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1. Introduction 
 
 
The New York City (NYC) Housing and Vacancy Survey (NYCHVS) collects important information 
including unit, building, and neighborhood conditions; housing and utility costs; and 
information about the people who live in the sampled address. Starting in 2017, the NYCHVS 
Public Use Files (PUFs) include the addition of replicate weights. The replicate weights allow 
data users an additional tool to calculate estimates of variance. Using the information provided 
in this guide and the replicate weights on the PUFs, data users will have the necessary tools to 
compute estimates of variance using the replicate weights.  
 
Only Sample Design Variances Estimated 
 
By variance, we refer to the sample design variance or simply design variance or the variance 
from a finite population sample. The variance measured by the replicate weights represents the 
variance of the estimated statistic if we repeated the sample selection many times and 
estimated the statistic of interest with each sample. See textbooks by Cochran (1977), Wolter 
(2007), and Särndal, Swensson, and Wretman (1992) for detailed discussions on sample design 
and sample variances. 
 
How the Guide is Organized 
 
Section 2 of the guide describes “how to estimate variances yourself using replicate weights.” 
This part of the guide explains how the new variance estimation tools provided by the NYCHVS 
can be used to estimate variances. 
 
Replicate weights can be used to estimate sampling variance for any complex statistic from the 
survey design. The bulk of the guide – Sections 3 to 6 – reviews several examples that show 
how to use replicate weights to estimate variances of several types of statistics. The examples 
are repeated in dedicated sections for the following software packages: SAS, STATA, R, and 
Python. We include two separate sections on SAS: one section describes the PROC SURVEY 
procedures and another section describes how to use base SAS to calculate the variances. 
 
Table 1 summarizes the examples and the four main sections of the guide. 
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Table 1: Summary Table of Examples  

 
Type of 

Statistics 
Description of Specific Example 

Example Number/Section 
SAS 

PROC 
SURVEY 

Base 
SAS STATA R 

 
Python 

Total Number of 2021 occupied housing units 
in NYC 2.1 4.1 5.1 6.1 7.1 

Difference 
Difference of the number of 2021 public 
housing units in Manhattan and the 
Bronx 

 4.2 5.2 6.2 7.2 

Mean 2021 average gross rent for renter-
occupied housing units in NYC 3.1 4.3 5.3 6.3 7.3 

Median 2021 Median gross rent for renter-
occupied housing units in NYC   4.4 5.4 6.4 7.4 

Odds Ratio 
Odds of rent stabilization status (pre-
1947 or post-1947) with three or more 
maintenance deficiencies 

9.1, 9.2 9.3 9.4 9.5 9.6 

Regression 
Coefficient 

The regression coefficient representing 
the year the householder moved into 
the housing unit for renters.  

3.3 4.5 5.5 6.5 7.5 

Longitudinal 
Change1 

The difference of the 2021 and 2017 
gross vacancy rates  4.6 5.6 6.6 7.6 

Percent 
Change1 

Percent change in the median gross 
rent from 2017 to 2021  4.7 5.7 6.7 7.7 

 
 
To further demonstrate the importance of using the replicate weights in variance estimation, 
Section 8 provides a general example of confidence interval calculations and then Section 9 
provides a detailed example using the odds ratio and confidence interval calculations.  
 
Section 10 explains how the replicate weights are calculated. We provide this section for 
transparency, context, and background for data users.  
 
Scope of the Guide  
 
The scope of this guide primarily includes the data provided in the 2021 NYCHVS. Two examples 
demonstrate longitudinal estimates which incorporates 2017 NYCHVS data.  
 
The methods provided in this guide can be used for both housing unit (HU) estimates as well as 
person estimates. Even though examples of person estimates are not provided, the same 
methods can be applied with the substitution of the person replicate weights.  
 

 
1  The longitudinal change and percent change examples for the years of 2021 and 2023 for SAS, STATA, R and 

Python are included in Appendix B.   
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The results provided in this guide, including the estimations, standard errors, and confidence 
intervals, are approximations and are subject to errors. We do not provide a review of the 
sample design for the NYCHVS but refer the reader to the documentation of the survey for a 
more thorough discussion of the design and errors: 2021 New York City Housing and Vacancy 
Survey Sample Design, Weighting, and Error Estimation (U.S. Census Bureau, 2023). 
 
While we provide code for handling all examples in four programming languages – SAS, STATA, 
R, and Python – we note that, as of this publication, the 2017 NYCHVS data needs to be read in 
via SAS or STATA first to be converted to a CSV file. There is likely another way to read in this 
data using just R or Python, but its text-file format makes this harder. This caveat aside though, 
all examples should be replicable with any of the software provided using publicly-available 
data sets provided by NYCHVS and the U.S. Census Bureau.  
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2. General Variance Estimation for New York City Housing and 
Vacancy Survey 

 
 
The variance of any survey estimate based on a probability sample may be estimated by the 
method of replication. This method requires that the sample selection, the collection of data, 
and the estimation procedures be independently carried through (replicated) several times. 
Each time the sample is replicated, a different set of estimates is calculated. The dispersion of 
the resulting estimates then can be used to measure the variance of the sample. 
 
However, we would not consider repeating any large survey, such as the NYCHVS, several times 
to obtain variance estimates. A practical alternative is to alter the sample several times by 
applying different weighting factors to the sample units. The alterations of the replicate weights 
allow the single sample to represent multiple replicate samples that can be used to estimate 
variances. We sometimes refer to the replicate samples as simply replicates. For the NYCHVS, 
we used a total of 80 replicates to calculate the NYCHVS variance estimates. 
 
The replicate weights should only be used in estimating variances and should not be used to 
create independent estimates. The final weights (FW) are provided to produce all point 
estimates. 
 
The user should also note that the 2021 NYCHVS replicate weights are applicable for use only 
on 2021 NYCHVS data. Replicate weights for 2017 are applicable for use with the 2017 NYCHVS 
PUF only, and so on. 
 
Use of Replicate Estimates in Variance Calculations 
 
Calculate variance estimates using the replication variance estimator: 
 

                                 𝑣𝑣��𝜃𝜃�� =
4

80
��𝜃𝜃�𝑟𝑟 − 𝜃𝜃�0�

2
                                                                               

80

𝑟𝑟=1

(2.1) 

 
where 𝜃𝜃� is the weighted estimate of the statistic of interest using the final weight for the 
sample and 𝜃𝜃�𝑟𝑟 is the replicate estimate for replicate r of the same statistic using the rth replicate 
weight. The estimator 𝜃𝜃�0 is the point estimate of 𝜃𝜃. Technically, replicate weights allow one to 
use the mean of the replicate estimators to estimate 𝜃𝜃�0. Throughout this document however, 
we suggest estimating 𝜃𝜃�0 using the final weights only, since this produces a more conservative 
estimate of the variance. 
 
The value of 80 in Equation (2.1) is the number of replicates used by NYCHVS. For more 
explanation about the factor of 4, see the end of Section 10. See also Fay and Train (1995), Ash 
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(2014), and Opsomer, Breidt, White, and Li (2016) for more background about Successive 
Difference Replication (SDR).  
 
To ensure confidentiality of the data, some characteristics have either been bottom coded or 
top coded. This procedure places a lower or upper boundary on the published value for the 
variable in question. Therefore, some estimates calculated from the PUFs may differ from the 
estimates provided in the 2021 NYCHVS Selected Initial Findings 
(www.nyc.gov/assets/hpd/downloads/excel/2021-nychvs-selected-initial-findings-figures-
data.xlsx). 
 
Using Replication to Estimate Variances 
 
The following example illustrates how a statistic would be estimated, replicated, and combined 
to form a variance estimate. We are going to estimate the variance using the 80 replicate 
weights provided for the NYCHVS. 
 
Note that in 2021 NYCHVS, the replicate weights for Replicate 1 are equal to the final weights.  
 
Example 2.1. Estimating the Variance of the Total Number of Housing Units in a Domain 
 
The goal of this example is to estimate the total number of occupied HUs in NYC for 2021 and 
its corresponding estimate of variance. In 2021, we have 7,089 completed interviews that are 
occupied housing units in NYC. Table 2.1 displays the first four and last interview responses for 
occupied housing units in NYC for 2021.  
 

Table 2.1: Example of Estimating Variances with Replication 

Sample 
Housing 

Unit 
Tenure Final 

Weight 

Replicate Weights 

Replicate 
12 

Replicate 
2 

Replicate 
3  

Replicate 
80 

1 Renter 154.440 154.440 44.909 266.893 … 263.340 

2 Renter 264.709 264.709 80.340 261.718 … 457.946 

3 Renter 430.840 430.840 429.362 721.599 …. 127.413 

4 Renter 200.362 200.362 201.630 336.421 … 194.927 

… … … … … …  … 

N (7,089) Renter 451.315 451.315 453.975 131.611 … 444.089 
Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey Public Use Files. 

 
 

 
2 For NYCHVS, replicate 1 weights are the same as final weights, so therefore replicate weight 0 = replicate weight 

1, and replicate estimate 0= replicate estimate 1.  
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In the 2021 NYCHVS, the final weight is sometimes referred to as replicate weight 0, and the 
estimate from the final weight is sometimes referred to as replicate estimate 0. 
 
Step 1: Calculate the weighted survey estimate. 
 
The statistic of interest is the total number of occupied housing units in NYC for 2021. Add the 
final weights of the sample cases that are occupied; the estimate of total number of occupied 
housing units is calculated as follows: 
 
Occupied HUs Estimate  𝑁𝑁�0= 154.440 + 264.709 + … + 451.315 = 3,157,105.18 
 
Step 2: Calculate the weighted survey estimate for each of the replicate samples. 
 
The replicate estimates of occupied HUs are: 
 
Replicate estimate 1   𝑁𝑁�𝑟𝑟=1= 154.440 + 264.709 + … + 451.315 = 3,157,105.18 
Replicate estimate 2   𝑁𝑁�𝑟𝑟=2= 44.909 + 80.340 +… + 453.975 = 3,162,978.47 
Replicate estimate 3   𝑁𝑁�𝑟𝑟=3= 266.893 + 261.718 + … + 131.611 = 3,153,127.53 
 ⁞      ⁞  
Replicate estimate 80  𝑁𝑁�𝑟𝑟=80= 263.340 + 457.946 + … + 444.089 = 3,168,556.06 
 
Step 3: Use these survey estimates in Equation (2.1) to calculate the variance estimate for the 
total occupied housing units. 
 

𝑣𝑣��𝑁𝑁�� =
4

80
��𝑁𝑁�𝑟𝑟 − 𝑁𝑁�0�

2
80

𝑟𝑟=1

 

= 0.05 × [(3,157,105.18 − 3,157,105.18)2 + (3,162,978.47 − 3,157,105.18)2

+ (3,153,127.53 − 3,157,105.18)2 + ⋯
+ (3,168,556.06 − 3,157,105.18)2] 

=  0.05 × [0 + 34,495,535.42 + 15,821,699.52 + ⋯+ 131,122,652.77] 
= 180,599,774.86 

 
The estimate of the variance of total occupied housing units is 𝑣𝑣��𝑁𝑁�� = 180,599,775. 
 
The survey estimate for occupied housing units in NYC is 3,157,105. This survey estimate has an 
estimated variance of 180,599,775, and its standard error, which is the square root of the 
estimated variance, is 13,439 housing units. 
 
The three steps of Example 2.1 will be used throughout the guide to calculate variances. 
Sometimes steps 1 and 2 will be combined since estimating the statistic with the final weight 
(or for replicate 0) can be done while estimating the statistic with the 80 replicate weights. 
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Cautions about Domain Analysis Don’t Apply  
 
Korn and Graubard (1999; Section 5.4), Lewis (2017; Section 8), Heeringa, West, and Berglund 
(2010; Section 4.5), and others have provided important cautions about the analysis of 
domains, sometimes also referred to as subdomains. These cautions are important but do not 
apply to the analysis described within this Guide since our variance estimation employs 
replicate weights to estimate variances. When using the Taylor series to estimate variances (the 
default method of most software packages), the issue of domains is important: SAS will 
generate incorrect estimates with the where statements and correct estimates with the 
domain statement. Similarly with STATA, the subpop()option is needed. However, with the 
replicate weights, using the subpop()statement in STATA or either the domain or where 
statements in SAS will produce the same results. 
 
Confidence Intervals and Significance Tests 
 
Once the standard error is calculated, it can be combined with the estimate to calculate 
confidence intervals. Section 8 provides further instructions on how this can be done. 
 
NYCHVS Public Use File Description 
  
To access the PUF, go to the Census Bureau’s NYCHVS website at: 
https://www.census.gov/programs-surveys/nychvs/data/datasets.html . Once there, select the 
“2021” tab and select the “2021 New York City Housing and Vacancy Survey Microdata”.  Here 
you will find four CSV files.  
 
The four CSV files:  

1) All Units Records, which contains all Housing unit records, with both occupied and 
vacant housing units, 

 2) Occupied Records, which contains the records for occupied housing units 
 3) Person Records, which contains the records for persons 
 4) Vacant Records, which contains the records for vacant housing units 
 
The datasets All Units Records, Occupied Records, Person Records, and Vacant Records (CSV 
files #1, #2, #3, and #4 respectively) contain the sample estimate with full sample weights as 
well as the 80 replicate weights for all housing units, occupied housing units, persons, and 
vacant housing units, respectively. NYCHVS data users should use the All Units Records, 
Occupied Records, and Vacant Records datasets for any housing unit estimates and use the 
Person Records dataset for any person estimates.  
 
Data preparation for Running SAS  
 
When reading these files into SAS, first download and save these data files as CSV files on your 
local drive. Figure 2.1.1 shows how to import the three housing unit files (CSV files #1, #2, and 
#4) and create the SAS datasets with Proc Import. For generating SAS datasets for Person 

https://www.census.gov/programs-surveys/nychvs/data/datasets.html
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Records (CSV file #3), follow the same steps for housing unit records. Finally, note that 
throughout this document, input related items are highlighted in yellow, such as dataset names 
and file paths. 
 

Figure 2.1.1: SAS Code for Reading in the Public Use Files  
 
*import allunits file; 
proc import file="LOCATION OF CSV FILE\allunits_puf_21.csv" 
  out=Allunits_puf_21 
  dbms=csv; 
run; 
 
*import occupied HU file; 
proc import file="LOCATION OF CSV FILE\occupied_puf_21.csv" 
  out=Occupied_puf_21 
  dbms=csv; 
run; 
 
*import vacant file; 
proc import file="LOCATION OF CSV FILE\vacant_puf_21.csv" 
  out=vacant_puf_21 
  dbms=csv; 
run; 
 

 
For many housing unit estimates, users need to download all three HU data files – All Units 
Records (CSV file #1), Occupied Records (CSV file #2) and Vacant Records (CSV file #4) – and 
then combine the three files into one. Note some HU estimates can be derived using only one 
or two of the datafiles above. For example, the average gross rent for renter-occupied housing 
units (Example 2.1) can estimated using the Occupied Records file only. However, we will 
combine three files into one, which simplifies code for the examples below. Figure 2.1.2 shows 
the SAS code for combining Occupied and Vacant records, and then merging it with All Units.   
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Figure 2.1.2: SAS Code for Appending Occupied and Vacant Records  

 
Data Occupied21; 
 set occupied_puf_21; 
run;  
 
Data vacant21; 
 set vacant_puf_21; 
run; 
 
* Combine Occupied and Vacant records for 2021; 
Data HU_all21; 
 set occupied21 
   vacant21; 
run; 
 
Data ALL21; 
 set Allunits_puf_21; 
 keep control occ boro csr yearbuilt; 
run; 
 
proc sort data=all21; by control; 
proc sort data=HU_all21; by control;  
Data HU21; 
 merge all21 
  HU_all21; 
 by control; 
run; 
 

  
For prior year NYCHVS data files, data users can go to the same website mentioned on page 7, 
click the relevant year’s tab, and download the PUFs from there. In 2017 and prior, the datafiles 
were given as text files. These have accompanying import programs for both SAS and STATA 
software, which are also available on the website to help data users import the datafiles. Note 
that no All Units file was provided in 2017 and prior years. So, no additional merging step is 
needed to prepare those data. Figure 2.1.3 shows the partial SAS code for reading in the PUFs 
for 2017. We saved the 2017 Occupied HU SAS data file as occupied17, and the 2017 Vacant HU 
SAS data file as vacant17. The 2017 combination file for all housing units is called HU_all17. 
Note that some of the variable names and/or definitions have been changed in 2021. For the 
longitudinal examples where we are using different years data, users might notice the 
differences.  
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Figure 2.1.3: Partial SAS Code for Reading in the Public Use Files for 2017 
 
* Import the Occupied data file. ; 
data occupied17;  
infile 'LOCATION OF TEXT FILE\uf_17_occ_web_b.txt' lrecl=1334 truncover; 
input recid $1 @; 
if(recid='1') then do;  
     
***SEE THE REST OF THE SAS CODE IN SAS IMPORT PROGRAM FOUND IN THE CENSUS 
BUREAU’S NYCHVS WEBSITE MENTIONED IN PAGE 7*** ; 
 
* Import the Vacant data file. ; 
data vacant17;  
infile 'LOCATION OF TEXT FILE\uf_17_vac_web_b.txt' lrecl=831 truncover; 
input recid $1 @; 
if(recid='3') then do;  
     
***SEE THE REST OF THE SAS CODE IN SAS IMPORT PROGRAM FOUND IN THE CENSUS 
BUREAU’S NYCHVS WEBSITE MENTIONED IN PAGE 7*** ; 
 
* Combined Occupied and Vacant records for 2017; 
Data HU_all17; 
 set occupied17 
   vacant17; 
run; 
 

 
 
For the housing unit data file, the final weight is stored in variable FW, and the replicate 
weights are stored in variables FW1-FW80. For the persons data file, the final weight is stored 
in variable PW, and the replicate weights for persons are stored in variables PW1-PW80.   
 
In 2017 and prior, these weights were stored as character variables with five implied decimal 
places, so they need to be converted before running any analysis. As of 2021, these weights are 
stored as numeric variables with the correct number of decimal places. So, conversion is no 
longer needed. Figure 2.1.4 shows the SAS code for converting the weights to numeric for 2017. 
 

 Figure 2.1.4: SAS Code for Converting Weights to Numeric 
 
* convert weights to numeric with the correct decimal place. ; 
Data HU17; 
 set HU_all17; 
 FW=fw/100000; 
   do i=1 to 80 ; 
 fwi=fwi /100000 ; 
 fw_i=input(fwi, 9.); 
 drop fwi; 
 rename fw_i=fwi; 
  end ; 
run; 
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After running the code above, dataset HU17 is created. This dataset, along with the HU21 
dataset (created earlier in Figure 2.1.2), will be used throughout this document.  
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3. Estimating Variances with SAS PROC SURVEY Procedures 
 
 
Within SAS, there are currently four specialized ‘survey’ procedures relevant to our examples 
that use replicate weights directly. Table 3 reviews the SAS SURVEY procedures. 
 

