

TASK FORCE UPDATE – CB1 APRIL, 2017

MEETING GOALS

- Re-cap project goals
- Highlight project considerations and challenges
- Identify tradeoffs through preliminary alignments and concepts
- Provide an update on data collection
- Discuss task force priorities for the upcoming public meeting

PROJECT OVERVIEW

Purpose of Study:

- Develop long-term strategy and feasible concept design for all of Lower Manhattan
- 2. Prioritize project concepts toward implementation and conduct advanced planning when possible
- 3. Engage with community on core design principles and priorities

Study Funding:

+ \$7.25M CDBG-DR (\$3.75M GOSR; \$3.5M NYC**)**

PROJECT PROCESS

Task 6: Community Engagement **FINAL DESIGN & IMPLEMENTATION** Task 2: Task 3: Project Task 1: Task 4: Near-Term Task 5: Enviro. Concept Feasibility and Existing Scoping for Review & Design Prioritization Conditions Implementation Permitting **SUMMER '16 FALL '16** WINTER '17 SUMMER '16 WINTER '16 **TO SPRING '17 TO SPRING '17 TO WINTER '18 TO SPRING '18 TO FALL 18'** Research Hydrological mgmt • Framework to Preparation of Surveying, geotech, Strategies evaluate and previous plans environmental sampling Drainage & sewer & concepts identify priorities review Schematic design analysis Mapping Identify required documents documents

Cost estimates

ULURP actions

phasing

analysis

Transportation

Determine project

Economic analysis

Regulatory

framework

conceptual

scenarios

Develop

LOWER MANHATTAN COASTAL RESILIENCY

Site conditions

Assessments

Tree survey

FUTURE TIDAL AND SEA LEVEL RISE INUNDATION

2050 MEAN HIGH HIGH WATER + **SLR (by 2050s)**

DESIGN FLOOD ELEVATION - COMPONENTS

High tide + Sea Level Rise + 1% annual storm event + Associated wave action + Freeboard = 16.5' DFE

DESIGN CONSIDERATIONS

RELIABILITY

Design Flood Height Passive/Deployable Wave Attenuation Stormwater Management

URBAN BENEFITS

Waterfront Access
Placemaking
Safety
Community Amenities
Ecology
Transportation Improvements

VISUAL & PHYSICAL IMPACT

Height Footprint Design

ASSETS PROTECTED

Location of Protection Critical Infrastructure Property at Risk

FEASIBILITY

Cost
Constructibility
Ownership/Siting
Transportation Disruption
Regulatory Approvals
Operations and Maintenance
Speed of Implementation
FEMA Certification

FUTURE-FLEXIBLE

Phasing
Long-term Vision
Future-proofing
Climate Change Adaptation
Future Urban Needs

INFRASTRUCTURE TOOLKIT

DRAFT FOR INTERNAL REVIEW ONLY AND SUBJECT TO TECHNICAL REVIEW

LOWER MANHATTAN COASTAL RESILIENCY

POTENTIAL ALIGNMENT FRAMEWORK

EDGE~95% PROJECT AREA PROTECTED

UPLAND~75% PROJECT AREA PROTECTED

HYBRID~85% PROJECT AREA PROTECTED

SNAPSHOT 1 | SOUTH STREET SEAPORT

WALL WITH ROLLER GATES

SNAPSHOT 1 | SOUTH STREET SEAPORT

KIOSKS WITH ROLLER GATES

SNAPSHOT 1 | SOUTH STREET SEAPORT

SEA LEVEL RISE PLATFORM WITH DEPLOYABLES

BATTERY BERM SOUTH

BATTERY BERM NORTH

HARDENED EXISTING WALL

WALL

FILLED ESPLANADE

PRIVATE PROPERTY OWNER INTERVIEWS

- LMCR Project team gathered data on 27 privately-owned properties across the Financial District and Two Bridges neighborhoods
- The average recovery period for buildings to be fully operational for tenants was 3-5 months.
- The average water-level of flooding at the lobby level of the building was 4-5ft.
- The total amount of capital put into protection across the properties was \$114,000,000

PRIVATE PROPERTY OWNER INTERVIEWS

- 67% of properties have relocated mechanical equipment such as electrical and cooling systems to a higher floor
- 69% of properties interviewed had implemented or planned flood protection.
- Average Height of Protection = 6ft 10in
- Average time to deploy protection is between 9-17 hours

MIKE URBAN WATER MODEL

MIKE URBAN Model Domain in Google Earth Format

10-year Rainstorm for 2050s with SLR

PROJECT NEXT STEPS

- Discuss trade offs of each alignment with the community
- Incorporate coastal model to inform alignment and drainage
- Further evaluate land use and environmental review timelines
- Develop preliminary cost estimates
- Narrow in on potential alignments

UPCOMING PUBLIC MEETING

- 1. Progress Update
- Lessons Learned
- Reporting on private property assessment
- Update on data collection
- 2. Alignments
- Overall Concepts
- Preliminary geographically specific alignments
- 3. Community Feedback on Concepts
- Workshops

FUTURE MILESTONES

- May 18th Workshop (concepts)
 St Paul's Chapel
 209 Broadway (at Fulton Street)
 6-8 pm
- Fall '17 TF/ Public Workshop (select alternative)
- Winter '17/ '18 (refine alternative)
- Summer/Fall '18 Prepare environmental review
- 2019 + Final Design and project implementation

STAY IN TOUCH

In person

nycresiliency@cityhall.nyc.gov