and 70 to 75 dB(A) outdoors. Indoor activities are subject to task interference above this level, and 70 to 75 dB(A) is the level at which speech interference occurs outdoors. Typical building materials used in the past (including typical single-glazed windows) provide a minimum of approximately 20 dB(A) of noise a terrustion from out locate is door areas.

In view of these factors and for the purposes of determining a significant impact during daytime hours, it is reasonable to consider 65 dB(A) $L_{eq(1)}$ as an absolute at ise level that should not be significantly exceeded. For example, if the No-Action noise level is 60 dB(A) $L_{eq(1)}$ or $I_{eq(1)}$ or $I_{eq(1)}$, the naximum incremental increase would be 4 dB(A), since an increase higher than this would result in a noise level tighter than the 65 dB(A) $L_{eq(1)}$ threshold and is considered significant. Similarly, if the No-Action noise level is 62 dB(A) $L_{eq(1)}$ or more, a 3 dB(A) $L_{eq(1)}$ or greater change is considered significant.

Nighttime (between 10 PM and 7 M) is a particularly critical time period relative to potential nuisance values for noise level increases. Therefore, il respective of the total nighttime noise levels, an increase of 3 dB(A) $L_{eq(1)}$ is typically considered a significant impact during nighttime hours.

420. IMPACT THRESHOLDS FOR PROPOSED PROJECTS THAT INTRODUCE SENSITIVE RECEPTORS

Impact thresholds for propose (projects that introduce sensitive receptors are more straightforward. Typically, potential straightform impacts on the puwly created receptor relate to absolute noise limits. The Noise Exposure Guide inel shown in Table 34-2 are followed by lead agencies for this purpose. If a proposed project is within an area where the project roise levels exceed the marginally acceptable limit shown in the Noise Exposure Guide-lines (as measured at the proposed building line, or if that is not known, at the property line), a significant impact your becur. Then the project would be subject to mitigation measures necessary to bring its interior noise levels own to a level of 2s dB(A) or more below the maximum marginally acceptable levels (by receptor type) for external exposure shown in Table 19-2. If the proposed project includes a publicly accessible outdoor area requiring serenity and quiet (such as a park for passive recreation), the feasibility and applicability of implementing mitigation measures to bring exterior noise levels to below 55 dB(A) $L_{10(1)}$ should be explored on a case by case basis in consultation with the lead agency and the New York City Department of Parks and Recreation (or controlling entity if it would not be a city park).

The manner in which these typical significant impact thresholds are applied to mobile and stationary sources is discussed below.

Table 19-2
Noise Exposure Guidelines For Use in City Environmental Impact Review¹

Receptor Type	Time Period	Acceptable General External Exposure	Airport ³ Exposure	Marginally Acceptable General External Exposure	Airport ³ Exposure	Marginally Unacceptable General External Exposure	Airport ³ Exposure	Clearly Unacceptable General External Exposure	Airport³ Exposure
1. Outdoor area requiring serenity and quiet ²		L ₁₀ ≤ 55 dBA							
2. Hospital, nursing home		L ₁₀ ≤ 55 dBA		55 < L ₁₀ ≤ 65 dBA		65 < L ₁₀ ≤ 80		L ₁₀ > 80 BA	
3. Residence, residential hotel, or motel	(7 AM to 10 PM)	L ₁₀ ≤ 65 dBA		65 < L ₁₀ ≤ 70 dBA		70 2 30 634	0 ≤ L _{dn}	L ₁₀ -60 dB	
	(10 PM to 7 AM)	L ₁₀ ≤ 55 dBA	60 dBA	55 < L ₁₀ ≤ 70 dBA	≤ 6r dBA	70 L ₁₀ ≤ 80 dBA	70 dBA, (II)	1 > 80 dBA	.5 dBA
4. School, museum, library, court, house of worship, transient hotel or motel, public meeting room, auditorium, out-patient public health facility		Same as Residential Day (7 AM-10 PM)	L _{dn} ≤ 6	Same at Reside to 1 Div.	60 < -dn	Same as Residenti Day (KAIL 105 M)	(I) 65 < L _{dn} ≤ 70 ₁	Same as Residential Day (7 AM-10 PM)	L _{dn} ≤ 7.
5. Commercial or office		Same as Residential Day (7 AM-10 PM	(0)	Same as esidential Day (7 AM-10 (M)	1	me as Residential Day (7 AM-10 PM)	(i)	Same as Residential Day (7 AM-10 PM)	i
6. Industrial, public areas only ⁴	Note 4	Note 4		N-194		Note 4		Note 4	

Notes:

(i) In addition, any new activity shall not increase the ambit t nois level by 3 dB(A) or in re.