Table 3: Summary of SAS ‘SURVEY’ PROCs 
PROC name Can be used to… 
SURVEYMEANS Calculate basic statistics 
SURVEYFREQ Complete categorical data analysis 
SURVEYREG Complete regression analysis 
SURVEYLOGISTIC Complete logistic regression analysis 

 
 
Statistical packages often exist in other statistical software packages, but we do not necessarily 
endorse their use for any given language. Relevant packages in other languages will be 
discussed at the end of this section. We recommend the data users carefully study 
documentation on other statistical packages before applying them to NYCHVS. 
 
Because the replicate weights for NYCHVS are calculated with Fay’s SDR methods, the SAS 
SURVEY procedures need to use the varmethod=brr(fay) option in the PROC statement. 
If the Fay option for BRR is not used, the variances will be off by a factor of four. 
 
An unintended consequence of using our replicate weights with the varmethod=brr(fay) 
option is that all of the SAS PROC SURVEY procedures assume that BRR is being used and 
further that the number of replicates is the number of strata in the sample design. As a result, 
SAS PROC SURVEY creates confidence intervals using a critical value from a t-distribution with 
80 degrees of freedom. The replicate weights that are provided for NYCHVS, however, use SDR 
methodology that is appropriate for the NYCHVS sample design: systematic random sample 
from an ordered list. We suggest using a critical value from a normal distribution instead of a t-
distribution – see also “Normal Distribution versus the t-distribution for Confidence Intervals” 
in Section 8. The effect is relatively minor either way but, in any case, the choice of t vs. normal 
is the only difference between the canned SAS procedure and our recommendation. 
 
Mukhopadhyay, An, Tobias, and Watts (2008) provides an excellent review of replication-based 
variances methods and the “survey” procedures of SAS. Taylor (2016) also provides a 
comprehensive review of using SAS to analyze survey data.  
 
Each of the procedures of Table 3 can use the replicate weights in its analysis. For example, the 
SURVEYMEANS procedure and the replicate weight file can be used together to generate a 
standard error for a population total estimate, as shown in Figure 3.1. 
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Figure 3.1: SAS Code Using PROC SURVEYMEANS 
 
proc surveymeans data=HU21 sum std clsum cvsum varmethod=brr(fay); 
 var variable ; 
 weight FW ; 
 repweights FW1-FW80 ; 
run ; 
 

 
 
Example 3.1. Estimating the Variance of a Mean with SAS PROC SURVEYMEANS 
 
In this example, we estimate the average gross rent for renter-occupied housing units. The 
output for PROC SURVEYMEANS of SAS will also include the estimated standard error of the 
average gross rent of renter-occupied HUs.  
 
Figure 3.1.1 provides the SAS code that can be used to estimate the average gross rent of the 
renter-occupied HUs from the 2021 NYCHVS.  
 

Figure 3.1.1: Example of SAS Code Using PROC SURVEYMEANS 
 
Data Data1 ; 
 set HU21 ; 
 * only renters with valid rent records; 
 if tenure=1 and GRENT not in ('-2','-1') ;      
run ; 
 
proc surveymeans data=Data1 mean std varmethod=brr(fay) ; 
 domain tenure ; 
 var Grent ; 
 weight FW ; 
 repweights fw1-fw80 ; 
run ;  
  

 
The SAS code of Figure 3.1.1 generates the output of Figure 3.1.2. 
 

Figure 3.1.2: Partial SAS Output for PROC SURVEYMEANS 

 
 Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 

 
The estimate of the average gross rent in renter-occupied HUs is $1,727 with a standard error 
of $16. 
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Example 3.2. Estimating the Variance for a Contingency Table with SAS PROC SURVEYFREQ 
 
In this example, we estimate the frequency and proportion of rent stabilization status (pre-
1947 or post-1947) with three or more maintenance deficiencies. The output for PROC 
SURVEYFREQ will also include the standard errors of the estimated quantities. See Section 9 for 
this same example on calculating odds ratios. 
 
Figure 3.2.1 provides the SAS code for PROC SURVEYFREQ that produces the two-way table of 
building deficiencies by rent stabilization status. 
 

Figure 3.2.1: Example of SAS Code Using PROC SURVEYFREQ 
 
Data Data2 ; 
 set HU21 ; 
 *subset to rent stabilized renters only; 
 where CSR=32 and tenure=1; 
 if MDEFCOUNT ge 3 then def='1' ;  
 * Redefine HUs that did not report on deficiencies. ; 
 else if MDEFCOUNT =-1 then def=' ';  
 else def='0'; 
 if YEARBUILT lt 5 then stabilized='pre-1947' ; 
 else if YEARBUILT ge 5 then stabilized='post1947'; 
run;  
 
proc surveyfreq data=data2 varmethod=brr(fay) NOSUMMARY ; 
 tables tenure*def*stabilized ; 
 weight FW ; 
 repweights fw1-fw80 ; 
run ; 
 

 
The SAS code of Figure 3.2.1 generates the output seen in Figure 3.2.2. 
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Figure 3.2.2: SAS Output for PROC SURVEYFREQ 

 
Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 

 
Example 3.3. Estimating the Variance of a Regression Coefficient with SAS PROC SURVEYREG 
 
Correctly estimating the variance of a regression coefficient can be complicated depending on 
which procedure is used. This example will show a regression model modeling the 2021 gross 
rent of a renter-occupied housing unit using the year householder moved into the housing unit. 
The regression model will first be shown using PROC SURVEYREG with correct parameter 
estimates and variances. Next, the regression model will be shown using PROC REG with the 
correct parameter estimates but will generate incorrect variances. Last, we demonstrate how 
not using any weighting produces incorrect results. Moreover, in Section 4, Example 4.5, we 
calculate the regression coefficient directly.  
 
First, PROC SURVEYREG will be used to generate the correct parameter estimates and 
variances. Figure 3.3.1 shows how this can be done. 
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Figure 3.3.1: SAS SURVEYREG Code for Estimating Variance of a Regression Coefficient  
 
proc surveyreg data=HU21 varmethod=brr(fay) ;  
  *subset to renters with valid rent only; 
 where tenure=1 and Grent not in (-2,-1) ; 
 domain tenure; 
 model Grent = HHFIRSTMOVEIN/ solution ; 
 weight FW ; 
 repweights fw1-fw80 ; 
 ods output parameterEstimates = MyParmEst ; 
run; 
 
data MyParmEstfin ;  
 set MyParmEst ;  
 * Keep the 4th observation, which is renters. ;  
 if _n_ = 4 ;  
 se = stderr; 
 var = se**2 ; 
 drop parameter dendf tvalue probt stderr ; 
run ; 
 
proc print data=MyParmEstFin ( keep = estimate se ) noobs ; 
 format estimate se 8.4 ; 
run ; 
 

 
 
The SAS code of Figure 3.3.1 produces the output of Figure 3.3.2. 
 
 

Figure 3.3.2: SAS SURVEYREG Output for Estimating Variance of a Regression Coefficient 
 

  
Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 

 
Using the weight statement in SAS is not a shortcut. We now show how PROC REG and the 
final weights estimate the correct parameter estimates but overstate the variances because it 
does not correctly account for the sample design of NYCHVS. Figure 3.3.3 shows how this can 
be done.  
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Figure 3.3.3: SAS REG Code for Estimating Variance of a Regression Coefficient 
 
* Weighted -- Using the sample design weights.; 
* CORRECT estimate but INCORRECT variances; 
 
proc reg data=Hu21 ; 
  *subset to renters with valid rent only; 
 where tenure=1 and Grent not in (-2,-1) ; 
 model Grent = HHFIRSTMOVEIN; 
 weight FW ; 
 ods output parameterEstimates = MyParmEstw ; 
run ; 
 
data MyParmEstwFin ; 
 set MyParmEstw ;  
 if _n_ = 2 ; 
 drop model dependent variable df tvalue probt ; 
run; 
 
proc print data=MyParmEstwFin ;  
format estimate stderr 8.4 ; 
run ;  
 

 
 
The SAS code of 3.3.3 generates the output of Figure 3.3.4. 
 

Figure 3.3.4: SAS REG Output for Estimating Regression Coefficients 

 
Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 

 
As expected, the estimate of the regression coefficient in Figures 3.3.4 and 3.3.2 agree, but the 
standard error using PROC REG and the weight statement overestimates the standard error 
by 2 percent or �1 − 1.2606

1.2409
�. 

 
Next, we show the worst possible case. We show what happens when PROC REG is used 
without final sample weights to generate an unweighted modeled parameter estimate with its 
corresponding standard error. Figure 3.3.5 shows how this can be done. 
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Figure 3.3.5: SAS Code for Estimating Variance of a Regression Coefficient 
Incorrectly Using No Weights 

 
* Unweighted – Not using the sample design weights. ; 
* INCORRECT estimate and INCORRECT variance; 
 
proc reg data=HU21; 
  *subset to renters with valid rent only; 
 where tenure=1 and Grent not in (-2,-1) ; 
 model Grent = HHFIRSTMOVEIN ; 
 ods output parameterEstimates = MyParmEstu ; 
run ; 
 
data MyParmEstuFin ; 
 set MyParmEstu ; 
 if _n_ = 2 ; 
 drop model dependent variable df tvalue probt ; 
run; 
 
proc print data = MyParmEstuFin ;  
  format estimate stderr 8.4 ; 
run ;  
 

 
 
The SAS code of Figure 3.3.5 generates the output of Figure 3.3.6. 
 
 

Figure 3.3.6: SAS Output for Estimating Variance of a Regression Coefficient Incorrectly 
 

 
Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 

 
Estimating the regression coefficient and its variance without the weights produces an incorrect 
estimate of the parameter and an underestimate of the variance. 
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4. Examples of Calculating Variances with Base SAS 
 
 
This section includes examples of calculating the variance of a total, difference, mean, median, 
regression coefficient, longitudinal change, and percent change within a complex survey design 
by using replicate weights. Unlike the previous section where we used the SAS PROC SURVEY 
procedures, here we calculate all values directly using programming within base SAS (the DATA 
step, PROC SORT, and PROC MEANS). This section is provided for data users who would rather 
code the variance estimation methods themselves rather than use the PROC SURVEY 
procedures provided by SAS. In almost all cases, the estimates calculated using SAS PROC 
SURVEY and the estimates from base SAS are the same and when they differ, we explain those 
differences.  
 
Example 4.1. Estimating the Variance of a Total 
 
In Example 2.1, we generally demonstrated how to estimate the variance for the occupied 
housing units in NYCHVS using replicate weights. We now show how to estimate the same total 
directly with the replicate weights. 
 
For our example, the domain of interest is all occupied housing units in NYC for 2021. In Figure 
4.1.1, we start by using the HU21 data file. This file contains all HUs, including both occupied 
and vacant. Thus, we need to filter the file to occupied HUs only. Then, we calculate the sample 
estimate and replicate estimates of the number of occupied housing units. 
 

Figure 4.1.1: SAS Code for Estimating Variance of a Total (Step 1 &2) 
 
* Steps 1 & 2: Sum the sample and the 80  
 replicate weights and writes them out to a file ; 
 
proc means data=HU21 sum noprint ;  
 * only occupied HUs; 
 where occ=1 ; 
 * The sample and the replicates. ; 
 var FW fw1-fw80 ;  
 output out=Data3 sum=est rw1-rw80 ;  
run ; 
 

 
Next, the code in Figure 4.1.2 applies Equation (2.1) to the sample estimate and replicate 
estimates. 
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Figure 4.1.2: SAS Code for Estimating Variance of a Total (Step 3) 

* Step 3: Use the sample estimate and the 80 replicate  
 estimates to compute the estimated replicate variance(s)  
 using the Equation 2.1 for 80 replicates. ; 
 
data Data4 (keep = est var se) ; 
 set Data3 end=eof ;  
 * Fill array with the replicate sums. ; 
 array repwts{80} rw1-rw80 ;   
 * Fill array with the squared diffs. ; 
 array sdiffsq{80} sdiffsq1-sdiffsq80 ;  
 do j = 1 to 80 ; 
  sdiffsq{j} = (repwts{j} - est)**2 ; 
  end ;  
 * Sum the squared diffs. ; 
 totdiff = sum(of sdiffsq1-sdiffsq80) ; 
 var = (4/80) * totdiff ; 
 se = (var)**(0.5) ; 
 output ; 
run ; 
 
proc print data=Data4 noobs ; 
 var est se ; 
 format est se comma12.0 ;  
run ; 
 

 
The SAS code of Figures 4.1.1 - 4.1.2 generates the output of Figure 4.1.3. 
 

Figure 4.1.4: SAS Output for Estimating Variance of a Total 

est se 

3,157,105 13,439 
 

 

 

 Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 
 
In this example, the estimate of the number of occupied HUs in NYC for 2021 is 3,157,105 with 
an estimated standard error of 13,439. These results from Example 4.1 match exactly with the 
results in Example 2.1.  
 
Example 4.2. Estimating the Variance of a Difference 
 
This example demonstrates how to estimate the variance of a difference. The specific statistic 
of interest is the difference between the number of public housing units in Manhattan and the 
number of public housing units in the Bronx for 2021.  
 
First, input the data file and keep those sample units in the domain of interest. For our 
example, the domains of interest are 1) the public housing units in Manhattan and 2) the public 
housing units in the Bronx. In Figure 4.2.1, we start by keeping only those sample HUs in the 
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domains of interest. For 2021, there are 239 completed interviews that are public housing in 
Manhattan, and 208 completed interviews that are public housing in the Bronx.  
 

Figure 4.2.1: SAS Code for Flagging Domain of Interest 
 
* Subset to only public housing units in Manhattan. ; 
data data5 ; 
 set HU21 ; 
 where boro=3 and csr=5; 
run ;  
 
* Subset to only public housing units in the Bronx. ; 
data Data6 ; 
 set HU21 ; 
 where boro=1 and csr=5; 
run;  
 

 
Next, Figure 4.2.2 shows how to calculate the sample estimate and replicate estimates of the 
number of public housing units in Manhattan, as well as the Bronx. Then, we merge those files 
to get the differences.  
 

Figure 4.2.2: SAS Code for Estimating Variance of a Difference 
 
* Manhattan; 
proc means data=data5 sum noprint ;  
 * The sample estimate and the replicate estimates. ; 
 var FW fw1-fw80 ;  
 output out=data7 sum=est1 rw1-rw80 ;  
run ; 
 
* The Bronx. ; 
proc means data=data6 sum noprint ;  
 var FW fw1-fw80 ;  
 output out=Data8 sum=est2 rw2_1-rw2_80 ;  
run ; 
 
* Merge the two files and get their differences. ; 
Data Data9 (keep = diff0 diff1-diff80) ; 
 merge data7 Data8 ; 
 array diff(80) diff1-diff80 ; 
 array rw2_(80) rw2_1-rw2_80 ; 
 array rw(80) rw1 - rw80 ; 
 diff0=est1-est2 ; 
 do i=1 to 80 ; 
  diff(i)=rw(i)-rw2_(i) ; 
  end; 
run ; 
 

 
Last, Figure 4.2.3 shows how to apply Equation (2.1) to calculate the sample estimate and the 
replicate estimates of the difference. 
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Figure 4.2.3: SAS Code for Estimating Variance of a Difference 
 
data Data10 (keep=diff0 var se) ; 
 set Data9 end=eof ;  
 * Fill array with the replicate means ; 
 array diff{80} diff1-diff80 ;   
 * Fill array with the squared diffs. ; 
 array sdiffsq{80} sdiffsq1-sdiffsq80 ;  
 do j = 1 to 80 ; 
  sdiffsq{j} = (diff{j} - diff0)**2 ; 
  end ;  
 * Sum the squared diffs. ; 
 totdiff = sum(of sdiffsq1-sdiffsq80) ; 
 var = (4/80) * totdiff ; 
 se = var**(0.5) ; 
 output ; 
run ; 
 
proc print data=Data10 noobs ; 
 var diff0 se ;  
 format diff0 se comma15.0 ; 
run ; 
 

 
The SAS code of Figures 4.2.1 - 4.2.3 generates the output of Figure 4.2.4. 
 

Figure 4.2.4: SAS Output for Estimating Variance of a Difference 
 

 

  

 

 Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 
 
The difference between the number of public housing units in Manhattan and the Bronx in 
2021 is 7,810, with an estimated standard error of 604.  
 
Example 4.3. Estimating the Variance of a Mean 
 
In this example, we will show how to estimate the variance of a mean. The variable of interest 
will be the average gross rent of renter-occupied HUs. Since we do not know the true total 
number of renter-occupied HUs in NYC, the mean in this case is a special case of the ratio 
estimator. Example 4.6 will explore ratio estimation in more detail.  
 
An estimated ratio from a survey, defined as 𝑅𝑅� = 𝑌𝑌� 𝑋𝑋�⁄ , is a nonlinear statistic of two estimated 
totals 𝑌𝑌�  and 𝑋𝑋�. Replicate weights are especially suited for estimating the variance of nonlinear 
statistics. In this example, we estimate the variance of a mean estimator 𝑌𝑌�� = ∑𝑌𝑌� 𝑁𝑁�⁄ . 
 
The first step of calculating the variance of a mean with replication is to calculate the mean for 
each replicate. Figure 4.3.1 shows how this can be done. 
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Figure 4.3.1: SAS Code for Estimating Variance of a Mean (Step1 &2) 

 
* Subset the dataset to only renter-occupied HUs  
 with valid gross rent. ; 
Data Data13; 
 set HU21; 
 where tenure=1 and GRENT not in (-2,-1); 
 rename Grent=rent; 
run; 
 
* This empty data set is produced for the merge later. ; 
data Data14 ; 
 length mean0-mean80 8. ; 
run; 
* Estimate the replicate estimates for 80 replicates ; 
%macro repss(rep) ; 
proc means data=Data13 mean noprint ; 
 weight fw&rep. ; 
 var rent ;  
 output out=datal&rep. mean=mean&rep. ;  
run; 
 
data Data14 ; 
 merge Data14 datal&rep. ; 
run ; 
%mend repss ; 
 
%macro doit; 
 %do i=0 %to 80 ; 
  %repss(&i.) ; 
  %end; 
%mend doit ; 
 
%doit ; 
 

 
Finally, we apply Equation (2.1) to calculate the replicate variance. Figure 4.3.2 shows how this 
can be done with SAS. 
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Figure 4.3.2: SAS Code for Estimating Variance of a Mean (Step 3) 
 
* Apply Step 3 to the replicate estimates and  
 estimate the variance. ; 
 
data Data15 (keep=mean0 var se) ; 
 set Data14 end=eof ;  
 * Fill array with the replicate means ; 
 array mean{80} mean1-mean80 ;   
 * Fill array with the squared diffs. ; 
 array sdiffsq{80} sdiffsq1-sdiffsq80;  
 do j = 1 to 80 ; 
  sdiffsq{j} = (mean{j} - mean0)**2 ; 
  end;  
 * Sum the squared diffs. ; 
 totdiff = sum(of sdiffsq1-sdiffsq80) ; 
 var = (4/80) * totdiff ; 
 se = var**(0.5) ; 
 output ; 
run ; 
 
proc print data=Data15 noobs ; 
 var mean0 se ;  
 format mean0 se 8.2 ; 
run ; 
 

 
The SAS code of Figures 4.3.1 - 4.3.2 generates the output of Figure 4.3.3. 
 

