Two-Pipe Steam Optimization

Simple measures for two-pipe steam systems that enhance efficiency and comfort.

*ratings are based on system end use, see back cover for details.

tech overview

applicable building types
hotels, multifamily, and commercial implementation anytime
fast facts
• reduces GHG emissions
• improves comfort and satisfaction
• increases utility savings
• provides temperature control and balanced distribution

costs & benefits*

GHG Savings			
Improved Tenant Experience	🌟🌟🌟🌟		
Utility Savings			
Capital Costs			
Maintenance Requirements			

*ratings are based on system end use, see back cover for details.
getting to know two-pipe steam systems

Although two-pipe steam is commonly associated with overheating and energy waste, optimizing these systems with a few high-efficiency upgrades can reduce energy bills and improve resident comfort.

how do two-pipe steam systems work?

Two-pipe steam systems distribute steam through a building’s pipes to radiators that heat occupant spaces. Two-pipe systems are similar to one-pipe systems, however the main difference is how condensate (the water created when steam cools) is handled through the layout of piping.

Two-pipe steam systems (see Fig 1.) have two pipes connected to each radiator: a supply line that carries steam to the radiator, and a return line that drains away condensate. When properly maintained, a small device called a steam trap ensures that only water and air, not steam, enters return pipes. Vents on the steam main release trapped air from the distribution system, allowing steam to travel from the boiler to the radiators. Two-pipe systems are typically found in buildings with six stories or more.

Many steam heated buildings suffer from loud, clanging pipes, leaky radiators, and simultaneous under- and overheating of apartments. These common problems not only waste energy and make residents uncomfortable, but also drive up utility bills and maintenance costs.

Many of these issues are legacies of steam heating’s past. Most steam boilers and their piping distribution systems were designed in the early 20th century to run on coal and have not been updated to perform well using the oil and gas we burn today. Consequently, many steam systems lack sufficient air venting for today’s fuels and operate boilers that are more than twice the size needed to deliver cost-effective and high-quality heat.

Fortunately, with proper maintenance and a few simple upgrades, two-pipe steam systems can provide efficient, reliable, and balanced heat for years to come.

Fig 1. An optimized two-pipe steam system retrofitted with orifice plates, thermostatic radiator valves (TRVs), and properly sized vents provides efficient and balanced heat.
how to upgrade two-pipe steam systems

A two-pipe steam retrofit requires not only tuning and upgrading boilers, but comprehensively improving each radiator, enhancing the distribution, and optimizing controls. High performance is only achieved when the system is addressed as a whole.

retrofit solutions

A high performance retrofit may start with improving radiators, venting, system controls, and tuning boilers. Installing new, properly sized boilers once existing boilers fail will complete the system optimization.

A **Install Orifice Plates and Thermostatic Radiator Valves**— These devices help regulate the flow of steam at each radiator.

- Orifice plates are metal devices that fit inside the steam supply pipe and restrict the flow of steam into each radiator. Orifice plates render in-unit steam traps unnecessary, eliminating expensive and intrusive trap maintenance. Other traps at different points in the system will need to remain and will require ongoing maintenance.
- Install smart thermostatic radiator valves (TRVs) at each radiator to regulate the flow of steam into radiators and help maintain a desired temperature. Smart TRVs also allow for building-wide and room by room setbacks as well as temperature limits.

B **Install Radiant Barrier Insulation**— Installing radiant barrier insulation between the radiator and the wall blocks heat from being absorbed into the wall, redirecting it into the room for improved efficiency.

- Radiant barriers are recommended for enclosed radiators only.

C **Implement Master Venting**— When a steam system cycles off, air rushes in to fill the pipes and radiators. Before steam can fill the radiators again, air must be vented out of the system. The farther an apartment is from the boiler, the longer it takes for air to be vented and for steam to reach the radiators. To flush trapped air quickly and ensure that steam reaches all apartments evenly, install high-capacity air vents at the ends of steam mains and on the tops of riser lines, a practice known as ‘master venting.’