- ¹ Measurements and projections of noise exposures acrobe hade at appropriate heights wove site boundaries as given by American National Standards Institute (ANSI) Standards; all values are for the worst hour the tage period.
- ² Tracts of land where serenity and quiet are extraordinarily important and serve as important public need, and where the preservation of these qualities is essential for the area to serve its intended purpose. Such preas could include an phitheaters, particular parks or portions of parks, or open spaces dedicated or recognized by appropriate local officials for a division and patients and patients and residents of sanitariums and position homes.
- 3 One may use the FAA-approped NL contears supplied by the rest At Yority of New York and New Jersey (PANYNJ), or the noise contours may be computed from the federally approved Aviation Entropy and Design Tool (AF of Samputer Model using flight data supplied by the PANYNJ.
- External Noise Exposure standards for industrial areas of surfactoroduced by industrial operations other than operating motor vehicles or other transportation facilities are spelled out in the New York City Zon. or Resolution, Sections 42-20 and 42-21. The referenced standards apply to M1, M2, and M3 manufacturing districts and to adjoining residence districts (performance standards are listed by octave band).

Sources: New York Lity Department of Environmental Protection (adopted policy 1983)

21. MUBILE SOURCES

1.1. Vehicular Nois

The In part Assessments for vehicular noise compare the proposed project $L_{eq(1)}$ noise levels at receptors potentially affected by the project to those calculated for the No-Action condition. If the No-Action levels are less than 60 dB(A) $L_{eq(1)}$ and the analysis period is not at nighttime, an increase of 5 dB(A) $L_{eq(1)}$ or more in the future with the project would be considered a significant impact. In order for the 5 dB(A) threshold to be valid, the resultant With-Action condition noise level would have to be equal to or less than 65 dB(A). If the No-Action noise level is equal to or greater than 62 dB(A) $L_{eq(1)}$, or if the analysis period is a nighttime analysis period, the incremental significant impact threshold would be 3 dB(A) $L_{eq(1)}$. If the No-Action noise level is 61 dB(A) $L_{eq(1)}$, the maximum incremental increase would be 4 dB(A), since an increase higher than this would result in a noise level higher than the 65 dB(A) $L_{eq(1)}$ threshold and be considered significant.

If the proposed project would introduce a sensitive receptor, With-Action noise levels in dB(A) L₁₀₍₁₎ would be compared to the values contained in the Noise Exposure Guidelines. If these noise levels would exceed the marginally acceptable levels, a significant impact would occur unless the building design as proposed provides a composite building attenuation that would be sufficient to reduce these levels to an acceptable interior noise level. These values are shown in Table 19-3. The applicant should demonstrate that sufficient attenuation is provided in the form of composite building attenuation calculations based upon the Outdoor Indoor Transmission Class (OITC) values of individual major window/wall/ventilation components, unless a federal funding source, as defined in Subsection 723 of this chapter, requires usage of a different single number rating, such as the Sound Transmission Class (STC) rating, to calculate the noise levels and attenuation values.

Table 19-3
Required Attenuation Values To Achieve Acceptable Interior Noise Levels

	Marginally Unacceptable Clearly Cnacce table				
Noise level with proposed project	70 <l<sub>10≤73</l<sub>	73 <l<sub>10≤76</l<sub>	76 <l<sub>10≤78</l<sub>	√ 78< 1 ₀≤80	80 <l<sub>10</l<sub>
Attenuation ^A	(I) 28 dB(A)	(II) 31 dB(A)	(M) 33 a 3). V	(IV) 35 dB(A)	36 + (L ₁₀ - 80) ^B dB(A)

Note: AThe above composite window-wall attenuation values are for rest, and divellings and community acility sevelopment. Commercial office spaces and meeting rooms would be 5 dB(A) less in each category. An of the above category is require a closed window situation and hence an alternate means of ventilation.