Figure 4.3.3: SAS Output for Estimating Variance of a Mean 

 
Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 

 
The average gross rent for renter-occupied housing units in NYC for 2021 is $1,727 with a 
standard error of $16. This matches the estimate and standard error calculated using the SAS 
PROC SURVEYMEANS procedure in Example 3.1. 
 
 
Example 4.4. Estimating the Variance of a Median 
 
This example demonstrates how to estimate the variance of a median. The specific statistic of 
interest is the median gross rent for renter-occupied housing units in NYC for 2021. 
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Estimating the variance of a median is generally the same as a mean in that we need to 
calculate the median for every replicate and then apply Equation (2.1).3 The first and second 
steps are to calculate the sample estimate and the replicate estimates of the median. The third 
step is to apply Equation (2.1) to the sample estimate and replicate estimates. Figure 4.4.1 
shows how this can be done with SAS. Since the domain of interest is the same as the previous 
example, we can use dataset Data13 from Example 4.3. 
 

Figure 4.4.1: SAS Code for Estimating Variance of a Median 
 
* This empty data set is produced for the merge later. ; 
data Data16 ; 
 length med0-med80 8. ; 
run; 
 
* Steps 1 & 2: Estimate the replicate estimates for replicates 0 to 80. ; 
%macro repss(rep) ; 
proc means data=Data13 median noprint ;  
 weight fw&rep. ; 
 var rent ;  
 output out=datal&rep. median=med&rep. ;  
run ; 
 
data Data16 ; 
 merge Data16 datal&rep. ; 
run ; 
 
%mend repss ; 
%macro doit ; 
 %do i=0 %to 80 ; 
  %repss(&i) ; 
  %end ; 
%mend doit ; 
%doit ; 
 
* Apply Step 3 to the replicate estimates and estimate the variance. ; 
data Data17 (keep=med0 var se) ; 
 set Data16 end=eof ;  
 * Fill array with the replicate means ; 
 array med{80} med1-med80 ;   
 * Fill array with the squared diffs. ; 
 array sdiffsq{80} sdiffsq1-sdiffsq80 ;  
 do j = 1 to 80 ; 
  sdiffsq{j} = (med{j} - med0)**2 ; 
  end ;  
 * Sum the squared diffs. ; 
 totdiff = sum(of sdiffsq1-sdiffsq80) ; 
 var = (4/80) * totdiff ; 
 se = var**(0.5) ; 

 
3  The main difference when estimating percentiles versus moment-based statistics is that there are several 

methods for estimating percentiles, whereas moment-based statistics generally have a small set of accepted 
estimators. This guide uses the default SAS estimator of weighted medians, described here: 
https://support.sas.com/documentation/cdl/en/proc/61895/HTML/default/viewer.htm#a002473330.htm#a000
619488 
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Figure 4.4.1: SAS Code for Estimating Variance of a Median 
 output ; 
run ; 
 
proc print data=Data17 noobs ; 
 var med0 se ; 
 format mean0 se 8.2 ; 
run ;  
 

 
The SAS code of Figure 4.4.1 generates the output of Figure 4.4.2. 
 

Figure 4.4.2: SAS Output for Estimating Variance of a Median 

 
Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 

 
The estimated median gross rent for renter-occupied housing units in NYC for 2021 is $1,575 
with a standard error of $14.90.  
 
Example 4.5. Estimating the Variance of a Regression Coefficient 
 
Instead of using PROC SURVEYREG to correctly estimate the regression coefficient estimates 
and their variances, this example shows how we can do it directly. We do this by calculating 
parameter estimates for all replicate weights with PROC REG and the sample weights. This 
produces the correct replicate estimates. Then we apply Step 3 and calculate the squared 
differences between the estimates. Figure 4.5.1 shows how this can be done. Note that we are 
using the Data13 dataset from a previous example, since the domain of interest is the same.   
 

Figure 4.5.1: SAS Code for Estimating Variance of a Regression Coefficient 
 
* This empty data set is produced for the merge later. ; 
data Data19 ; 
 length parmest0-parmest80 8. ; 
run ; 
 
* Steps 1 & 2: Estimate the replicate estimates for replicates 0 to 80; 
%macro repss(rep) ; 
proc reg data=Data13 noprint outest= MyParmEst&rep. tableout; 
 model rent = HHFIRSTMOVEIN ; 
 weight fw&rep. ; 
quit; 
 
proc transpose data=myparmest&rep.  
 out=myparmest&rep.a ; 
RUN; 
 
Data myparmest&rep.a; 
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Figure 4.5.1: SAS Code for Estimating Variance of a Regression Coefficient 
 set myparmest&rep.a ; 
 drop _NAME_ _lABEL_ COL3-COL6; 
 RENAME COL1=parmest&rep. COL2=se&rep. ; 
 if _n_=3 then output; 
run; 
data Data19 ; 
 merge Data19 myparmest&rep.a ; 
run ; 
 
%mend repss ; 
%macro doit ; 
 %do i=0 %to 80 ; 
  %repss(&i.) ; 
  %end ; 
%mend doit ; 
%doit ;  
 
* Apply Step 3 to the replicate estimates and estimate the variance.; 
data data20 (keep=parmest0 var se) ; 
 set Data19 end=eof ;  
 * Fill array with the replicate means ; 
 array parmest{80} parmest1-parmest80 ;   
 * Fill array with the squared diffs. ; 
 array sdiffsq{80} sdiffsq1-sdiffsq80 ;  
 do j = 1 to 80 ; 
  sdiffsq{j} = (parmest{j} - parmest0)**2 ; 
  end ;  
 * Sum the squared diffs. ; 
 totdiff = sum(of sdiffsq1-sdiffsq80) ; 
 var = (4/80) * totdiff ; 
 se = var**(0.5) ; 
 output ; 
run; 
 
proc print data=data20 noobs ; 
 var parmest0 se; 
 format parmest0 se comma8.2 ; 
run ; 
 

 
The SAS code of Figure 4.5.1 generates the output of Figure 4.5.2. 
 

Figure 4.5.2: SAS Output for Estimating Variance of a Regression Coefficients 

 
Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 

 
The standard error for the regression estimator in Figure 4.5.2 is the same as the estimate from 
Example 3.3. 
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Example 4.6. Estimating the Variance of a Longitudinal Change 
 
Both this example and the next consider statistics that measure longitudinal change. This 
example will consider a statistic that measures the change of a rate between two cycles of the 
estimates. Example 4.7 will consider an estimate of percent of change that is calculated at the 
HU level. 
 
In this example, we show how to estimate the variance of a difference in proportion. 
Specifically, we are interested in the estimated difference in gross vacancy rates across two 
survey cycles. We write this as �̂�𝑝𝑡𝑡 = 𝑋𝑋�𝑡𝑡 /𝑁𝑁�𝑡𝑡 ∗ 100, where 𝑋𝑋�𝑡𝑡 is the estimator of the total 
number of vacant HUs at time t, and 𝑁𝑁�𝑡𝑡 is the estimator of the total number of HUs at time t. 
 
We’ll measure the difference in the gross vacancy rate between 2021 and 2017 in this example, 
so the statistic of interest is: 
 

�̂�𝛥𝑡𝑡=2021 =
𝑋𝑋�𝑡𝑡=2021
𝑁𝑁�𝑡𝑡=2021

∗ 100 −
𝑋𝑋�𝑡𝑡=2017
𝑁𝑁�𝑡𝑡=2017

∗ 100 

 
 
To estimate the variance of �̂�𝛥𝑡𝑡 with replicate weights, we first calculate all the pieces of �̂�𝛥𝑡𝑡=2021 
for each of the 80 replicates, making 80 replicate estimates of �̂�𝛥𝑡𝑡=2021, repeat those steps for 
2017, and then apply Equation (2.1). Figure 4.6.1 shows how to do this with SAS. 
 

Figure 4.6.1: SAS Code for Estimating Variance of a Longitudinal Change 
 
*Define Vacant and Occupied HUs. ; 
data temp1 ;  
 set HU21 ; 
 if Occ=1 then type='1'; * Occupied HUs; 
 else if Occ in (2,3,4)  then type='2'; * X-hat 2021* vacant HUs ; 
 * Type 1 & 2 makes total number HUs, N-hat ; 
run; 
 
data temp2 ;  
 set HU17 ; 
 if recid=”1” then type='1' ; * Occupied HUs ; 
 else if recid=”3” then type='2' ; * X-hat 2017* vacant HUs ; 
 * Type 1 & 2 makes total number HUs, N-hat; 
run; 
 
* This empty data set is produced for the merge later. ; 
data data21 ;  
 length diff0-diff80 8. ; 
run ; 
 
* Estimate the replicate estimates for replicates 0-80. ; 
%macro repssss(rep) ;  
* Get denominator N-hat 2021. ;  
proc means data= temp1 noprint ;  
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Figure 4.6.1: SAS Code for Estimating Variance of a Longitudinal Change 
 where type in ('2','1') ;  
 var fw&rep.; 
 output out=den21rep&rep. sum=den21rep&rep. ;  
run ; 
 
* Get numerator X-hat 2021. ; 
proc means data= temp1 noprint ;  
 where type in ('2') ;  
 var fw&rep.; 
output out=num21rep&rep. sum=num21rep&rep. ;  
run ; 
* Get denominator N-hat 2017. ;  
proc means data= temp2 noprint ;  
 where type in ('2','1') ;  
  var fw&rep.; 
 output out=den17rep&rep. sum=den17rep&rep. ;  
run ; 
 
* Get numerator X-hat 2017. ; 
proc means data= temp2 noprint ;  
 where type in ('2') ;  
 var fw&rep.; 
 output out=num17rep&rep. sum=num17rep&rep.;  
run ; 
 
* Merge the replicate estimates of each year, and get difference  
 in vacancy rate by replicate. ; 
data datamrep&rep.; 
 merge num17rep&rep. num21rep&rep. den17rep&rep. den21rep&rep. ; 
 diff&rep. = (num21rep&rep./den21rep&rep.)*100 - 
(num17rep&rep./den17rep&rep.)*100 ; 
 keep diff&rep.; 
run ; 
 
data data21 ; 
 merge data21 datamrep&rep. ; 
run ; 
%mend repssss ; 
 
%macro doit ; 
 %do i=0 %to 80 ; 
  %repssss(&i.) ; 
  %end; 
%mend doit ; 
%doit ; 
 
* Apply Step 3 to the replicate estimates and estimate the variance. ; 
data data22 (keep=diff0 var se) ; 
 set data21 end=eof ;  
 * Fill array with the replicate means. ; 
 array diff{80} diff1-diff80 ;   
 * Fill array with the squared diffs. ; 
 array sdiffsq{80} sdiffsq1-sdiffsq80 ;  
 do j = 1 to 80 ; 
  sdiffsq{j} = (diff{j} - diff0)**2 ; 
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Figure 4.6.1: SAS Code for Estimating Variance of a Longitudinal Change 
  end ;  
 * Sum the squared diffs. ; 
 totdiff = sum(of sdiffsq1-sdiffsq80) ; 
 var = (4/80) * totdiff ; 
 se = (var)**(0.5) ; 
 output ; 
run ; 
 
proc print data=data22 noobs ;  
 var diff0 se ; 
 format diff0 se 8.4 ;  
run ; 
 
 
The SAS code of Figure 4.6.1 produces the output in Figure 4.6.2. 
 

Figure 4.6.2: SAS Output for Estimating Variance of a Longitudinal Change 

 
Source: U.S. Census Bureau, 2017 and 2021 New York City Housing and Vacancy Survey. 

 
Thus, the total gross vacancy rate in NYC for 2021 has increased 3.01 percent from 2017 with a 
standard error of 0.40 percent.  
 
 
Example 4.7. Estimating the Variance of a Percent Change in Two Cycles of NYCHVS 
 
This example considers median gross rent and how it changes over time. Both the rate of 
change and resulting variance are calculated.  
 
The statistic of interest is the percent change in the median gross rent from 2017 to 2021. Let 
𝑀𝑀�𝑡𝑡 be the estimator of the median gross rent at time t. The statistic of interest is: 
  

%�̂�𝛥𝑡𝑡 =
𝑀𝑀�𝑡𝑡 − 𝑀𝑀�𝑡𝑡−1
𝑀𝑀�𝑡𝑡−1

 

 
To estimate the variance of %�̂�𝛥𝑡𝑡, we use the 2017 replicate weights and calculate 80 replicate 
estimates of M� t=2017 and similarly use the 2021 replicate weights and calculate 80 replicate 
estimates of M� t=2021. Next, we merge the replicate estimates of M� t=2017 and M� t=2021 by 
replicate and calculate 80 replicate estimates of %�̂�𝛥𝑡𝑡. The final step is to apply Equation (2.1) to 
the replicate estimates of %�̂�𝛥𝑡𝑡. 
 
Figure 4.7.1 shows how this can be done with SAS. 
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Figure 4.7.1: SAS Code for Estimating Variance of a Rate of Change 
 
* Subset to renter-occupied units with valid rent. ; 
Data D2021; 
 set HU21; 
 where occ=1 and tenure=1 and Grent not in (-2,-1); 
run; 
 
Data D2017 ; 
 set HU17 ; 
 where sc116 in ('2','3') and uf26 not in ('99999') ; 
 rent17=input(uf26,8.) ; 
run; 
 
* This empty data set is produced for the merge later. ; 
data data23 ;  
 length diff0-diff80 8. ; 
run ; 
 
* Steps 1 & 2: Estimate the replicate estimates for replicates 0-80. ; 
%macro repssss(rep) ;  
* Estimate theta for each year. ; 
proc means data= d2021 median noprint ;  
 weight fw&rep. ; 
 var Grent ;  
 output out=datam21rep&rep. median=median21rep&rep. ;  
run ; 
 
proc means data= d2017 median noprint ;  
 weight fw&rep. ; 
 var rent17 ;  
 output out=datam17rep&rep. median=median17rep&rep. ;  
run ; 
 
* Merge the replicate estimates of each year by replicate. ; 
data datamrep&rep. ; 
 merge datam17rep&rep. datam21rep&rep. ; 
 diff&rep. = (median21rep&rep.-median17rep&rep. )/median17rep&rep.; 
 keep diff&rep. ; 
run ; 
 
data data23 ; 
 merge data23 datamrep&rep.; 
run ; 
 
%mend repssss ; 
 
%macro doit ; 
 %do i=0 %to 80 ; 
  %repssss(&i.) ; 
  %end ; 
%mend doit ; 
%doit ; 
 
* Apply Step 3 to the replicate estimates and estimate the variance. ; 
data data24 (keep=diff0 var se) ; 
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Figure 4.7.1: SAS Code for Estimating Variance of a Rate of Change 
 set data23 end=eof ;  
 * Fill array with the replicate means. ; 
 array diff{80} diff1-diff80 ;   
 * Fill array with the squared diffs. ; 
 array sdiffsq{80} sdiffsq1-sdiffsq80 ;  
 do j = 1 to 80 ; 
  sdiffsq{j} = (diff{j} - diff0)**2 ; 
  end ;  
 * Sum the squared diffs. ; 
 totdiff = sum(of sdiffsq1-sdiffsq80) ; 
 var = (4/80) * totdiff ; 
 se = (var)**(0.5) ; 
 output ; 
run ; 
 
proc print data=data24 noobs ;  
 var diff0 se ; 
 format diff0 se 8.4 ;  
run ; 
 

 
 
The SAS code of Figure 4.7.1 produces the output in Figure 4.7.2. 
 

Figure 4.7.2: SAS Output for Estimating Variance of a Rate of Change 
 

 
 Source: U.S. Census Bureau, 2017 and 2021 New York City Housing and Vacancy Survey. 

 
So the median gross rent in NYC for 2021 has increased 8.6 percent from 2017, with a standard 
error of 1.2 percent.  
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5. Examples of Calculating Variances with STATA 
 
 
Data users can also use STATA to calculate variances for NYCHVS. This section reviews the same 
examples as Section 4, this time using STATA. STATA produces the exact same point estimates 
and the same standard errors as the SAS SURVEY procedures and Base SAS methods. 
 
Example 5.1. Estimating the Variance of a Total 
 
When reading NYCHVS PUFs into STATA, first download and save these CSV files (mentioned in 
page 7) provided on the Census Bureau’s NYCHVS website at: 
https://www.census.gov/programs-surveys/nychvs/data/datasets.html. Then, use the 
command lines given in Figure 5.1.1 in STATA to import these files and update the input-related 
items in the code (highlighted in yellow in Figure 5.1.1).  
 
For housing unit estimates, users need to download All Units Records (CSV file #1), Occupied 
Records (CSV file #2) and Vacant Records (CSV file #4), and then combine the three files into 
one.  
 
Figure 5.1.1 shows the code for reading in Occupied HUs and Vacant HUs data file (CSV file #2 
and #4), appending them together, and then merging with All Units data file (CSV file #1).  
 

Figure 5.1.1: Importing the Public Use Files In STATA 
 
cd " LOCATION OF CSV FILES” 
 
import delimited "vacant_puf_21.csv", clear 
save "vacant_puf_21.dta", replace 
import delimited "occupied_puf_21.csv", clear 
append using "vacant_puf_21.dta" 
drop fw* 
save "occvac_puf_21.dta", replace 
import delimited "allunits_puf_21.csv", clear 
merge 1:1 control using "occvac_puf_21.dta" 
 
save “hu21.dta”, replace 
 

 
For generating STATA datasets for Person Records (CSV file #3), use the import code used for 
the HUs records and update it for Person file. 
 
For generating STATA datasets for prior years NYCHVS PUFs, go to the same website mentioned 
above, click the “2017” or different year tab. In 2017 and prior, the PUFs were given as text 
files, and a STATA import program was provided along with the data files. Users need to 
download both the data files, the STATA import program, and update the input-related items in 
the code (highlighted in yellow in Figure 5.1.2). Run the part of the code for Occupied Records, 

https://www.census.gov/programs-surveys/nychvs/data/datasets.html
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and/or Person Records, and/or Vacant Records, to generate local STATA datasets. Figure 5.1.2 
shows the part of the code for reading in Occupied HUs data file for 2017. Figure 5.1.3 shows 
the STATA code for appending the Occupied Records after saving the Vacant Records. The 2017 
HU dataset is saved as HU17 and will be used in later examples.  
 