D **Upgrade Controls**— Typical boiler controls rely only on outdoor temperature readings to turn the boiler on or off (regardless of how hot or cold apartments are) resulting in uncomfortable overheating. Upgrading to multi-sensor controls that monitor both indoor and outdoor temperatures makes a steam system more responsive to actual heating needs. The boiler runs only as often as needed to maintain comfort, saving fuel and money.

- Use the indoor temperature feedback from the smart TRVs to improve system operation.
- Install window sensors to monitor when windows are open and turn off heat to individual units.

E **Support Staff Training and Maintenance**— Energy savings can only be realized with regular maintenance conducted by trained staff.

- Refer to page 4 for maintenance recommendations.

F **Tune Existing Boilers**— In order for a steam system to run effectively, it is critical that the boiler produce “dry” steam (steam that does not contain water droplets).

- Clean and skim the boiler water to remove oil.
- Tune the burner— the device that controls the boiler’s fuel consumption— to reduce short cycling and limit maximum firing rate.

G **Replace Boilers**— When existing boilers have reached the end of useful life, replace with new boilers that are correctly sized for the distribution system.

- Operate the existing boiler at part-fire to determine the correct size of a new boiler. Completing a building-wide radiator survey can also determine how large a new boiler should be.
- To ensure the production of dry steam, install oversized steam outlets, which slows the steam down, and proper header piping, which removes entrained water droplets.
- Improve the burner’s modulation to increase the precision of heat output in response to changing heating demands.
- Utilize linkage-less controls, which are more efficient than traditional, linkage-based modulation, on large burners.
Costs & Benefits of Two-Pipe Retrofits*

Greenhouse Gas (GHG) Savings

A comprehensive two-pipe steam upgrade can moderately reduce heating related GHG emissions, depending on the building’s base heating fuel usage.

Tenant Experience Improvements

Two-pipe steam retrofits greatly improve tenant satisfaction by delivering balanced, even heating throughout the building. Residents can elect to reduce heat in their apartment by adjusting thermostats for each radiator.

Utility Savings

Moderate utility cost savings can be expected from a two-pipe steam retrofit.

Capital Costs

Two-pipe steam upgrades require a moderate upfront capital investment. Payback is dependent on a building’s fuel type and base heating usage and should be analyzed on a case to case basis.

Maintenance Requirements

Steam systems require a moderate level of maintenance to ensure optimal operating efficiency. Burners need to be tuned annually and air vents should be periodically inspected. Steam traps should be regularly tested to ensure proper operation. Boiler maintenance includes cleaning the boiler water to reduce oil contamination and installing anode bars— which corrode faster than steel— inside the boiler to protect against corrosion. Anode bars must be replaced annually but are often more affordable and effective compared to standard chemical water treatments. Staff must regularly check for water leaks by keeping a detailed log of the boiler’s makeup water meter. Knowledgeable staff can identify and address maintenance items independently or know when to engage qualified contractors.

*The Costs & Benefits rating system is based on a qualitative 1 to 4 scale where 1 (★) is lowest and 4 (★★★★) is highest. Green correlates to savings and improvements, orange correlates to costs and requirements. Ratings are determined by industry experts and calculated relative to the system end use, not the whole building. Note: GHG & utility savings are dependent on existing equipment and fuel type. Assumes poor maintenance of distribution steam traps.

NYC Accelerator is a City program that helps New Yorkers implement building energy and water efficiency upgrades to reduce carbon emissions. The NYC Accelerator provides free, individualized support for building decision-makers to cut operating costs, meet local law compliance, access financing and boost building performance. NYC Accelerator is here to help you navigate the complexities related to local energy laws so your buildings, and our city, are more livable for all.

Ready to get started? Contact NYC Accelerator today!

Call (212) 656-9202
Visit nyc.gov/Accelerator
Email info@accelerator.nyc
LinkedIn linkedin.com/company/ nycaccelerator

The Building Energy Exchange (BE-Ex) is a center of excellence dedicated to reducing the effects of climate change by improving the built environment. BE-Ex accelerates the transition to healthy, comfortable, and energy efficient buildings by serving as a resource and trusted expert to the building industry.

Call (212) 349-3900
Visit be-exchange.org
Email info@be-exchange.org

This report is financed in part through the NYSERDA Cleaner, Greener Communities Program.