Source: New York City Department of Environmental Protection

421.2. Aircraft Noise

If the proposed project would creat an aircraft facility /Neliport or airport), cause a change in flight paths or flight frequency at all aircraft facility, or be subject to aircraft noise, the impact criteria discussed in Sections 410 mov420 apply. If these vevels in dB(A) DNL exceed the marginally acceptable level, a significant impact viould occur, and as the building design as proposed provides a composite building attenuation that would be sufficient to reduce these levels to an acceptable interior noise level. In the case of significantly impacted buildings, design measures should be implemented that achieve the levels of composite building attenuation provided in Table 19-3. The applicant should demonstrate that sufficient attenuation is provided in the form of composite building attenuation calculations based upon the OI C values of individual major window/wall/ventilation components, unless a foderal funding sounce, as defined in Subsection 723 of this chapter, requires usage of a different single number in ting, such as the STC rating, to calculate the noise levels and attenuation values

21.3. Train Noise

If the proposed project would create a train facility, cause a change in frequency of trains along the train facility or be subject to train noise, the impact criteria discussed in Sections 410 and 420 apply. It these levels in dB(A) $L_{dn(1)}$ exceed the marginally acceptable level, a significant impact would occur, unless the building design as proposed provides a composite building attenuation that would be sufficient to reduce these levels to an acceptable interior noise level. In the case of significantly impacted buildings, design measures should be implemented that achieve the levels of composite building attenuation provided in Table 19-3. The applicant should demonstrate that sufficient attenuation is provided in the form of composite building attenuation calculations based upon the OITC values of individual major window/wall/ventilation components, unless a federal funding source, as defined in Subsection 723 of this chapter, requires usage of a different single number rating, such as the STC rating, to calculate the noise levels and attenuation values.

^B Required attenuation values increase by 1 dB(A) increments for 10 values greater than 80 d

422. STATIONARY SOURCES

If a proposed project would be subject to stationary source noise levels greater than the impact criteria discussed in Section 410, a significant impact would occur, unless the building design as proposed provides a composite building attenuation that would be sufficient to reduce these levels to an acceptable interior noise level. In the case of significantly impacted buildings, design measures should be implemented that achieve the levels of composite building attenuation provided in Table 19-3. The applicant should demonstrate that sufficient attenuation is provided in the form of composite building attenuation calculations based upon the OITC values of individual major window/wall/ventilation components, unless a federal funding source, as defined in Subsection 723 of this chapter, requires usage of a different single number rating, such as the STC rating, to calculate the noise levels and attenuation values. Some noise sources (mechanical ventilation, air compless or, etc.) are also controlled by New York City Noise Control Code (Local Law No. 113 & 2005).

500. DEVELOPING MITIGATION

The following section provides guidelines and recommendations for developing nitigation of a significant noise impact. General types of possible mitigation measures that may be used to allevit to significant noise impacts for the different source types are discussed.

510. MOBILE SOURCES

511. VEHICULAR TRAFFIC NOISE

The first mitigation option to be considered is the proofing of the traffic that would cause the significant impact. This is generally possible only for facilities that generate traffic under the control of the applicant (for example, a city vehicle storage facility would fit this requirement, but a commercial office building would not). Where this mitigation appears appropriate it is necessary to be sure that the rerouted traffic would not simply relocate the significant noise impact or introduce a significant traffic or air quality impact in another location.

If rerouting is not feasible, the most common mitigation measure used for vehicular noise impacts is the provision of adequate window/wall attenuation at the affected receptor that conforms with the Noise Exposure Guidelines acceptable in error noise levels (4.4 dB/A) L₁₀₍₁₎. When maximum hourly exterior levels are greater than 70 dB(A), alternate means of ventilation should be incorporated into buildings so that windows do not need to be opened at any time of the year. It is windows were open, the effect of the window-wall attenuation would be reduced. An alternate means of ventilation would allow for a closed window condition, ensuring that acceptable interior noise levels are achieved. For existing receptors where the maximum exterior noise level is less than 75 dB(A), standard double-glazed and/or laminated windows are available that would provide adequate noise attenuation. However, as the maximum exterior noise level increases, the project may be required to incorporate special designs into the windows and possibly the exterior walls of buildings to control to Noise Exposure Guardines.

It ocations adjacent highways and limited access roadways, barrier walls (and sometimes berms) may be used for a highway traffic noise impact mitigation; however, to be effective in providing attenuation, the barrier wall must interrupt the line of sight between the noise source (the flow of traffic) and the receptor. Buildings talker than the barriers receive no acoustical benefit from their presence. Barriers could also detract from the aesthetics of neighborhoods and, therefore, may be impractical for most uses in the New York City area. There are a number of methodologies for calculating the noise attenuation attributable to noise barriers, including the use of the TNM model algorithms.