Figure 5.1.2: STATA Code (Partial) for Reading in the Public Use Files For 2017 & Prior 
 
*2017 NYCHVS STATA IMPORT PRORGRAM 
 
cd "LOCATION OF TEXT FILES" 
 
*OCCUPIED DATA FILE 
clear 
infix  /// 
recid 1 /// 
 
***SEE THE REST OF THE STATA CODE IN STATA IMPORT PROGRAM FOUND IN THE CENSUS BUREAU’S NYCHVS 
WEBSITE MENTIONED IN PREVIOUS PAGE** 
 

 
Figure 5.1.3: STATA Code for Append Two Files Together for Housing Unit Estimates 

 
* Append Occupied Records with Vacant Records  
 
append using “nychvs_17_occ.dta”  
 

 
Note in 2017 and prior, the final weights and replicate weights are stored as character variables 
with five implied decimal places. Users need to convert them before doing any analysis. Figure 
5.1.4 shows how this be done in STATA. 
 

Figure 5.1.4: STATA Code for Converting Weights with Implied Decimal Places 
 
* Dividing weights by 100,000 
 
replace fw=fw/100000 
 
foreach x of var fw1-fw80 { 
 replace `x' = `x' / 100000 
} 
 
save “HU17.dta”, replace 
 

 
 
After local STATA datasets are created, run the code in Figure 5.1.5 before running any example 
analysis at the household level. 
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Figure 5.1.5: Reading in the Data File into STATA and Setting Survey Design Parameters 
 
cd "DIRECTORY PATH OF NYCHVS DATA" 
 
* First, household level data: 
use "HU21.dta", clear 
 
* Setting survey design parameters: 
svyset[pweight=fw], vce(sdr) sdrweight(fw1-fw80) fay(.5)mse 
 

 
In this example, we estimate the total occupied housing units in NYC and use the replicate 
weights to calculate the variance. This is done by first identifying the domain of interest and 
then running the total and variance calculation by using the STATA code in Figure 5.1.6. The 
resulting output is provided in Figure 5.1.7.  
 
Note that both vce(brr) and vce(sdr) options generate the same estimate and standard 
errors. The only difference between those two options is the first one uses a t-distribution and 
the second uses a z-distribution; thus, their confidence intervals are slightly different. NYCHVS 
uses SDR, so users should use vce(sdr) option. For a more detailed explanation of z-
distribution and t-distribution, please refer to Section 8 on page 63.  
 

Figure 5.1.6: STATA Code for Estimating Variance of a Total 
 
* Generate occupied housing unit dummy var: 
gen occ_final = (occ == 1) 
 
* Now estimating total: 
svy: total occ_final 
 

 
 
The STATA code of Figure 5.1.6 generates the output of Figure 5.1.7. 
 

Figure 5.17: STATA Output for Estimating Variance of a Total  
Survey: Total estimation       Number of obs  =   8,394 
                              Population size =   3,644,065 
                                Replications  =     80 
 
-------------------------------------------------------------- 
            |            SDR * 
            |   Total  Std. Err.   [95% Conf. Interval] 
-------------+------------------------------------------------ 
  occ_final |  3157105  13438.76    3130766   3183445 
-------------------------------------------------------------- 

Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 
 
From Figure 5.1.7, the estimate of total occupied housing units in NYC is 3,157,105 with an 
estimated standard error of 13,439. The estimates and standard error from STATA are the same 
as the results produced by SAS in Example 4.1. Unlike SAS, the [svy] sdr command in STATA 
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displays the 95 percent confidence intervals by default – for more information on the 
confidence intervals, see Section 8.  
 
Example 5.2. Estimating the Variance of a Difference 
 
In this example, we are interested in calculating the difference between the number of public 
housing units in Manhattan and the number of public housing units in the Bronx for 2021. 
 
First, we define the domains of interest individually and then define the difference. After we do 
this, we calculate the variance using the replicate weights in the STATA code defined in Figure 
5.2.1. 
 

Figure 5.2.1: STATA Code for Estimating Variance of a Difference 
 
* Bronx: 
gen ph_bronx = ((csr == 5) & (boro == 1)) 
 
* Manhattan: 
gen ph_man = ((csr == 5) & (boro == 3)) 
 
* Creating difference between these: 
gen stable_diff = ph_man - ph_bronx 
 
* Create proper subdomain: 
gen ph_boro = (((csr == 5) & boro == 3) | ((csr == 5) & (boro == 1))) 
 
* Now estimating differences between these: 
svy, subpop(ph_boro): total stable_diff 
 

  
 
The STATA code of Figure 5.2.1 generates the output of Figure 5.2.2. 
 

Figure 5.2.2: STATA Output for Estimating Variance of a Difference 
Survey: Total estimation       Number of obs  =   8,394 
                              Population size =   3,644,065 
                              Subpop. no. obs =    447 
                                Subpop. size  =    95,730.963 
                                Replications  =    80 
 
-------------------------------------------------------------- 
             |            SDR * 
             |   Total  std. err.   [95% conf. interval] 
-------------+------------------------------------------------ 
 stable_diff |  7809.567  603.7287    6626.28  8992.853 
-------------------------------------------------------------- 

Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 
 



 37 

From Figure 5.2.2, we can see the estimated difference of public housing units in Manhattan 
and the Bronx is 7,810 with the standard error of 604. These results are the same as produced 
with SAS – see Example 4.2. 
 
Example 5.3. Estimating the Variance of a Mean 
 
For this example, we are estimating the average gross rent for renter-occupied housing units in 
NYC for 2021 and its variance. This can be easily done in STATA by first identifying the domains 
of interest and using the STATA code to calculate the variance using the replicate weights. The 
STATA code is provided in Figure 5.3.1. 
 

Figure 5.3.1: STATA Code for Estimating Variance of a Mean 
 
gen gross_rent = GRENT  
replace gross_rent = . if ((GRENT == -2) | (GRENT == -1)) 
 
* Now estimating mean: 
Svy: mean gross_rent 
 

 
The STATA code of Figure 5.3.1 generates the output of Figure 5.3.2. 
 

Figure 5.3.2: STATA Output for Estimating Variance of a Mean 
 
Survey: Mean estimation         Number of obs  = 4,424 
                     Population size = 1,853,923 
                       Replications  = 80 
 
    
               SDR * 
         Mean std. err.   [95% conf. interval] 
    
gross_rent 1726.739 15.82925   1695.714    1757.764 
    

Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 
 
From Figure 5.3.2, we can see that the average NYC gross rent calculated using STATA is $1,727 
and the corresponding standard error is $16, both of which are the same as produced with SAS 
– see Examples 3.1 and 4.3. 
 
Example 5.4. Estimating the Variance of a Median 
 
In this example, we are interested to calculate the median gross rent and its standard error for 
renter-occupied housing units in NYC for 2021. Figure 5.4.1 shows the STATA code for 
calculating variance of a median. 
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Figure 5.4.1: STATA Code for Estimating Variance of a Median 
 
quietly summarize gross_rent [w=fw], detail 
scalar rent21 = r(p50) 
 
* Matrix to store 2021 estimates: 
matrix rent_ests_21 = (rent21) 
 
* Now looping through all repweights for 2021: 
foreach x of var fw1-fw80 { 
 
 quietly summarize gross_rent [w=`x'], detail 
 scalar rent21_ith = r(p50) 
 
 * Adding to matrix that stores 2021 estimates: 
 matrix rent_ests_21 = (rent_ests_21 \ rent21_ith) 
} 
 
* Now getting squared differences for variance estimation: 
scalar summed_variance = 0 
quietly forvalues i = 2/81 { 
 
 scalar sq_pt_est_med = (rent_ests_21[`i',1] - rent_ests_21[1,1])^2 
 scalar summed_variance = summed_variance + sq_pt_est_med 
} 
 
scalar summed_variance = (4/80) * summed_variance 
scalar se_est = (summed_variance)^(0.5) 
scalar point_est = rent_ests_21[1,1] 
 
* Final Point Estimate: 
display point_est 
 
* Final Estimated Standard Error: 
display se_est 
 

 
The STATA code of Figure 5.4.1 generates the output of Figure 5.4.2. 
 

Figure 5.4.2: STATA Output for Estimating Variance of a Median 
 
* Final Point Estimate: 
. display point_est 
1575 
 
. * Final Estimated Standard Error: 
. display se_est 
14.899664 
 
Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 

 
The estimate for median gross rent for renter-occupied housing units in NYC is $1,575, with 
standard error of $15. The results are the same as produced by SAS – see Example 4.4. 
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Example 5.5. Estimating the Variance of a Regression Coefficient 
 
For this example, we are interested in modeling the 2021 gross rent of renter-occupied housing 
units using the year the householder moved into the housing unit.  
 
In Figure 5.5.1, we used the subpop instead of the if option. Either would produce the same 
variance estimates – see also “Cautions about Domain Analysis Don’t Apply” in Section 2.  
 

Figure 5.5.1: STATA Code for Estimating Variance of a Regression Coefficient 
 
gen renters = (rent_amount != -2) & (grent > 0) 
 
* Linear regression model: 
svy, subpop(renters): reg GRENT HHFIRSTMOVEIN 
 
 
The STATA code of Figure 5.5.1 generates the output of Figure 5.5.2. 
 

Figure 5.5.2: STATA Output for Estimating Variance of a Regression Coefficient 
 

Survey: Linear regression            Number of obs   =   7,089 
                                      Population size  = 3,157,105 

                                   Subpop. no. obs  =   4,424 
                                      Subpop. size   = 1,853,923 

                                   Replications   =     80 
                                     Wald chi2(1)   =   352.38 
                                     Prob > chi2    =   0.0000 
                                      R-squared     =   0.0734 

 
             |            SDR * 
       GRENT |   Coef.   Std. Err.   z  P>|z|   [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
HHFIRSTMOV~N |   23.64732  1.240863  19.06  0.000  21.21527  26.07937 
       _cons | -45766.55  2486.632  -18.41  0.000  -50640.26  -40892.84 
------------------------------------------------------------------------------ 

Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 
 
From Figure 5.5.2, we can see that the calculated regression coefficient is 23.65 and the 
standard error is 1.24. The estimates are the same produced by SAS – see Examples 3.3 and 4.5.  
 
Example 5.6. Estimating the Variance of a Longitudinal Change 
 
Both this example and the next consider statistics that measure longitudinal change. This 
example will consider a statistic that measures the change of a rate between two cycles of the 
estimates. Example 5.7 will consider an estimate of percent of change that is calculated at the 
HU level. 
 
In this example, we show how to estimate the variance of a difference in proportion. 
Specifically, we are interested in the estimated gross vacancy rate or �̂�𝑝𝑡𝑡 = 𝑋𝑋�𝑡𝑡 /𝑁𝑁�𝑡𝑡 ∗ 100, where 
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𝑋𝑋�𝑡𝑡 is the estimator of the total number of vacant HUs at time t, and 𝑁𝑁�𝑡𝑡 is the estimator of the 
total number of HUs at time t. 
 
Further, we are really interested in the difference in the gross vacancy rate between 2021 and 
2017, so the statistic of interest is: 
 

�̂�𝛥𝑡𝑡=2021 =
𝑋𝑋�𝑡𝑡=2021
𝑁𝑁�𝑡𝑡=2021

∗ 100 −
𝑋𝑋�𝑡𝑡=2017
𝑁𝑁�𝑡𝑡=2017

∗ 100 

 
To estimate the variance of �̂�𝛥𝑡𝑡 with replicate weights, we first calculate all the pieces of �̂�𝛥𝑡𝑡=2021 
for each of the 80 replicates, making 80 replicate estimates of �̂�𝛥𝑡𝑡=2021, repeat those steps for 
2017, and then apply Equation (2.1). Figure 5.6.1 shows how we do this with STATA. 
 

Figure 5.6.1: STATA Code for Estimating Variance of a Longitudinal Change 
 
* Read in 2021 data: 
use "HU21.dta", clear 
 
* Generate vacancy variable: 
gen vac = (occ != 1 ) 
 
* Calculating 2021 totals: 
quietly summarize fw if vac == 1 
scalar vac_est21 = r(sum) 
 
quietly summarize fw 
scalar tot_est21 = r(sum) 
 
scalar est21 = (vac_est21 / tot_est21) * 100 
 
* Creating matrix that stores 2021 estimates: 
matrix all_ests_21 = (est21) 
 
* Now going through replicates: 
foreach x of var fw1-fw80 { 
 
 quietly summarize `x' if vac == 1 
 scalar vac_est21_i = r(sum) 
 
 quietly summarize `x' 
 scalar tot_est21_i = r(sum) 
 
 * i_th replicate estimate for 2021 portion: 
 scalar est21_i = (vac_est21_i / tot_est21_i) * 100 
 
 * Adding to matrix that stores 2021 estimates: 
 matrix all_ests_21 = (all_ests_21 \ est21_i) 
} 
 
* Now reading in 2017 data: 
import delimited "hu17.csv", clear 
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Figure 5.6.1: STATA Code for Estimating Variance of a Longitudinal Change 
* Generate vacancy variable: 
gen vac = (recid == 3) 
 
* Calculating 2017 totals: 
quietly summarize fw if vac == 1 
scalar vac_est17 = r(sum) 
 
quietly summarize fw 
scalar tot_est17 = r(sum) 
 
scalar est17 = (vac_est17 / tot_est17) * 100 
 
* Creating matrix that stores 2017 estimates: 
matrix all_ests_17 = (est17) 
 
* Now going through replicates: 
foreach x of var fw1-fw80 { 
 
 quietly summarize `x' if vac == 1 
 scalar vac_est17_i = r(sum) 
 
 quietly summarize `x' 
 scalar tot_est17_i = r(sum) 
 
 * i_th replicate estimate for 2017 portion: 
 scalar est17_i = (vac_est17_i / tot_est17_i) * 100 
 
 * Adding to matrix that stores 2017 estimates: 
 matrix all_ests_17 = (all_ests_17 \ est17_i) 
} 
 
* Matrix will point estimates for the sample estimate and all replicates: 
matrix diffs = all_ests_21 - all_ests_17 
 
* Now getting squared differences for variance estimation: 
scalar summed_variance = 0 
quietly forvalues i = 2/81 { 
 
 scalar sq_pt_est_diffs = (diffs[`i',1] - diffs[1,1])^2 
 scalar summed_variance = summed_variance + sq_pt_est_diffs 
} 
 
scalar summed_variance = (4/80) * summed_variance 
scalar se_est = (summed_variance)^(0.5) 
scalar point_est = diffs[1,1] 
 
* Final Point Estimate: 
display point_est 
 
* Final Estimated Standard Error: 
display se_est 
 

The STATA code of Figure 5.6.1 generates the output of Figure 5.6.2. 
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Figure 5.6.2: STATA Output for Estimating Variance of a Longitudinal Change 
 
. * Final Point Estimate: 
. display diffs[1,1] 
3.0067783 
 
. * Final Estimated Standard Error: 
. display se_est 
.40384096 
 

Source: U.S. Census Bureau, 2017 and 2021 New York City Housing and Vacancy Survey. 
 
So, the change in the gross vacancy rate from 2017 to 2021 is a 3.0 percent increase, with a 
standard error of 0.4 percent.  
 
Example 5.7. Estimating the Variance of a Percent Change in Two Cycles of NYCHVS 
 
There are many different statistics that measure the change between two cycles of NYCHVS. 
Differences, percent change, and ratios can be used to measure how much a given statistic 
changed from one cycle of NYCHVS to another. This example considers the housing 
characteristic of the median gross rent and how it can change over time. Both the rate of 
change and resulting variance are demonstrated.  
 
The statistic of interest is the percent change in the median gross rent from 2017 to 2021. Let 
𝑀𝑀�𝑡𝑡 be the estimator of the median gross rent at time t. The statistic of interest is 
  

%�̂�𝛥𝑡𝑡 =
𝑀𝑀�𝑡𝑡 − 𝑀𝑀�𝑡𝑡−1
𝑀𝑀�𝑡𝑡−1

 

 
To estimate the variance of %�̂�𝛥𝑡𝑡, we use the 2021 replicate weights and store 80 replicate 
estimates of M� t=2021 within a matrix, and similarly use the 2017 replicate weights to store 80 
replicate estimates of M� t=2017 in another matrix. Next, we take the difference of these two 
matrices M� t=2021 and M� t=2017 by replicate and then divide each matrix entry by M� t=2017 to get 
our 80 replicate estimates of %�̂�𝛥𝑡𝑡. The final step is to apply Equation (2.1) to the replicate 
estimates of %�̂�𝛥𝑡𝑡. 
 
Figure 5.7.1 shows how this can be done with STATA. 
 

Figure 5.7.1: STATA Code for Estimating Variance of a Rate of Change 
* Read in 2021 data: 
use "HU21.dta", clear 
 
* Generating needed variables - renters and gross rent: 
gen renters = (rent_amount != -2) & (grent > 0) 
gen gross_rent = grent 
replace gross_rent = . if grent <= 0  
 
* Calculating 2021 median gross rent: 
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Figure 5.7.1: STATA Code for Estimating Variance of a Rate of Change 
quietly summarize gross_rent [w=fw] if renters == 1, detail 
scalar rent21 = r(p50) 
 
* Matrix to store 2021 estimates: 
matrix rent_ests_21 = (rent21) 
 
* Now looping through all repweights for 2021: 
foreach x of var fw1-fw80 { 
 
 quietly summarize gross_rent [w=`x'] if renters == 1, detail 
 scalar rent21_ith = r(p50) 
 
 * Adding to matrix that stores 2021 estimates: 
 matrix rent_ests_21 = (rent_ests_21 \ rent21_ith) 
} 
 
* Now to 2017 data: 
import delimited "hu17.csv", clear 
 
* Generating needed variables - renters and gross rent: 
gen renters = (sc116 == 2 | sc116 == 3) & uf26 != 99999 
gen gross_rent = uf26  
 
* Calculating 2017 median gross rent: 
quietly summarize gross_rent [w=fw] if renters == 1, detail 
scalar rent17 = r(p50) 
 
* Creating matrix that stores 2017 estimates: 
matrix rent_ests_17 = (rent17) 
 
* Now looping through all repweights for 2017: 
foreach x of var fw1-fw80 { 
 
 quietly summarize gross_rent [w=`x'] if renters == 1, detail 
 scalar rent17_ith = r(p50) 
 
 * Adding to matrix that stores 2017 estimates: 
 matrix rent_ests_17 = (rent_ests_17 \ rent17_ith) 
} 
 
* Final Matrix - for now storing the numerator of the estimate for 
sample and all replicates: 
matrix med_rent_increase_diff = (rent_ests_21 - rent_ests_17) 
matrix med_rent_increase_est = J(81,1,0) 
 
forvalues i = 1/81 { 
 
 * Converting entries in final matrix to hold final estiamtes for 
full sample and all replicates: 
 matrix med_rent_increase_est[`i',1] = 
med_rent_increase_diff[`i',1] / rent_ests_17[`i',1] 
} 
 
* Now getting squared differences for variance estimation: 
scalar summed_variance = 0 



 44 

Figure 5.7.1: STATA Code for Estimating Variance of a Rate of Change 
quietly forvalues i = 2/81 { 
 
 scalar sq_pt_med_increase_est = (med_rent_increase_est[`i',1] - 
med_rent_increase_est[1,1])^2 
 scalar summed_variance = summed_variance + 
sq_pt_med_increase_est 
} 
 
scalar summed_variance = (4/80) * summed_variance 
scalar se_est = (summed_variance)^(0.5) 
scalar point_est = med_rent_increase_est[1,1] 
 
* Final Point Estimate: 
display point_est 
 
* Final Estimated Standard Error: 
display se_est 
 

 
The STATA code of Figure 5.7.1 generates the output of Figure 5.7.2. 
 

Figure 5.7.2: STATA Output for Estimating Variance of a Rate of Change 
 
. * Final Point Estimate: 
. display point_est 
.0862069 
 
.  
. * Final Estimated Standard Error: 
. display se_est 
.01259001 
 

Source: U.S. Census Bureau, 2017 and 2021 New York City Housing and Vacancy Survey. 
 
Therefore, the median gross rent for NYC in 2021 has increased 8.62 percent from 2017, with a 
standard error of 1.26 percent.  
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6. Examples of Calculating Variances with R  
 
 
R is another statistical package that can calculate variances using replicate weights for the 
NYCHVS. This section is structured similarly to Sections 3, 4, and 5 and uses the same examples 
for calculating variances of a total, difference, mean, median, regression coefficient, 
longitudinal change, and percent change.  
 
Unlike the 2017 version of this Guide, the examples below manually calculate variances for all 
examples. This results in standard error estimates that are identical to those given in SAS and 
STATA. 
 
Example 6.1. Estimating the Variance of a Total 
 
Once data users are in R, some initial code needs to run to set things up for the rest of Section 
6. This includes ensuring the proper R Packages are installed. Our examples use the “rio” , 
“tidyverse”, and “stats” packages. The initial steps in Figure 6.1.1 show how to install the 
survey packages in R.  
 
Data users will need to download the PUFs. For 2021 NYCHVS, all the PUFs are given as CSV 
files, which made it easier for users to import into R. Data users can access the PUFs through 
the Census Bureau’s NYCHVS website at: https://www.census.gov/programs-
surveys/nychvs/data/datasets.html . Use the import function in R to read in all three HU files, 
and then combine them into one file, HU21, which will be the basis for the examples in this 
section. Figure 6.1.1 shows how this is done in R.  
 

Figure 6.1.1: R Code to Importing Public Use Files 
 
# Install survey package with install.packages(“packagename”) if not 
already installed. 
library(rio) 
library(tidyverse) 
library(stats) 
 
# Reading in HU dataset: 
Hu21 <- import("Location of the CSV file/ Allunits_PUF_21.csv", 
header=TRUE) 
 
# Reading in vacant HU dataset: 
hu21vac <- import("Location of the CSV file/ vacant_puf_21.csv", 
header=TRUE) 
 
# Reading in occupied HU dataset: 
hu21occ <- import("Location of the CSV file/ occupied_PUF_21.csv", 
header=TRUE) 
 
 bind_rows(hu21vac) %>% dplyr::select(-c(FW:FW80)) 
hu21 <- hu21 %>% inner_join(hu21occ, by = "CONTROL") 

https://www.census.gov/programs-surveys/nychvs/data/datasets.html
https://www.census.gov/programs-surveys/nychvs/data/datasets.html
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In 2017 and prior, the NYCHVS PUFs were ACSII text files, and there were no column/variable 
names on these files; therefore, data users still need to use either the SAS or STATA Import 
Program provided in the Census Bureau’s NYCHVS website at 
https://www.census.gov/data/datasets/2017/demo/nychvs/microdata.html to read in the 2017 
NYCHVS PUFs into SAS (please see Pages 7-10 for instructions on how to read PUFs into SAS for 
2017 and prior). Once in SAS, data users need to run the code in Figures 2.1.3 and 2.1.4, which 
generates the dataset HU17. Then, users can export the datasets from SAS to CSV format to 
read the file into R. In SAS, run the code in Figure 6.1.2 to convert the SAS dataset HU17 to a 
CSV dataset. Then, use the code shown in Figure 6.1.1 to read in the 2017 dataset into R (see 
Figure 6.1.3).  
 

Figure 6.1.2: SAS Code to Export Files into R Readable Format 
 
* Exporting NYCHVS datasets to R; 
proc export data = HU17 dbms = csv outfile="PATH \ TO \ NEW R 
DATASET\new_dataset_name2.csv" replace; 
run; 
 

 
Figure 6.1.3: R Code to Import 2017 Data File into R  

 
# Reading in 2017 HU dataset: 
hu17 <- import("Location of the CSV file / new_dataset_name2.csv", 
header=TRUE) 
 

 
 
For our example of estimating the variance of a total, we will estimate the total occupied 
housing units in NYC and use the replicate weights to calculate the variance. Use the R code in 
Figure 6.1.4 in order to do this calculation. 
 

Figure 6.1.4: R Code for Estimating Variance of a Total 
 
reps <- rep(0,80) 
point_est <- sum(hu21$FW[hu21$OCC == 1]) 
for (i in 1:80){ 
 reps[i] <- sum(hu21[paste0("FW", as.character(i))][hu21$OCC == 1,]) 
} 
reps <- (reps - point_est)^2 
se_est = ((4/80)*sum(reps))^(1/2) 
print(paste0(as.character(round(point_est, 4)), 
 ", ", as.character(round(se_est , 4)))) 
 

 
 
The R code provided in Figure 6.1.4 produces the R output shown in Figure 6.1.5. 
 
 
 

https://www.census.gov/data/datasets/2017/demo/nychvs/microdata.html
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Figure 6.1.5: R Output for Estimating Variance of a Total 
 
               total       SE 
     occ_final 3157105    13439 
 

Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 
 
From the output in Figure 6.1.5, we see that the estimated total occupied housing units in NYC 
is 3,157,105, with a standard error of 13,439.  
 
Example 6.2. Estimating the Variance of a Difference 
 
In this example, we are interested in calculating the difference between the number of public 
housing units in Manhattan and the number of public housing units in the Bronx for 2021. 
 
The R code provided in Figure 6.2.1 can be used to calculate the estimated difference and its 
variance calculation. 
 

Figure 6.2.1: R Code for Estimating Variance of a Difference 
 
## Define domains, Difference Example: 
# Renter-occupied Public housings in the Bronx: 
hu21$ph_bronx = ifelse((hu21$CSR == 5 & hu21$BORO == 1), 1, 0) 
 
# Renter-Occupied Publicn housings in Manhattan: 
hu21$ph_man = ifelse((hu21$CSR == 5 & hu21$BORO == 3), 1, 0) 
 
# Difference between Public housing units in Manhattan and the Bronx: 
hu21$stable_diff = hu21$ph_man - hu21$ph_bronx 
 
reps <- rep(0,80) 
point_est <- sum(hu21$FW*hu21$stable_diff) 
for (i in 1:80){ 
 reps[i] <- sum(hu21[paste0("FW", as.character(i))]*hu21$stable_diff) 
} 
reps <- (reps - point_est)^2 
se = ((4/80)*sum(reps))^(1/2) 
print(paste0(as.character(round(point_est, 4)), 
       ", ", as.character(round(se, 4)))) 
 

 
The output from the code in Figure 6.2.1 is provided in Figure 6.2.1.  
 

Figure 6.2.2: R Output for Estimating Variance of a Difference 
 
              total   SE 
stable_diff   7810   604 
 

Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 
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From the R output, we can see that the estimated difference between the number of public 
housing units in Manhattan versus the number of public housing units in the Bronx is 7,810 and 
the standard error is 604.  
 
Example 6.3. Estimating the Variance of a Mean 
 
This example calculates the variance of a mean for gross rent. We are interested in the average 
gross rent for renter-occupied housing units in NYC for 2021. 
 
The R code to make the point estimate and variance estimate for this is provided in Figure 
6.3.1.   
 

Figure 6.3.1: R Code for Estimating Variance of a Mean 
 
# Define domain: Renters only with non-missing rent values 
hu21$renters = ifelse((hu21$RENT_AMOUNT != -2 & hu21$GRENT > 0), 1, 0) 
hu21$gross_rent <- hu21$GRENT 
hu21$gross_rent[hu21$GRENT <= 0] <- NA 
 
rent_data <- hu21 %>% filter(renters == 1) 
reps <- rep(0,80) 
point_est <- weighted.mean(rent_data$gross_rent, 
       rent_data$FW, na.rm = TRUE) 
for (i in 1:80){ 
 reps[i] <- weighted.mean(rent_data$gross_rent, 
       rent_data[,paste0("FW", as.character(i))], na.rm = TRUE) 
} 
reps <- (reps - point_est)^2 
se_est = ((4/80)*sum(reps))^(1/2) 
print(paste0(as.character(round(point_est, 4)), 
       ", ", as.character(round(se_est , 4)))) 
 

 
The R output from using the code in 6.3.1 is provided in Figure 6.3.2. 
 

Figure 6.3.2: R Output for Estimating Variance of a Mean 
  
              mean     SE 
gross_rent   1726.739  15.8292  
 

Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 
 
The estimated average gross rent for renter-occupied housing units in NYC for 2021 is $1,727 
with a standard error of $16.  
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Example 6.4. Estimating the Variance of a Median 
 
We will use R to compute the median gross rent for renter-occupied housing units in NYC for 
2021. We use the same domains as Example 6.3, so we don’t need to re-define domains.  
 

Figure 6.4.1: R Code for Estimating Variance of a Median 
 
reps <- rep(0,80) 
point_est <- wgt_per_sas(rent_data,  
       "gross_rent", "FW", 0.5) 
for (i in 1:80){ 
 reps[i] <- wgt_per_sas(rent_data, 
       "gross_rent",paste0("FW", as.character(i)), 0.5) 
} 
reps <- (reps - point_est)^2 
se_est = ((4/80)*sum(reps))^(1/2) 
print(paste0(as.character(round(point_est, 4)), 
       ", ", as.character(round(se_est , 4)))) 
 

 
The R output from using the code in Figure 6.4.1 is provided in Figure 6.4.2. 
 

Figure 6.4.2: R Output for Estimating Variance of a Median 
 
              median     SE 
gross_rent    1575   14.8997 
 

Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 
 
The estimated median gross rent for NYC in 2021 is $1,575, with a standard error of $15.  
 
Example 6.5. Estimating the Variance of Regression Coefficient 

 
For this example, we are interested in modeling the 2021 gross rent of renter-occupied housing 
units using the year the householder moved into the housing unit.  
 
In R, we use the lm command to create a linear regression model using the replicate weights. 
The R code is provided in Figure 6.5.1. 
 

Figure 6.5.1: R Code for Estimating Variance of a Regression Coefficient 
 
# Define domain:  
hu21$defect = ifelse(hu21$MDEFCOUNT >= 3, 1, 0) 
hu21$time_stable <- ifelse(hu21$YEARBUILT < 5, 1, 0) 
 
 
reps <- rep(0,80) 
lin_ex <- lm(gross_rent~HHFIRSTMOVEIN, data = rent_data, weights = FW) 
point_est <- lin_ex$coefficients[[2]] 
for (i in 1:80){ 
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 temp_data <- rent_data %>% rename("wgt" = paste0("FW", as.character(i))) 
 lin_ex <- lm(gross_rent~HHFIRSTMOVEIN, data = temp_data, weights = wgt) 
 reps[i] <- lin_ex$coefficients[[2]] 
} 
reps <- (reps - point_est)^2 
se_est = ((4/80)*sum(reps))^(1/2) 
print(paste0(as.character(round(point_est, 4)), 
       ", ", as.character(round(se_est , 4)))) 
 

 
Figure 6.5.1 generates the output in Figure 6.5.2. 
  

Figure 6.5.2: R Output for Estimating Variance of a Regression Coefficient 
 

Reg Coef     SE 
23.6473   1.2409 

 
Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 

 
From the R output provided in Figure 6.5.2, we can see that the calculated regression 
coefficient is 23.65, with a standard error of 1.24.  
 
Example 6.6. Estimating the Variance of a Longitudinal Change 
 
Both this example and the next consider statistics that measure longitudinal change. This 
example will consider a statistic that measures the change of a rate between two cycles of the 
estimates. Example 6.7 will consider an estimate of percent of change that is calculated at the 
HU level. We present these two longitudinal statistics as examples thinking these calculations 
are the most likely of calculations that data users would be interested in. 
 
In this example, we show how to estimate the variance of a difference in proportion. 
Specifically, we’ll estimate the gross vacancy rate or �̂�𝑝𝑡𝑡 = 𝑋𝑋�𝑡𝑡 /𝑁𝑁�𝑡𝑡 ∗ 100, where 𝑋𝑋�𝑡𝑡 is the 
estimator of the total number of vacant HUs at time t, and 𝑁𝑁�𝑡𝑡 is the estimator of the total 
number of HUs at time t. 
 
Further, we’re interested in the difference in the gross vacancy rate between 2021 and 2017, so 
the statistic of interest is: 
 

�̂�𝛥𝑡𝑡=2021 =
𝑋𝑋�𝑡𝑡=2021
𝑁𝑁�𝑡𝑡=2021

∗ 100 −
𝑋𝑋�𝑡𝑡=2017
𝑁𝑁�𝑡𝑡=2017

∗ 100 

 
To estimate the variance of �̂�𝛥𝑡𝑡 with replicate weights, we first calculate all the pieces of �̂�𝛥𝑡𝑡=2021 
for each of the 80 replicates, make 80 replicate estimates of �̂�𝛥𝑡𝑡=2021, repeat those steps for 
2017, and then apply Equation (2.1).  Figure 6.6.1 shows how we do this with R. 
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Figure 6.6.1: R Command for Estimating Variance of a Longitudinal Change 
 
## First Longitudinal Example: 
# Adding vacancy dummy: 
hu21$vac <- ifelse(hu21$OCC != 1, 1, 0) 
hu17$vac <- ifelse(hu17$recid == 3, 1, 0) 
 
 
# Calculating 2021 point estimates: 
hu21_vac <- hu21 %>% filter(vac == 1) 
vac_est21 <- sum(hu21_vac$FW) 
total_est21 <- sum(hu21$FW) 
est21 <- (vac_est21 / total_est21) * 100 
 
# Calculating 2017 point estimates: 
hu17_vac <- hu17 %>% filter(vac == 1) 
vac_est17 <- sum(hu17_vac$fw) 
total_est17 <- sum(hu17$fw) 
est17 <- (vac_est17 / total_est17) * 100 
 
# Final Point Estimate: 
point_est <- est21 - est17 
 
# Now looping: 
reps <- rep(0,80) 
for (i in 1:80) { 
 vac_rep21 <- sum(hu21_vac[,paste0("FW", as.character(i))]) 
 tot_rep21 <- sum(hu21[,paste0("FW", as.character(i))]) 
 vac_rep17 <- sum(hu17_vac[,paste0("fw", as.character(i))]) 
 tot_rep17 <- sum(hu17[,paste0("fw", as.character(i))]) 
 reps[i] <- ((vac_rep21 / tot_rep21) - (vac_rep17 / tot_rep17)) * 100 
  
} 
 
reps <- (reps - point_est)^2 
se_est = ((4/80)*sum(reps))^(1/2) 
print(paste0(as.character(round(point_est, 4)), 
       ", ", as.character(round(se_est , 4)))) 
 

 
The R command of Figure 6.6.1 produces the output in Figure 6.6.2. 
 

Figure 6.6.2: R Output for Estimating Variance of a Longitudinal Change 
 
> # Final Point Estimate: 
> est 
[1] 3.006778 
> # Final Estimate of Standard Error: 
> est_se 
[1] 0.403841 
 

Source: U.S. Census Bureau, 2017 and 2021 New York City Housing and Vacancy Survey. 
 



 52 

The change in the gross vacancy rate from 2017 to 2021 is a 3.0 percent increase, with a 
standard error of 0.4 percent.  
 
Example 6.7. Estimating the Variance of a Percent Change in Two Cycles of NYCHVS 
 
There are many different statistics that measure the change between two cycles of NYCHVS. 
Differences, percent change, and ratios can be used to measure how much a given statistic 
changed from one cycle of NYCHVS to another. This example considers the housing 
characteristic of the median gross rent and how it can change over time. Both the rate of 
change and resulting variance are demonstrated.  
 
The statistic of interest is the percent change in the median gross rent from 2017 to 2021. Let 
𝑀𝑀�𝑡𝑡 be the estimator of the median gross rent at time t. The statistic of interest is: 
  

%�̂�𝛥𝑡𝑡 =
𝑀𝑀�𝑡𝑡 − 𝑀𝑀�𝑡𝑡−1
𝑀𝑀�𝑡𝑡−1

 

 
To estimate the variance of %�̂�𝛥𝑡𝑡, we first calculate the point estimates of %�̂�𝛥𝑡𝑡. Then, we use 
both the 2021 and 2017 replicate weights to store 80 replicate estimates of %�̂�𝛥𝑡𝑡 within a 
vector and store the squared differences between these replicate estimates and the final point 
estimate in another vector. We apply Equation (2.1) to arrive at our final estimate of standard 
error for %�̂�𝛥𝑡𝑡. 
 
Figure 6.7.1 shows how this can be done with R. 
 

Figure 6.7.1: R Command for Estimating Variance of a Rate of Change 
 
# Calculating 2021 point estimates: 
rent21 <- wgt_per_sas(rent_data, "gross_rent", "FW", 0.5) 
 
# Calculating 2017 point estimates: 
rent_data_17 <- hu17 %>% filter(uf26 != 99999 & sc116 %in% c(2,3)) 
rent17 <- wgt_per_sas(rent_data_17, "uf26", "fw", 0.5) 
 
# Final Point Estimate: 
point_est <- (rent21 - rent17) / rent17 
 
# Now looping: 
reps <- rep(0,80) 
for (i in 1:80) { 
 rent21_est <- wgt_per_sas(rent_data, "gross_rent", 
         paste0("FW", as.character(i)), 0.5) 
 rent17_est <- wgt_per_sas(rent_data_17, "uf26", 
         paste0("fw", as.character(i)), 0.5) 
 reps[i] <- (rent21_est - rent17_est) / rent17_est 
  
} 
 
reps <- (reps - point_est)^2 
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Figure 6.7.1: R Command for Estimating Variance of a Rate of Change 
se_est = ((4/80)*sum(reps))^(1/2) 
print(paste0(as.character(round(point_est, 4)), 
       ", ", as.character(round(se_est, 4)))) 
 

 
 
The R code of Figure 6.7.1 produces the output in Figure 6.7.2. 
 