512. AIRCRAFT NOISE

The first mitigation option investigated should be potential changes to flight paths. If this mitigation is appropriate, it is necessary to ensure that the mitigation does not merely relocate the significant impact to another

area. In addition, facility use restrictions (e.g., capacity limitations, lower takeoff angles, curfews, using only certain types of aircraft) should be investigated. These measures would require commitment from the appropriate agency.

If flight operations adjustment is not feasible, the only possible mitigation measure for significant aircraft noise impacts is treatment of all exterior walls and roofs of buildings to ensure that interior noise levels would be less than 45 dB(A) $L_{10(1)}$. If exterior noise levels are less than 75 dB(A), double-glazed or laminated windows (with alternate means of ventilation for levels above 70 dB(A)) should be provided to achieve adequate attenuation and ensure interior noise levels of 45 dB(A). However, if noise levels are equal to or greater than 75 dB(A), special designs may have to be incorporated into windows, walls, roofs, and doors.

513. TRAIN NOISE

Mitigation measures available for significant train noise impacts are the exerior building actenuation measures discussed above (Subsection 511) for significant vehicular noise impacts parrier wall (or behan) construction, treating the vehicles, wheel truing and rail grinding, rail lubrication of sharp curves, and operational restrictions. Barrier wall attenuation has a practical limit of 10 to 15 dB(A), so it would provide complete impact mitigation only when exterior Leq(1) levels (for existing uses) at records are less than 75 dB(A). It must also be kept in mind that barriers are only effective when the line of subtributions broken between the source and receiver. Therefore, buildings with windows higher than the barriers and exterior wall attenuation; window attenuation and an alternate means of ventilation would have to be designed into the facades of buildings facing the train activity.

520. STATIONARY SOURCES

The most common mitigation measures available for stationary sources include exterior building attenuation (as discussed for mobile sources in Subsection 519 above), noise terms (or earthen berm) construction (as discussed above), and noise control design on the source in question. Cau on should be exercised when constructing barriers in New York City given the limitations mentioned above. In many cases, treating the noise source (e.g., providing baffles, silencers, mufflers, so und insulation, placing it within an enclosed structure) may be the least expensive option. Moving the source in question so that receptors would not be significantly affected is also a potential mitigation measure.

530. (E) DESIGNATIONS

The (E) Designation is an institutional control that is implemented through CEQR review of a zoning map, text amendment, of action pursuant to the Zoning Resolution. It provides a mechanism to ensure that measures aimediately idin, a significant advice impact are part of future development, thereby eliminating the potential for a noise impact.

Innecessary, the lead agency may consult with DEP during the CEQR process to identify sites requiring an (E) Designation. The Major's Office of Environmental Remediation (OER) is responsible for administering post-CEQR determinations for projects with assigned (E) Designations and existing Restrictive Declarations, pursuant to Section 14-15 "Environmental Requirements" of Chapter 1 of the Zoning Resolution of the City of New York and Chapter 24 of Title 15 of the Rules of the City of New York (Rules). If property owners have applied for an action that will result in placement of an (E) Designation, they are advised to provide the CEQR number to OER. In order to facilitate OER sheview of the proposed work to address the requirements of the (E) Designation, it may be necessary for property owners to provide historical technical documentation related to the CEQR Noise analysis (e.g., EAS/EIS, Technical Memoranda, CEQR determination, modeling results, lead agency and DEP correspondence, Restrictive Declarations, Notices) to OER. The Rules and Section 11-15 of the Zoning Resolution set out the procedures for placing, satisfying and removing (E) Designations. OER reviews and approves all documents needed to satisfy the requirement of a noise (E) Designation.

(E) Designations are listed in <u>Appendix C, Table 1, "CEQR Environmental Requirements,"</u> of the Zoning Resolution of the City of New York, and appear in the Department of Buildings' (DOB) online <u>Buildings Information System</u> (BIS).

With respect to (E) designated lots, DOB will not issue building permits or certificates of occupancy in connection with the following actions until it receives an appropriate "Notice" from OER that the (E) requirements have been met:

- Developments;
- Enlargements, extensions, or changes of use; or
- Alterations that involve window or exterior wall relocation or replacement.