Figure 6.7.2: R Output for Estimating Variance of a Rate of Change 
 
# Final Point Estimate: 
[1] 0.0862 
# Final Estimate of Standard Error: 
[1] 0.0126 
 

Source: U.S. Census Bureau, 2017 and 2021 New York City Housing and Vacancy Survey. 
 
So, the median gross rent for NYC in 2021 has increased 8.6 percent from 2017, with a standard 
error of 1.3 percent.  
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7. Examples of Calculating Variances with Python 
 
 
In addition to SAS, STATA, and R, data users can also use Python to calculate variances for 
NYCHVS. This section reviews the same examples using Python, which produce the same 
estimates and standard errors as the SAS, STATA, and R. 
 
Example 7.1. Estimating the Variance of a Total 
 
For 2021 NYCHVS, all the PUFs are given as CSV files, which makes it easier for data users to 
import into Python. Data users can access the PUFs through the Census Bureau’s NYCHVS 
website at: https://www.census.gov/programs-surveys/nychvs/data/datasets.html. You can 
use the read_csv function in the Pandas Python package to import the datafiles. Before starting, 
users also need to import some statistical packages in Python. Figure 7.1.1 shows how to 
accomplish these tasks in Python.  
 

Figure 7.1.1: Python Code to Importing Public Use Files and Set Up Domains 
 

import pandas as pd 
import numpy as np 
import statsmodels.api as sm 
 
hu21 = pd.read_csv('LOCATION OF CSV FILES/allunits_puf_21.csv') 
hu21occ = pd.read_csv('LOCATION OF CSV FILES/occupied_puf_21.csv') 
hu21vac = pd.read_csv('LOCATION OF CSV FILES/vacant_puf_21.csv') 
occvac = pd.concat([hu21occ, hu21vac]) 
occvac = occvac.drop(occvac.loc[:, "FW":"FW80"].columns, axis=1) 
hu21 = hu21.merge(occvac, on="CONTROL") 
 

 
In 2017 and prior, the NYCHVS PUFs were ACSII text files, and there were no column/variable 
names on these files; therefore, similar to R, data users still need to use the SAS Import 
Program (provided in the Census Bureau’s NYCHVS website at 
https://www.census.gov/data/datasets/2017/demo/nychvs/microdata.html to read in the 
NYCHVS PUFs into SAS (please see Pages 7 -9 for instructions on how to read PUFs into SAS for 
2017 and prior). Once in SAS, data users need to run the code in Figures 2.1.3 and 2.1.4, which 
generates the dataset HU17. Then, users can export the datasets from SAS to CSV format to 
read the file into Python.  
 
In SAS, run the code in Figure 7.1.2 to convert the SAS dataset HU17 to a CSV dataset. Then, run 
the code show in Figure 7.1.3 to read in the dataset, and convert weights to the right decimal 
places.  
 
 

https://www.census.gov/programs-surveys/nychvs/data/datasets.html
https://www.census.gov/data/datasets/2017/demo/nychvs/microdata.html
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Figure 7.1.2: SAS Code to Output Files into Python Readable Format 
 
* Exporting NYCHVS datasets from SAS to CSV file; 
proc export data = HU17 dbms = csv outfile="PATH \ TO \ NEW PYTHON 
DATASET\new_dataset_name2.csv" replace; 
run; 
 

 
Figure 7.1.3: Python Code for Read in 2017 Data and Convert Weights 

 
hu17 = pd.read_csv('LOCATION OF CSV FILES/ new_dataset_name2.csv') 
for col in hu17.filter(regex = ("^fw.*")).columns: 
    hu17[col] = hu17[col] / 100000 
 

 
 
Also, prior to running any of the examples in Section 7, ensure that the following code is used 
to set up the additional domains found in the examples. See Figure 7.1.4 for the code to use for 
domain definitions.  
 

Figure 7.1.4: Python Code for Domain Definitions 
 
hu21["ph_bronx"] = np.where((hu21.CSR == 5) & (hu21.BORO == 1), 1, 0) 
hu21["ph_man"] = np.where((hu21.CSR == 5) & (hu21.BORO == 3), 1, 0) 
hu21["renters"] = np.where((hu21.RENT_AMOUNT != -2) & (hu21.GRENT > 0), 
1, 0) 
hu21["gross_rent"] = np.where(hu21.GRENT > 0, hu21.GRENT, np.nan) 
hu21["defect"] = np.where(hu21.MDEFCOUNT >= 3, 1, 0) 
hu21["vac"] = np.where(hu21.OCC != 1, 1, 0) 
hu17["vac"] = np.where(hu17.recid == 3, 1, 0) 
hu21["time_stable"] = np.where(hu21.YEARBUILT < 5, 1, 0) 
 

 
 
In this example, we estimate the total occupied housing units in NYC and use the replicate 
weights to calculate the variance. Since we have already identified the domain of interest, now 
we are ready to run the total and variance calculation by using the Python code in Figure 7.1.5. 
The resulting output is provided in Figure 7.1.6.  
 

Figure 7.1.5: Python Code for Estimating Variance of a Total 
 
reps = np.array([0.0]*80) 
point_est = hu21.loc[hu21.OCC == 1].FW.sum() 
for i in range(1,81): 
  reps[i-1] = hu21.loc[hu21.OCC == 1]["FW"+str(i)].sum()   
reps = (reps - point_est)**2 
se = ((4/80)*np.sum(reps))**(1/2) 
print(point_est.round(decimals = 4), se.round(decimals = 4)) 
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Figure 7.1.5: Python Output for Estimating Variance of a Total  
 

3157105.1795  13438.7416 
 
Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 

 
From Figure 7.1.5, the estimate of total occupied housing units in NYC is 3,157,105 with an 
estimated standard error of 13,439. The estimates and standard errors from Python are the 
same as the results produced by SAS in Example 4.1.  
 
Example 7.2. Estimating the Variance of a Difference 
 
In this example, we are interested in calculating the difference between the number of public 
housing units in Manhattan and the number of public housing units in the Bronx for 2021. 
 
The Python code of Figure 7.2.1 generates the output of Figure 7.2.2. 
 

Figure 7.2.1: Python Code for Estimating Variance of a Difference 
 
reps_man = np.array([0.0]*80) 
reps_bronx = np.array([0.0]*80) 
point_est = hu21.loc[hu21.ph_man == 1].FW.sum() - hu21.loc[hu21.ph_bronx == 
1].FW.sum() 
for i in range(1,81): 
  reps_man[i-1] = hu21.loc[hu21.ph_man == 1]["FW"+str(i)].sum() 
  reps_bronx[i-1] = hu21.loc[hu21.ph_bronx == 1]["FW"+str(i)].sum() 
reps = (reps_man - reps_bronx - point_est)**2 
se = ((4/80)*np.sum(reps))**(1/2) 
print(point_est.round(decimals = 4), se.round(decimals = 4)) 
 

 
Figure 7.2.2: Python Output for Estimating Variance of a Difference 

 
7809.5658  603.7288 

 
Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 

 
From Figure 7.2.2, we can see the estimated difference of public housing units in Manhattan 
and the Bronx is 7,810 and the standard error is 604. These results are the same as produced 
with SAS – see Example 4.2. 
 
Example 7.3. Estimating the Variance of a Mean 
 
For this example, we are estimating the average gross rent for renter-occupied housing units in 
NYC for 2021 and its variance. The Python code is provided in Figure 7.3.1. 
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Figure 7.3.1: Python Code for Estimating Variance of a Mean 
 
# Weighted average function: 
def wgt_avg(df, value, weight): 
  val = df[value] 
  wt = df[weight] 
  return((val * wt).sum() / wt.sum()) 
 
reps = np.array([0.0]*80) 
rent_data = hu21.loc[hu21.TENURE == 1 & hu21.gross_rent.notnull()] 
point_est = wgt_avg(rent_data, 'gross_rent', 'FW') 
for i in range(1,81): 
  reps[i-1] = wgt_avg(rent_data, 'gross_rent', 'FW'+str(i))  
reps = (reps - point_est)**2 
se = ((4/80)*np.sum(reps))**(1/2) 
print(point_est.round(decimals = 4), se.round(decimals = 4)) 
 

 
The Python code of Figure 7.3.1 generates the output of Figure 7.3.2. 
 

Figure 7.3.2: Python Output for Estimating Variance of a Mean 
 

1726.739  15.8292 
 

Source: U.S. Census Bureau, 2021, New York City Housing and Vacancy Survey. 
 
From Figure 7.3.2, we can see that the average NYC gross rent calculated using Python is $1,727 
and the corresponding standard error is $16, both of which are the same as was produced with 
SAS – see Examples 3.1 and 4.3. 
 
Example 7.4. Estimating the Variance of a Median 
 
For this example, we are interested in calculating the median gross rent and its standard error 
for renter-occupied housing units in NYC for 2021. Figure 7.4.1 shows the Python code for 
calculating variance of a median.  The domain of interest is the same as the previous example, 
and the code for the domain identification can be found in Example 7.1. 
 

Figure7.4.1: Python Code for Estimating Variance of a Median 
 
# Weighted percentile function: 
def wgt_per_sas(df, value, weight, percentile): 
  dat = df.loc[:, [value, weight]].sort_values(by=value) 
  dat['cum_sum'] = dat[weight].cumsum() 
  p_wgt = percentile * dat[weight].sum() 
  dat['near_median'] = dat['cum_sum'] - p_wgt 
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  minimum = dat.loc[dat['near_median'] >= 0]['near_median'].min() 
  if (minimum == 0): 
    indices = dat[dat['near_median'] == 0].index.values[0] 
    grab_xi_and_next = dat.loc[[indices, indices+1]] 
    return((1/2)*(grab_xi_and_next[value].sum())) 
  else: 
    index = dat[dat['near_median'] == minimum].index.values[0] 
    return(dat.loc[index][value]) 
 
reps = np.array([0.0]*80) 
point_est = wgt_per_sas(rent_data, 'gross_rent', 'FW', 0.5) 
for i in range(1,81): 
  reps[i-1] = wgt_per_sas(rent_data, 'gross_rent', 'FW'+str(i), 0.5)  
reps = (reps - point_est)**2 
se = ((4/80)*np.sum(reps))**(1/2) 
print("Ex 7.4:", point_est.round(decimals = 4), se.round(decimals = 4)) 
 

 
The Python code of Figure 7.4.2 generates the output of Figure 7.4.3. 
 

Figure 7.4.3: Python Output for Estimating Variance of a Median 
 

1575.0  14.8997 
 

Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 
 
The estimate for median gross rent for renter-occupied housing units in NYC is $1,575, with 
standard error of $15. The results are the same as produced by SAS in Example 4.4. 
 
Example 7.5. Estimating the Variance of a Regression Coefficient 
 
For this example, we are interested in modeling the 2021 gross rent of renter-occupied housing 
units using the year the householder moved into the housing unit.  
 
The code is provided in Figure 7.5.1. 
 

Figure 7.5.1: Python Code for Estimating Variance of a Regression Coefficient 
 
reps = np.array([0.0]*80) 
y = rent_data["gross_rent"] 
x = rent_data["HHFIRSTMOVEIN"] 
x = sm.add_constant(x) 
fitted = sm.WLS(y,x, weights = rent_data["FW"]).fit() 
point_est = fitted.params[1] 
for i in range(1,81): 
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  reps[i-1] = sm.WLS(y,x, weights = rent_data["FW"+str(i)]).fit().params[1] 
reps = (reps - point_est)**2 
se = ((4/80)*np.sum(reps))**(1/2) 
print( point_est.round(decimals = 4), se.round(decimals = 4)) 
 
 
The Python code of Figure 7.5.1 generates the output of Figure 7.5.2. 
 

Figure 7.5.2: Python Output for Estimating Variance of a Regression Coefficient 
 

23.6473  1.2409 
 

Source: U.S. Census Bureau, 2021, New York City Housing and Vacancy Survey. 
 
From Figure 7.5.2, we can see that the calculated regression coefficient is 23.6473 and the 
standard error is 1.2409. The estimates are the same produced by SAS – see Examples 3.3 and 
4.5.  
 
Example 7.6. Estimating the Variance of a Longitudinal Change 
 
Both this example and the next consider statistics that measure longitudinal change. This 
example will consider a statistic that measures the change of a rate between two cycles of the 
estimates. Example 7.7 will consider an estimate of percent of change that is calculated at the 
HU level. 
 
In this example, we show how to estimate the variance of a difference in proportion. 
Specifically, we are interested in the estimated gross vacancy rate or �̂�𝑝𝑡𝑡 = 𝑋𝑋�𝑡𝑡 /𝑁𝑁�𝑡𝑡 ∗ 100, where 
𝑋𝑋�𝑡𝑡 is the estimator of the total number of vacant HUs at time t, and 𝑁𝑁�𝑡𝑡 is the estimator of the 
total number of HUs at time t. 
 
Further, we are interested in the difference in the gross vacancy rate between 2021 and 2017, 
so the statistic of interest is: 
 

�̂�𝛥𝑡𝑡=2021 =
𝑋𝑋�𝑡𝑡=2021
𝑁𝑁�𝑡𝑡=2021

∗ 100 −
𝑋𝑋�𝑡𝑡=2017
𝑁𝑁�𝑡𝑡=2017

∗ 100 

 
To estimate the variance of �̂�𝛥𝑡𝑡 with replicate weights, we first calculate all the pieces of �̂�𝛥𝑡𝑡=2021 
for each of the 80 replicates, making 80 replicate estimates of �̂�𝛥𝑡𝑡=2021, repeat those steps for 
2017, and then apply Equation (2.1).  
 
Figure 7.6.1 shows how we do this with Python. 
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Figure 7.6.1: Python Code for Estimating Variance of a Longitudinal Change 

 
reps = np.array([0.0]*80) 
vac21 = (hu21.loc[hu21.vac == 1].FW.sum() / hu21.FW.sum())*100 
vac17 = (hu17.loc[hu17.vac == 1].fw.sum() / hu17.fw.sum())*100 
point_est = vac21 - vac17 
for i in range(1,81): 
  vac21 = (hu21.loc[hu21.vac == 1]["FW"+str(i)].sum() / 
hu21["FW"+str(i)].sum())*100 
  vac17 = (hu17.loc[hu17.vac == 1]["fw"+str(i)].sum() / 
hu17["fw"+str(i)].sum())*100 
  reps[i-1] = vac21 - vac17   
reps = (reps - point_est)**2 
se = ((4/80)*np.sum(reps))**(1/2) 
print( point_est.round(decimals = 4), se.round(decimals = 4)) 
 

  
 
The Python code of Figure 7.6.1 generates the output of Figure 7.6.2. 
 

Figure 7.6.2: Python Output for Estimating Variance of a Longitudinal Change 
 

3.0068 0.4038 
 

Source: U.S. Census Bureau, 2017 and 2021 New York City Housing and Vacancy Survey. 
 
So, the change in the gross vacancy rate from 2017 to 2021 is a 3.0 percent increase, with a 
standard error of 0.4 percent.  
 
Example 7.7. Estimating the Variance of a Percent Change in Two Cycles of NYCHVS 
 
There are many different statistics that measure the change between two cycles of NYCHVS. 
Differences, percent change, and ratios can be used to measure how much a given statistic 
changed from one cycle of NYCHVS to another. This example considers the housing 
characteristic of the median gross rent and how it can change over time. Both the rate of 
change and resulting variance are demonstrated.  
 
The statistic of interest is the percent change in the median gross rent from 2017 to 2021. Let 
𝑀𝑀�𝑡𝑡 be the estimator of the median gross rent at time t. The statistic of interest is: 

 

%�̂�𝛥𝑡𝑡 =
𝑀𝑀�𝑡𝑡 − 𝑀𝑀�𝑡𝑡−1
𝑀𝑀�𝑡𝑡−1
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To estimate the variance of %�̂�𝛥𝑡𝑡, we use the 2021 replicate weights and store 80 replicate 
estimates of M� t=2021 within a matrix, and similarly use the 2017 replicate weights to store 80 
replicate estimates of M� t=2017 in another matrix. Next, we take the difference of these two 
matrices M� t=2021 and M� t=2017 by replicate and then divide each matrix entry by M� t=2017 to get 
our 80 replicate estimates of %�̂�𝛥𝑡𝑡. The final step is to apply Equation (2.1) to the replicate 
estimates of %�̂�𝛥𝑡𝑡. 
 
Figure 7.7.1 shows how this can be done with Python. 
 

Figure 7.7.1: Python Code for Estimating Variance of a Rate of Change 
 
rent_data_17 = hu17.loc[(hu17.sc116.isin([2,3])) & (hu17.uf26 != 99999)] 
reps = np.array([0.0]*80) 
point_est_21 = wgt_per_sas(rent_data, 'gross_rent', 'FW', 0.5) 
point_est_17 = wgt_per_sas(rent_data_17, 'uf26', 'fw', 0.5) 
point_est = (point_est_21 - point_est_17) / point_est_17 
for i in range(1,81): 
  point_est_21 = wgt_per_sas(rent_data, 'gross_rent', 'FW'+str(i), 0.5) 
  point_est_17 = wgt_per_sas(rent_data_17, 'uf26', 'fw'+str(i), 0.5)   
  reps[i-1] = (point_est_21 - point_est_17) / point_est_17 
reps = (reps - point_est)**2 
se = ((4/80)*np.sum(reps))**(1/2) 
print(point_est.round(decimals = 4), se.round(decimals = 4)) 
   

 
The Python code of Figure 7.7.1 generates the output of Figure 7.7.2. 
 

Figure 7.7.2: Python Output for Estimating Variance of a Rate of Change 
 

0.0862 0.0126 
 

Source: U.S. Census Bureau, 2017 and 2021 New York City Housing and Vacancy Survey. 
 
Therefore, the median gross rent for NYC in 2021 has increased 8.6 percent from 2017, with a 
standard error of 1.2 percent.  
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8. How to Calculate Confidence Intervals  
 
 
Lohr (1999; Section 9.5) has an excellent review of confidence intervals (CIs) for survey 
estimates, from which we borrow heavily for the introduction of this section. 
 
Survey estimates that employ sample weights are different than unweighted estimates. 

However, under certain conditions, it can be shown that �𝜃𝜃� − 𝜃𝜃�/�𝑣𝑣��𝜃𝜃��  is asymptotically 

standard normal for survey estimates (Krewski and Rao, 1981). Consequently, when the 
assumptions are met, an approximate 95 percent CI for θ  may be constructed as: 
 

                                           𝜃𝜃� ± 𝑍𝑍𝛼𝛼=0.05�𝑣𝑣��𝜃𝜃�� = 𝜃𝜃� ± 1.96�𝑣𝑣��𝜃𝜃��                                              (8.1) 

 

where �𝑣𝑣��𝜃𝜃�� is the standard error of the estimator of 𝜃𝜃�. 

 
Normal Distribution versus the t-distribution for Confidence Intervals 
 
In this document, we suggest using a normal distribution with all CIs. We suggest this for two 
reasons. First, there are no good guidelines for the number of degrees of freedom that should 
be used with a t-distribution and variances generated from SDR. There are recommendations 
for degrees of freedom for clustered and stratified sample designs, for example, see Valiant and 
Rust (2010), Korn and Graubard (1999), and Eltinge and Jang (1996). However, the degrees of 
freedom for clustered and stratified sample designs do not apply to the multi-stage systematic 
random sample design employed by NYCHVS. Huang and Bell (2011) examined degrees of 
freedom for SDR, but they do not provide general guidance. The second reason for our 
suggestion is that the American Community Survey (ACS) has the same sample design and also 
suggests using z-values from a normal distribution (U.S. Census Bureau, 2014). Until more 
research is done in this area, we suggest following the lead of ACS.  
 
We have not covered hypothesis testing, but we do point the reader to Schenker and 
Gentleman (2001) who discuss the pitfalls of using confidence intervals in hypothesis testing. 
 
Table 8 is a compilation of examples from throughout the guide. For each of these examples, 
we calculate a 95 percent confidence interval.  
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Table 8: Summary Table of Examples Estimated Confidence Intervals 

 
Example 

Example Number 
Estimate Standard 

Error 

 
95%  

Confidence Intervals 
PROC 

SURVEY 
Base 
SAS STATA R Python 

Total   4.1 5.1 6.1 7.1 3,157,105 13,439 (3,130,765, 3,183,445) 
Difference  4.2 5.2 6.2 7.2 7,810 604 (6,626, 8,994) 
Mean  3.1 4.3 5.3 6.3 7.3 $1,726.74 $15.83 ($1,695.71, $1,757.77) 
Median  4.4 5.4 6.4 7.4 $1,575 $14.90 ($1,545.80, $1,604.20) 
Regression 
Coefficient 3.3 4.5 5.5 6.5 7.5 23.65 1.24 (21.18, 26.12) 

Longitudinal 
Change   4.6 5.6 6.6 7.6 3.01% 0.40% (2.23%, 3.79%) 

Percent 
Change   4.7 5.7 6.7 7.7 8.6% 1.26% (6.13%, 11.07%) 

Source: U.S Census Bureau, 2021 New York City Housing and Vacancy Survey. 
 
The standard errors of Table 8 were produced with SAS, STATA, R, and Python.  
 
The subsequent examples of this section demonstrate how to estimate CIs using SAS, STATA, R 
and Python with some of the earlier examples.  
 
Example 8.1. Estimating Confidence Intervals of a Total with Base SAS  
 
In this example, we demonstrate how users calculate the CIs of the total in Example 4.1. We will 
reuse the dataset Data3 that was already created and build upon the SAS code in Figure 4.1.2 to 
add the CI calculations. Figure 8.1.1 shows the code in SAS, and Figure 8.1.2 shows the output.  
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Figure 8.1.1: SAS Code for Estimating Variance of a Total with Confidence Intervals 
 
data data4 (keep = est var se lowerci upperci) ; 
 set data3 end=eof ;  
 * Fill array with the replicate sums ; 
 array repwts{80} rw1-rw80 ;   
 * Fill array with the squared diffs ; 
 array sdiffsq{80} sdiffsq1-sdiffsq80 ;  
 do j = 1 to 80 ; 
  sdiffsq{j} = (repwts{j} - est)**2 ; 
  end ;  
 * Sum the squared diffs ; 
 totdiff = sum(of sdiffsq1-sdiffsq80) ; 
 var = (4/80) * totdiff ; 
 se = (var)**(0.5) ; 
 *Calculate the endpoints of the confidence intervals. ; 
 lowerci= est - 1.96 * se; 
 upperci = est + 1.96 * se; 
 output ; 
run ; 
 
proc print data=data4 noobs ; 
 var est se lowerci upperci; 
 format est se lowerci upperci comma12.2 ;  
run ; 
 

 
In Figure 8.1.2, we used the simple numeric value of 1.96 as the z-value with 𝛼𝛼 = 0.05 level 
because it makes the code easier to read. We could replace this with the more exacting SAS 
function quantile ("Normal", 1 - alpha/2) where alpha = 0.05. 
 

Figure 8.1.2: SAS Output of Variance of Total with Confidence Intervals 

 
Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 

 
In addition to the output we saw in Example 4.1, now we get the CIs as well: the 95 percent CI 
for the total number of occupied housing units is (3,130,765, 3,183,445).  
 
 
Example 8.2. Estimating Confidence Intervals of a Regression Coefficient with SAS PROC 
SURVEYREG 
 
In this example, we demonstrate how users can use the SAS PROC SURVEYREG in Example 3.3 
and add a clparm option in the model statement to get the estimates for confidence 
intervals.  
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Figure 8.2.1: SAS Code for Estimating Variance of Regression Coefficients with Confidence Intervals 
 
proc surveyreg data=HU21 varmethod=brr(fay) ;  
  *subset to renters with valid rent only; 
 where tenure=1 and Grent not in (-2,-1) ; 
 domain tenure; 
 model Grent = HHFIRSTMOVEIN/ solution clparm ; 
 weight FW ; 
 repweights fw1-fw80 ; 
 ods output parameterEstimates = MyParmEst ; 
run; 
 
data MyParmEstfin ; 
 set MyParmEst ; 
 if _n_ = 2 ;  
 se = stderr ; 
 var = se**2 ; 
 drop parameter dendf tvalue probt stderr ; 
run ; 
 
proc print data=myparmestfin;  
 var estimate se lowercl uppercl ;  
 format estimate se lowercl uppercl 8.4 ;  
run; 
 

 
The SAS option clparm in the model statement of Figure 8.2.1. requests the confidence 
interval for the regression coefficients. The procedure generates the confidence interval as the 
variables lowercl and uppercl. The SAS code from Figure 8.2.1 produces the output of 
Figure 8.2.2. 
 

Figure 8.2.2: SAS Output for Estimating Confidence Intervals Using t-Distribution 

 
Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 

 
The point estimate and variances are the same as in Example 3.3; however, there are the two 
added columns at the end of the output for the confidence intervals. Please note that the 
confidence intervals constructed using SAS SURVEYREG are defaulted to t-distribution.  
 
To construct confidence intervals using the normal distribution, users have to code this 
manually in Base SAS. Figure 8.2.3 shows the SAS code needed, in addition to Figure 8.2.1, to 
get the confidence intervals using normal distribution, and Figure 8.2.4 shows the results. Note 
that this confidence interval is slightly smaller than that using the t-distribution. 
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Figure 8.2.3: SAS Code for Estimating Variance of Regression Coefficients with Confidence Intervals 
 
*Calculate CI using normal distribution; 
data one; 
 set myparmestfin; 
lowerci= estimate - 1.96*se; 
upperci= estimate + 1.96*se; 
run;  
 
proc print; var estimate se lowerci upperci; run; 
 

 
Figure 8.2.4: SAS Output for Estimating Confidence Intervals Using z-Distribution 

 
Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 

 
 
Example 8.3. Estimating Confidence Intervals of a Total with STATA Manually 
 
Users might notice that many STATA outputs in Section 5 already include CIs. We now 
demonstrate how users can manually calculate CIs in STATA. Figure 8.3.2 provides output from 
running this code after Setting survey design parameters (Figure 5.1.5). 
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Figure 8.3.1.: STATA Code for Estimating Confidence Intervals Manually 
 
use "puf/alloccvac_21", clear 
 
* Calculating 2021 occupied totals: 
quietly summarize fw if occ == 1 
scalar point_est = r(sum) 
 
* Creating matrix that stores 2021 estimates: 
matrix occ_ests_21 = (point_est) 
 
* Now going through replicates: 
foreach x of var fw1-fw80 { 
  
     quietly summarize `x' if occ == 1 
     scalar occ_ests_21_i = r(sum) 
 
     * Adding to matrix that stores 2017 estimates: 
     matrix occ_ests_21 = (occ_ests_21 \ occ_ests_21_i) 
} 
 
* Now getting squarred differences for variance estimation: 
scalar summed_variance = 0 
quietly forvalues i = 2/81 { 
     scalar sq_pt_occ_est = (occ_ests_21[`i',1] - occ_ests_21[1,1])^2 
     scalar summed_variance = summed_variance + sq_pt_occ_est 
} 
scalar summed_variance = (4/80) * summed_variance 
scalar se_est = (summed_variance)^(0.5) 
 
* Final Point Estimate: 
display point_est 
 
* Final Estimated Standard Error: 
display se_est 
 
* 95% CI using standard normal (z) distribution: 
scalar z_value = invnorm(.975) 
display "(",point_est-z_value*se_est,",",point_est+z_value*se_est,")"  
 

 
Figure 8.3.2: STATA Output for Estimating Confidence Intervals Manually 

 
. display "(",point_est-z_value*se_est,",",point_est+z_value*se_est,")" 
( 3130765.7 , 3183444.6 ) 
  

Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 
 
From Figure 8.3.2, we see that there is a 95 percent chance that the interval of (3,130,765.7, 
3,183,444.6) captures the true percent increase in median gross rent between the 2017 and 
2021 survey cycles of NYCHVS. Comparing STATA’s output with other methods, STATA 
produced the same confidence interval as the other methods. 
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Example 8.4. Estimating the Confidence Intervals of a Total with R 
 
We now demonstrate how users can manually calculate CIs in R. Figure 8.4.1 shows code that 
will work after running any of the example code between Examples 6.1 and 6.7. Figure 8.4.2 
provides output from running this code after running Example 6.1 only. 
 

Figure 8.4.1: R Code for Estimating Confidence Intervals  
 
# For a 95% CI, we need 2.5% on either tail, so get the 97.5% percentile 
z_value <- qnorm(.975) 
 
ci_95 <- c(point_est - z_value*se_est, point_est + z_value*se_est) 
print(ci_95)  

 
The R code provided in Figure 8.4.1 produces the R output of Figure 8.4.2 when applied to 
Example 6.7. 
 

Figure 8.4.2: R Output for Estimating Confidence Intervals  
print(ci_95) 

[1] 3130766 3183445 
 

Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 
 
From Figure 8.4.2, we see that R produces the same exact confidence interval as the other 
methods.  
 
 Example 8.5. Estimating the Confidence Intervals of a Total with Python 
 
We now demonstrate how users can manually calculate CIs in Python. Figure 8.5.1 shows code 
that will work after running any of the example code between Examples 7.1 and 7.7. Figure 
8.5.2 provides output from running this code after running Example 7.7 only.  
 

Figure 8.5.1: Python Code for Estimating Confidence Intervals  
 
z_value = sps.norm.ppf(0.975) 
ci = [point_est - z_value*se_est, point_est + z_value*se_est] 
 

Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 
 

Figure 8.5.2: Python Output for Estimating Confidence Intervals  
  

print(ci) 
[3130765.7300400576, 3183444.6289621126] 

 
Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 

 
From Figure 8.5.2, we see that Python produces the same confidence interval as the other 
methods.  
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9. How to Calculate Confidence Intervals for the Odds Ratio  
 
 
This extended example shows how to calculate and how not to calculate a CI for the odds ratio. 
We show this by addressing the question “Does rent stabilization status (pre-1947 or post-
1947) affect the probability of having three or more maintenance deficiencies?” with results 
from the 2021 NYCHVS. This example is different and much longer than Example 8.1 for two 
reasons: (1) the complexity of the estimator and the variance of the estimator and (2) we show 
how to calculate the CIs correctly, as well as several ways the confidence intervals should not 
be calculated. 
 
As with the other statistics of this guide, using the replicate weights will best estimate the 
variance of the odds ratio. Table 9.1 summarizes the alternative methods that we will discuss 
and provides an overview of the estimates for each method.  
 

Table 9.1: Examples of Odds Ratio 
 
Example 

 
Uses 

 
Software  

Odds 
Ratio �𝜃𝜃�� 

 
( )oddslogv̂  

 
( )oddslogês  

95% Confidence 
Interval of 𝜃𝜃� 

9.1 Replicate Wgts SURVEYLOGISTIC 2.257 * * (1.628, 3.130) 
9.2 Replicate Wgts SURVEYFREQ 2.2572 * * (1.6356, 3.1151) 
9.3 Replicate Wgts  Base SAS 2.2572 0.0270 0.1642 (1.6359, 3.1144) 
9.4 Replicate Wgts STATA 2.2572 0.0270 0.1642 (1.6359, 3.1144) 
9.5 Replicate Wgts R 2.2572 0.0270 0.1642 (1.6359, 3.1144) 
9.6 Replicate Wgts Python 2.2572 0.0270 0.1642 (1.6359, 3.1144) 
9.7 Final Wgts SURVEYFREQ 2.2572 * * (1.6945, 3.0068) 
9.8 Normalized Wgts FREQ 2.2572 0.0182 0.1350 (1.7325, 2.9408) 
9.9 Final Wgts FREQ 2.2572 0.0000 0.0061 (2.2305, 2.2842) 

9.10 Unweighted  FREQ 2.2959 0.0169 0.1301 (1.7793, 2.9626) 
* SAS SURVEYLOGISTIC and SURVEYFREQ procedures do not output variance or standard errors. 
Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 
 
We make a few observations about the results of Table 9.1. 
 
First, the weighted and unweighted estimates of the odds ratio differ slightly: the unweighted 
estimate of the odds ratio is 2.2959 and the weighted estimate is 2.2572. Using the weights 
accounts for the fact that sample units contribute unequally to the estimates.  
 
With the variance of the log odds and the standard errors, we note the following differences 
from the Table 9.1:  
 

- Base SAS, STATA, R, and Python (Examples 9.3 to 9.6) all produce the same estimate of 
the odds ratio and standard error of the log odds using the replicate weights.  

- Estimating the variance using normalized weights, final weights, and no weights 
(Example 9.8, 9.9, and 9.10, respectively), produce variances that are an underestimate. 
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Only using the replicate weights (Examples 9.1 to 9.6) fully accounts for the complex 
sample design of NYCHVS.  

- Using the final weights with PROC SURVEYFREQ and the normalized weights with PROC 
FREQ (Examples 9.7 and 9.8, respectively) provide the same estimate, but we caution 
that it may not be true with all analyses. 

- Example 9.9 using the final weights underestimates the variance by a large amount. 
  

With the CI calculations, we note the following differences in Table 9.1. 
 

- SAS PROC SURVEYLOGISTIC and SAS PROC SURVEYFREQ (Examples 9.1 and 9.2, 
respectively) produced different CIs because the PROC SURVEY procedures uses a 
critical value from a t-distribution with 80 degrees of freedom. Basically, 
SURVEYLOGISTIC is assuming that we have a stratified sample design with 80 strata.  See 
Section 3 for a discussion. 

- The CIs produced by SURVEYFREQ procedure (Example 9.2) are different from the 
results of SURVEYLOGISTIC (Examples 9.1) because SURVEYFREQ uses a different 
approximation in the variance calculation, which is not output by the procedure, but you 
see the effect in the difference in the confidence interval calculation. This is discussed 
more in Section 9.2. 

- Base SAS, STATA, R, and Python (Examples 9.3 to 9.6) produced the same CIs using 
replicate weights.  

- Estimating the variance using final weights (Example 9.9) underestimates variance by a 
large amount, which therefore results in a much narrower CI.  

 
The remainder of this extended example is organized as follows. First, we generally review the 
odds ratio. This is provided to define our use of different terms and for readers not familiar with 
an odds ratio. Readers familiar with this material can skip this section.  
 
Then each of the ten methods for estimating the CI is reviewed separately. Although we say 
that only Examples 9.1 to 9.6 estimate the CI accurately because replicate weights account for 
the complex sample design of NYCHVS, we provide the four other methods because some data 
users are familiar with them and they provide excellent comparisons to Examples 9.1 to 9.6.  
 
We have color-coded the odds ratio, variance of the log odds ratio, and the confidence interval 
of the odds ratio throughout the example as green, purple, and light blue, respectively. This was 
done to help keep track of the different statistics of the examples. 
 
Review of Odds Ratio and Log Odds 
 
Suppose we have two sets of binary random numbers, X and Y, and we want to measure the 
association between the two variables. We assume both random variables have a Bernoulli 
distribution. Table 9.2 shows the frequencies observed in the sample for all possible 
combinations of X and Y. 
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Table 9.2: Layout of Two Binary Variables 
 X = 0 X = 1 Total 

Y = 0 n00 n01 n0+ 

Y = 1 n10 n11 n1+ 

Total n+0 n+1 n 
 

 
The odds of a single binary random variable Y are defined to be the probability of Y = 1 divided 
by the probability of Y = 0, i.e.,  
 

{Odds of 𝑌𝑌} =
𝑃𝑃(𝑌𝑌 = 1)
𝑃𝑃(𝑌𝑌 = 0)

 

 
In the presence of the variable X, the odds of Y given X = 0 is 
   

{𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑜𝑜𝑜𝑜 𝑌𝑌 𝑔𝑔𝑔𝑔𝑣𝑣𝑔𝑔𝑔𝑔 𝑋𝑋 = 0} =
𝑃𝑃(𝑌𝑌 = 1|𝑋𝑋 = 0)
𝑃𝑃(𝑌𝑌 = 0|𝑋𝑋 = 0) 

 
and the odds of Y given X = 1 is 
  

{𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑜𝑜𝑜𝑜 𝑌𝑌 𝑔𝑔𝑔𝑔𝑣𝑣𝑔𝑔𝑔𝑔 𝑋𝑋 = 1} =
𝑃𝑃(𝑌𝑌 = 1|𝑋𝑋 = 1)
𝑃𝑃(𝑌𝑌 = 0|𝑋𝑋 = 1) 

 
The vertical bar in these probability statements is the traditional symbol for conditional 
probabilities.  
 
The odds ratio θ  compares the odds of Y for X = 0 and X = 1 and is defined as the ratio of the 
two odds: 
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An odds ratio of θ  = 1 suggests that the odds of Y is the same for X = 0 and X = 1.  
 
In the presence of the variable X, the odds of Y given X = 1 is: 
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and we can estimate the odds ratio as: 
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The distribution of the odds ratio statistic has an atypical form, which unfortunately makes it 
hard to use for the purpose of statistical inferences. The natural log of the odds ratio, or simply 
log odds ratio, by contrast, is approximately normally distributed, provided the cell counts 
within each of the four categories above are sufficiently high. Consequently, the variance of the 
log odds can be estimated as: 
 

 ( )
11100100

1111oddslogˆ
nnnn

v +++=    (9.3) 

 
We can use the variance of the log odds to calculate a (1 - α) CI of the odds ratio by 
transforming the CI of the log odds as: 
 

 
( ) ( )( )oddslogˆzoddslogoddslogˆzoddslog /2/2 , vv ee ⋅−⋅+ αα

   (9.4) 
 
 
The Maintenance Deficiencies Example. Returning to maintenance deficiencies example, we 
ask the question: 
 
“Does rent stabilization status affect the probability of having three or more maintenance 
deficiencies?” 
 