As appropriate, OER issues the applicable notices to DOB including a Notice of MoQb, ection, Notice of Proceed, or Notice of Satisfaction.

600. DEVELOPING ALTERNATIVES

In developing project alternatives to reduce or avoid significant noise in sacs, the simplest and most common way of analyzing the situation is to calculate the conditions that would just avoid an impact and tailor the project alternative to that new scenario. For instance, if a significant vehicular traffic noise impact were identified at a receptor, the project-generated $L_{10(1)}$ worst-hour increase would be at least 3 $L_{10(1)}$ one calculated the project-generated traffic volume that would in the worst-hour cause a less than 3 $L_{10(1)}$ value, that traffic volume would define the alternative project volume. A change in plan that dispensed traffic differently or reduced the project size and thus the trip generation from the project may address the traffic noise issue. Similar analysis techniques may be used for analyzing alternatives from any relative impact criterion.

When dealing with absolute impact criteria alternative project arrangements may be set by moving, scaling down, or shielding the original project to the point where significant impacts are avoided. For instance, if a manufacturing facility generated a significant impact at a resize ce, the noise-generating part of the facility may be moved to the distance at which the noise levels at the property one would be low enough not to cause a significant impact. Another possible alternative would be to scale down operations until noise levels reached would not cause a significant impact. Yet another alternative to the project may include a building or barrier between the noise-generating facility and the property line to shield the noise of the logic where a significant impact would be avoided. These options may each have to be evaluated in terms of their feasibility and potential impacts on other environmental assessment categories.

700. REGULATIONS AND COORDINATION

710. REGULATIONS AND STANDARDS

Regulations applicable to New York City environmental noise assessments are found in the Noise Exposure Guide-I nest rhese regulations, which apply to all private or city-sponsored projects subject to CEQR in New York City, are described below. When a project to be undertaken in New York City also includes some level of State or federal involvement, a iditional State or federal regulations may also apply.

In 1983 DEP adopted City Environmental Protection Order-City Environmental Quality Review (CEPO-CEQR) noise guidelines for environmental impact review. Four categories of acceptability have been established, based on noise level limits and land use, for vehicular traffic, train, and aircraft noise sources. These acceptability categories include: "generally acceptable," "marginally acceptable," "marginally unacceptable," and "clearly unacceptable." These categories and associated noise limits apply to exterior noise levels only. The levels are shown in Table 19-3. The exterior limitations are based on an acceptable interior noise level of 45 dB(A) (L₁₀₍₁₎ or L_{dn}, depending on the source). Only mobile sources are included in the standards. Each of the three noise source classifications is

analyzed separately and in terms of different descriptors. Mitigation requirements have been developed according to the noise category. Both absolute and relative impact criteria are presented.

711. NEW YORK CITY NOISE CONTROL CODE

In addition to the Noise Exposure Guidelines, the New York City Noise Control Code (Local Law No. 113 of 2005) governs noise emissions in New York City, and the New York City Zoning Resolution includes noise performance standards for any manufacturing activity in manufacturing districts. These have not traditionally been used for purposes of CEQR environmental assessments. However, it is appropriate to discuss the proposed project's method for compliance with the Noise Control Code. Below is a description of the Noise Code.

The New York City Noise Control Code defines "unreasonable and prohibited noise standards and decibel evels" for the City of New York. The amended Noise Control Code specifically addresses noise from circulation devices and commercial and business enterprises (see Subsection 711.1, below).

711.1. Circulation Devices §24-227

The New York City Noise Control Code stipulates the following majes in its that apply to "circulation devices," which include HVAC equipment, when measured inside a receiving a roperty dwelling unit:

- A circulation device shall not create a soun (level in access of (2 ab 4))
- The cumulative sound from all circulation devices on a building shall not create a sound level in excess of 45 dB(A).

As per §24-227(a), the measurement shall be taken in a receiving property dwelling unit with the window or terrace door open at a point for a feet from the open portion of the window or terrace door.

Note: If the cumulative sound from all circulation devices on a building exceed 50 dB(A), when measured inside a receiving property diveling unit, the commissioner may order the owner or person in control of such devices to achieve a 5 dB(A) reduction, such cumulative sound level within not more than 12 months after the issuance of such order (see §24-227(c)).

711.2. Allowable Decibel Levels Octobe Band Med Sur ment §24-232

The New York City Moite Control Code specifies maximum allowable sound pressure levels for designated octave bands emanating from a symmetrial or business enterprise as measured within a receiving property. These values are shown in Table 19-4.

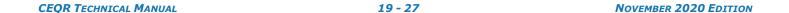


Table 19-4
New York City Noise Control Code §24-232

Octave Band Frequency (Hz)	Maximum Sound Pressure Levels (dB) as Measured Within a Receiving Property as Specified Below					
	Residential receiving property for mixed-use building and residential buildings (as measured within any room of the residential portion of the building with windows open, if possible)	Commercial receiving property (as measured within any room containing offices within the building with windows open, if possible)				
31.5	70	74				
63	61	64				
125	53	56				
250	46	50				
500	40	45				
1000	36	41				
2000	34	39				
4000	33	38				
8000	32	37				
Source: Section §24-232 of the Adm	inistrative Code of the City of New York, as amende Desemble	er 2005.				

712. New York City Zoning Resolution

RESOLUTION PERFORMANCE STANDARDS FOR MANUACTURING DISCRICTS

The New York City Zoning Resolution Performance Standards for Manufacturing Districts uses maximum instantaneous octave band sound pressure levels as its noise descriptor for industrial noise sources. These values are shown in Table 19-5.

Table 19-5
City of New York No se Performance Standards for Manufacturing Districts

Octave Band, in crock per second (Hz)	11 District (dB)	M2 District (dB)	M3 District (dB)				
20 6 7	79	79	80				
75 to 150	74	75	75				
150 to 300	66	68	70				
300 to 600	59	62	64				
600 to 2200	53	56	58				
1200 to 400	47	51	53				
2400 1801	41	47	49				
Abc ve 48 00	39	44	46				
ource: City of Yow York Performance Standards for Manufacturing Districts Section 42-213							

More into mation regarding the Performance Standards may be found in Section 42-20 of the Zoning Resolution of the City of New York, Chapter 2, "Use Regulations."

SPECIAL MIXED USE DISTRICTS

Section 123-32 of the New York City Zoning Resolution requires that all new dwelling units in a Special Mixed Use District provide a minimum window wall attenuation of 35 dB(A) to maintain an interior noise level of 45 dB(A).

720. APPLICABLE COORDINATION

Lead agencies may need to coordinate with other agencies when developing an environmental noise assessment for a proposed project in New York City. The need for coordination depends on either the mitigation required to reduce or eliminate the significant impact or the funding sources for the project. This is discussed below in terms of city, state, and federal agencies.

721. CITY COORDINATION

The lead agency may need to coordinate with other agencies when developing mitigation measures for significantly impacted facilities under the control of those agencies. Examples of this coordination may include coordination with the Department of Education or the New York City Housing Authority for the installation of double-glazed windows and alternate means of ventilation at a school or residential building experienced significant noise impacts from a proposed project. For technical assistance in an due ting noise analyses the lead agency may wish to coordinate with DEP.

722. STATE COORDINATION

If any part of the proposed project would involve a State-funded highway, coordination concerning analysis methodologies and significant impact thresholds with the New York State Doportment of Transportation (NYSDOT) is necessary. In general, NYSDOT follows the guitalines of the Fideral lighway Administration (FHWA). Otherwise, no coordination with State agencies and is elisated as a project state.

723. FEDERAL COORDINATION

If any part of the proposed project would be financially assisted by the U.S. Department of Housing and Urban Development (HUD), analysis methodologies, significant impact thresholds, and reporting of noise information should be in accordance with HUD loise regulations or in a form acceptable to HUD officials. If any part of the proposed project would involve a federally funded highway, coordination with FHWA (usually through the State) for the same items is necessary. Any pair of the proposed project dealing with new aircraft or flight patterns should be coordinated with FAA. New train projects funded by the Federal Transit Administration (FTA) should be coordinated with that agency for analysis methodologies and significant impact thresholds.

730. LOCATION OF INTERMANO

If some level of environmental noise assessment is required for a proposed project, it is useful to obtain any recent data or information concerning existing noise levels in the area of the proposed project, or information concerning other development proposed in the area that could affect future noise levels. Environmental Impact Statestien's (EGS) for such other proposals may be available through the New York City Mayor's Office of Environmental Coordination (EGCS). Other than the identification of future planned projects, however, previous EISs soldom contribute other useful data for analysis purposes. Information regarding the removal of (E) Designations have been obtained from OER.