To answer this, we have a binary random variable Y, with Y = 1 indicating “having three or more 
maintenance deficiencies” and Y = 0 indicating “having fewer than three maintenance 
deficiencies”: 
 

𝑌𝑌 = � 1, HU has three or more maintenance deficiencies    
 0, HU has fewer than three maintenance deficiencies  

 
We also define a second binary random variable X for rent stabilization status as: 
 

𝑋𝑋 = � 1, HU has rent stabilized pre − 1947
 0,    HU has rent stabilized post − 1947  

 
If we calculate the odds ratio Y given X, a value of θ  > 1 implies that rent stabilized pre-1947 
HUs are more likely than the rent stabilized post-1947 units to have three or more maintenance 
deficiencies and, conversely, θ  < 1 implies rent stabilized post-1947 units are more likely to 
have three or more maintenance deficiencies.  
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Example 9.1. Estimating a Confidence Interval of an Odds Ratio with Replicate Weights and 
SAS PROC SURVEYLOGISTIC 
 
The easiest way of estimating odds ratios with replicate weights is to use SAS SURVEYLOGISTIC. 
This procedure produces the odds ratio estimates and CIs with replicate weights automatically. 
Use the varmethod brr(fay) option and the default Fay coefficient of 0.5. Put the effect 
(rent stabilization status, in our example) in the class statement.  
 
Figure 9.1.1 provides the PROC SURVEYLOGISTIC code that will calculate the odds ratios using 
the replicate weights. 
 

Figure 9.1.1: SAS Code for Calculating Confidence Interval of Odds Ratio with Replicate Weights 
 
Data Def_analysis ; 
 set HU21; 
 * Exclude the vacant HUs and the ones did not report on deficiencies. ;  
 where MDEFCOUNT ne -1 and OCC=1 and csr = 32; 
 if Mdefcount ge 3 then def='1'; else def='0' ; 
 * pre-1947 ;  
 If YEARBUILT LE 4 then stabilized='1' ; 
 * post1947 ; 
 else if YEARBUILT GE 5 then stabilized='0' ; 
run ;  
 
proc surveylogistic data=def_analysis varmethod=brr(fay=0.5) ; 
 class stabilized ; 
 model def=stabilized ; 
 weight FW ; 
 repweights fw1-fw80 ; 
run ; 
 

 
Figure 9.1.2 shows some of the output that is generated by the SAS code of Figure 9.1.1. 
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Figure 9.1.2: Partial SAS Output for Calculating Confidence Interval of Odds Ratio with Replicate Weights 
The SURVEYLOGISTIC Procedure 

Model Information 

Data Set WORK.DEF_ANALYSIS 

Response Variable def 

Number of Response Levels 2 

Weight Variable FW 

Model Binary Logit 

Optimization Technique Fisher's Scoring 

 

Number of Observations Read 1701 

Number of Observations Used 1701 

Sum of Weights Read 838760.7 

Sum of Weights Used 838760.7 

 

Response Profile 

Ordered 
Value 

def Total 
Frequency 

Total 
Weight 

1 0 1293 634046.31 

2 1 408 204714.36 

 
Probability modeled is def='0'. 

 

Variance Estimation 

Method BRR 

Replicate Weights DEF_ANALYSIS 

Number of Replicates 80 

Fay Coefficient 0.5 

 

Odds Ratio Estimates 

Effect Point Estimate 95% Confidence Limits 

stabilized 0 vs 1 2.257 1.628 3.130 

NOTE: The degrees of freedom in computing the confidence limits is 80. 

                       
Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 

 
 
The bottom of Figure 9.1.2 mentions that 80 degrees of freedom were used to calculate the 
confidence interval. This tells us that the critical value was 1.99 (from a t-distribution with 80 
degrees of freedom) instead of 1.96 (from a normal distribution). Although we are using SDR 
replicate weights, SAS assumes that we are using Balanced Repeated Replication (BRR) replicate 
weights. For this reason, the estimates from PROC SURVEYLOGISTIC are slightly different than 
the other methods. 
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Example 9.2. Estimating a Confidence Interval of an Odds Ratio with Replicate Weights and 
SAS PROC SURVEYFREQ 
 
Another similar method as SURVEYLOGISTIC to estimate the CI for the odds ratio with the 
replicate weights in SAS is to use the procedure PROC SURVEYFREQ.  
 
Figure 9.2.1 provides the PROC SURVEYFREQ code that will calculate the odds ratio using the 
replicate weights. 
 

Figure 9.2.1: SAS Code for Calculating Confidence Interval of Odds Ratio with Replicate Weights 
 
proc surveyfreq data=def_analysis varmethod=brr(fay) ; 
 tables def * stabilized / or ; 
 weight FW ; 
 repweights fw1-fw80 ; 
run ; 
 

 
The use of the or option in the tables statement requests that SAS produce the odds ratio 
with both PROC SURVEYFREQ and PROC FREQ. Note that the output generated by the option 
or is formatted differently with PROC SURVEYFREQ and PROC FREQ. 
 
The SAS code of Figure 9.2.1 generates the output of Figure 9.2.2. 
 

Figure 9.2.2: SAS Output for Calculating Confidence Interval of Odds Ratio with Replicate Weights 
 

The SURVEYFREQ Procedure 

Data Summary 

Number of Observations 1701 

Sum of Weights 838760.666 

 

Variance Estimation 

Method BRR 

Replicate Weights DEF_ANALYSIS 

Number of Replicates 80 

Fay Coefficient 0.500 

 

Table of def by stabilized 

def stabilized Frequency Weighted 
Frequency 

Std Err of 
Wgt Freq 

Percent Std Err of 
Percent 

0 0 531 231825 10166 27.6390 1.0147 

  1 762 402221 13102 47.9542 1.4080 

  Total 1293 634046 15546 75.5932 1.2336 

1 0 95 41640 5467 4.9645 0.6424 
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Figure 9.2.2: SAS Output for Calculating Confidence Interval of Odds Ratio with Replicate Weights 
  1 313 163074 10982 19.4423 1.2204 

  Total 408 204714 11455 24.4068 1.2336 

Total 0 626 273465 11902 32.6035 1.1907 

  1 1075 565296 14133 67.3965 1.1907 

  Total 1701 838761 16652 100.0000   

 

Odds Ratio and Relative Risks (Row1/Row2) 

Statistic Estimate 95% Confidence Limits 

Odds Ratio 2.2572 1.6356 3.1151 

Column 1 Relative Risk 1.7975 1.3985 2.3104 

Column 2 Relative Risk 0.7964 0.7379 0.8594 

Sample Size = 1701 
 

Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 
 
The estimate of 𝜃𝜃� = 2.2572 implies that housing units rent stabilized prior to 1947 are about 
twice as likely to have three or more maintenance deficiencies than HUs rent stabilized post-
1947.  
 
Please note that the CIs produced by SURVEYFREQ here are slightly different from the CIs 
produced by the other methods with replicate weights. This is due to two reasons: (1) the PROC 
SURVEY procedures use a critical value in the confidence intervals from a t-distribution with 80 
degrees of freedom instead of using a critical value from a normal distribution) and (2) 
SURVEYFREQ uses a variance approximation when calculating the variance of the log odds, 
which is 

𝑣𝑣�(log 𝑜𝑜𝑂𝑂𝑂𝑂𝑂𝑂) = 𝑣𝑣�(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟𝑜𝑜)
(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟𝑜𝑜)2 

, 
 
while the other methods calculate the variance of log odds directly using Equation (9.3) (SAS 9.2 
User’s Guide, 2019).  
 
 
Example 9.3. Estimating a Confidence Interval of an Odds Ratio with Replicate Weights and 
Base SAS 
 
A point estimate of the odds ratio is straightforward to calculate with weights – it just uses the 
sum of all the weights in each of the four categories and follows the procedure above. The 
variance estimate is more complicated to calculate manually.  
 
Table 9.3.1 provides the weighted estimates of the frequencies of each cell. The final weight 
and Equation (9.2) were used to produce the totals. 

Table 9.3.1: Estimated Counts for Maintenance Deficiencies Example 
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Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 
 
Using the weighted totals, the odds of having three or more maintenance deficiencies given the 
HU is rent stabilized prior to 1947 is calculated as: 
 

{Odds of 𝑌𝑌 given Rent Stabilized Pre − 1947 (𝑋𝑋 = 1)} =
163,074
41,640

= 3.92 

 
and we calculate the odds ratio as: 
 

𝜃𝜃� =
231.825 ∗ 163,074
402,221 ∗ 41,640

= 2.2572 

 
The natural log of the odds ratio is log odds = 0.8141. To estimate the variance of the log odds, 
the log odds is calculated for each replicate and Equation (2.1) is applied. This gives 
𝑣𝑣�(log 𝑜𝑜𝑂𝑂𝑂𝑂𝑂𝑂) = 0.0270, which can be used with Equation (9.3) to calculate the CI: 

 
�𝑔𝑔0.8141−1.96�𝑣𝑣�(log𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜), 𝑔𝑔0.8141+1.96�𝑣𝑣�(log𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)� 

 
The SAS code of Figure 9.3.3 shows how to calculate the variance, standard error, and CIs of the 
odds ratio directly. 

 
Figure 9.3.3: SAS Code for Calculating Confidence Interval of Odds Ratio with Replicate Weights 

 
* Define 4 categories. ; 
data def_analysis ; 
 set def_analysis ; 
 if def='1' and stabilized='0' then n_xx='n_10' ; 
 else if def='1' and stabilized='1' then n_xx='n_11' ; 
 else if def='0' and stabilized='0' then n_xx='n_00' ; 
 else if def='0' and stabilized='1' then n_xx='n_01' ; 
run ; 
 
* Calculate the total sums for each of our 4 categories ; 
proc means data = Def_analysis sum noprint ; 
 class n_xx ; 

 
Fewer than 3 
maintenance 
deficiencies 

3 or more 
maintenance 
deficiencies 

Total 

Rent Stabilized 
Post 1947 n00 = 231,825 n01 = 41,640 n0+ = 273,465 

Rent Stabilized 
Pre-1947 n10 = 402,221 n11 = 163,074 n1+ = 565,296 

Total 
 n+0 = 634,046 n+1 = 204,714 n = 838,761 
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Figure 9.3.3: SAS Code for Calculating Confidence Interval of Odds Ratio with Replicate Weights 
 var FW fw1-fw80 ; 
 output out = def_collapse sum = est rw1 - rw80 ; 
run ; 
 
* Drop the first observation of totals ; 
data def_collapse ; 
 set def_collapse ; 
 if _TYPE_ = 0 then delete ; 
run ; 
 
* Reshape into wide format to calculate ratio estimates  
 with arrays later ; 
proc transpose data = def_collapse out = def_collapse_transposed ; 
 by _TYPE_ ; 
 id n_xx ; 
 var est rw1 - rw80 ; 
run ; 
 
* Now calculating log odds ratio estimate for newly transposed data. ; 
data def_collapse_transposed_odds ( keep = _NAME_ dummy_id ln_odds_ratio ); 
 set def_collapse_transposed; 
 
 * Formula for odds ratio ; 
 ln_odds_ratio = log( (n_00 * n_11) / (n_01 * n_10) ) ; 
 
 * ID var needed for tranposition later. ; 
 dummy_id = 1 ; 
run ; 
 
* Transpose back into wide format for array calculations. ; 
proc transpose data = def_collapse_transposed_odds out = 
def_fay_brr_estimates; 
 by dummy_id ; 
 id _NAME_ ; 
 var ln_odds_ratio ; 
run; 
 
* Calculate variance estimate. ; 
data fay_estimate_final (keep = est var se odds_est lowerci upperci) ; 
 set def_fay_brr_estimates (drop = _NAME_); 
 * Filling in array with odds ratio estimates ; 
 array repwts{80} rw1 - rw80 ; 
 
 * Fill in other array with squared differences ; 
 array sqdiff{80} sqdiff1 - sqdiff80 ; 
 
 * Looping to create differences ; 
 do i = 1 to 80; 
  sqdiff[i] = (repwts[i] - est) ** 2 ; 
 end; 
 
 * Sum differences. ; 
 total_diff = sum(of sqdiff1-sqdiff80) ; 
 
 * Calculate variance. ; 
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Figure 9.3.3: SAS Code for Calculating Confidence Interval of Odds Ratio with Replicate Weights 
 var = (4/80)* total_diff ; 
 
 * Calculate standard error. ; 
 se = var ** (0.5) ; 
 
 * Create CI in odds ratio form. ; 
 odds_est = exp(est); 
 lowerci = exp((est - (1.96 * se))) ; 
 upperci = exp((est + (1.96 * se))) ; 
run ; 
 
* Print final log odds ratio estimate, the variance, SE and  
 then the odds ratio estimate with it's 95% CI ; 
proc print data = fay_estimate_final noobs ;  
 format est se lowerci upperci odds_est 8.4; 
run; 
 

 
 
The SAS code of Figure 9.3.3 generates the output of Figure 9.3.4. These are slightly different 
than PROC SURVEYFREQ due to rounding. 
 

Figure 9.3.4: SAS Output for Calculating Confidence Interval of Odds Ratio with Replicate Weights 
 

est var se odds_est lowerci upperci 

0.8141 0.026977 0.1642 2.2572 1.6359 3.1144 
 

Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 
 
 
Example 9.4. Estimating a Confidence Interval of an Odds Ratio with Replicate Weights and 
STATA 
 
This example estimates the odds ratio and variance of rent stabilization status (pre-1947 or 
post-1947) and the presence of three or more maintenance deficiencies. The code in Figure 
9.4.1 identifies the domains of interest, as well as the odds ratio and variance calculations using 
replicate weights in STATA.  
 

Figure 9.4.1: STATA Code for Calculating Confidence Interval of Odds Ratio with Replicate Weights 
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use "hu21", clear 
svyset[pweight=fw], vce(sdr) sdrweight(fw1-fw80) fay(.5)mse 
 
* Binary variable for three or more deficiencies: 
gen defect = (mdefcount >= 3) 
 
* Need to exclude non-reported defects: 
gen occ_reported_defects = (occ == 1 & mdefcount != -1 & csr == 32) 
 
* Need binaries for time demarcation: 
gen time_stable = 1 if yearbuilt < 5 
replace time_stable = 0 if yearbuilt >= 5 
 
* Now running LOG odds ratio: 
svy, subpop(occ_reported_defects): logit defect time_stable 
 
* Now for the odds ratio: 
svy, subpop(occ_reported_defects): logistic defect time_stable 
 
 
The STATA code of Figure 8.4.1 generates the output of Figure 9.4.2. 
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Figure 9.4.2: STATA Output for Calculating Confidence Interval of Odds Ratio with Replicate Weights 
Log Odds Ratio: 
Survey: Logistic regression            Number of obs   =   8,394 
                                      Population size  = 3,644,065 
                                      Subpop. no. obs  =   1,701 
                                        Subpop. size   = 838,760.67 
                                        Replications   =     80 
                                        Wald chi2(1)   =   24.57 
                                        Prob > chi2    =   0.0000 
 
------------------------------------------------------------------------------ 
             |              SDR * 
      defect |   Coef.    Std. Err.   z  P>|z|   [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
 time_stable |  .8141211  .1642473   4.96  0.000   .4922024   1.13604 
       _cons | -1.716918  .1328527  -12.92  0.000  -1.977305  -1.456532 
------------------------------------------------------------------------------ 
 
Odds Ratio: 
 
Survey: Logistic regression           Number of obs   =   8,394 
                                     Population size  = 3,644,065 
                                     Subpop. no. obs  =   1,701 
                                       Subpop. size   = 838,760.67 
                                       Replications   =     80 
                                       Wald chi2(1)   =   24.57 
                                       Prob > chi2    =   0.0000 
 
------------------------------------------------------------------------------ 
             |                SDR * 
      defect | Odds Ratio  Std. Err.   z  P>|z|   [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
 time_stable |  2.257191  .3707374   4.96  0.000   1.635915   3.11441 
       _cons |  .1796189  .0238628  -12.92  0.000   .1384419  .2330432 
------------------------------------------------------------------------------ 
Note: _cons estimates baseline odds. 

Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 
 
Figure 8.4.2 shows that the odds ratio estimate from STATA is 𝜃𝜃� = 2.2572 which implies that 
housing units rent stabilized prior to 1947 are about twice as likely to have three or more 
maintenance deficiencies than HUs rent stabilized post-1947. The standard error of the log 
odds is 0.1642, which is the same as with the SAS method.  
 
Example 9.5. Estimating a Confidence Interval of an Odds Ratio with Replicate Weights and R 
 
This example estimates the odds ratio and variance calculation of rent stabilization status (pre-
1947 or post-1947) and the presence of three or more maintenance deficiencies. The code in 
Figure 8.5.1 identifies the domains of interest, and the odds ratio and variance estimate using 
replicate weights in R.  
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Figure 9.5.1: R Code for Calculating Confidence Interval of Odds Ratio with Replicate Weights 
 
odds_data <- hu21 %>% filter(OCC == 1 & MDEFCOUNT != -1 & CSR == 32) 
n_11 <- sum(odds_data$FW[odds_data$defect == 1 & odds_data$time_stable == 
1]) 
n_00 <- sum(odds_data$FW[odds_data$defect == 0 & odds_data$time_stable == 
0]) 
n_01 <- sum(odds_data$FW[odds_data$defect == 0 & odds_data$time_stable == 
1]) 
n_10 <- sum(odds_data$FW[odds_data$defect == 1 & odds_data$time_stable == 
0]) 
point_est <- (n_11*n_00)/(n_01*n_10) 
 
reps <- rep(0,80) 
for (i in 1:80){ 
 n_11 <- sum(odds_data[,paste0("FW", as.character(i))][odds_data$defect == 
1 & odds_data$time_stable == 1]) 
 n_00 <- sum(odds_data[,paste0("FW", as.character(i))][odds_data$defect == 
0 & odds_data$time_stable == 0]) 
 n_01 <- sum(odds_data[,paste0("FW", as.character(i))][odds_data$defect == 
0 & odds_data$time_stable == 1]) 
 n_10 <- sum(odds_data[,paste0("FW", as.character(i))][odds_data$defect == 
1 & odds_data$time_stable == 0]) 
 reps[i] <- log((n_11*n_00)/(n_01*n_10)) 
} 
 
reps <- (reps - log(point_est))^2 
var_est = ((4/80)*sum(reps)) 
se_est = var_est^(1/2) 
 
# 95% Confidence Intervals for Odds Ratios: 
z_value <- qnorm(.975) 
ci_95 <- exp(c(log(point_est) - z_value*se_est, log(point_est) + 
z_value*se_est)) 
 
print(paste0(as.character(round(point_est, 4)), 
       ", ", as.character(round(var_est, 4)), 
       ", ", as.character(round(se_est, 4)))) 
 

 
The R code of Figure 9.5.1 generates the output of Figure 9.5.2 with some supplemental labels 
added in. 
 

Figure 9.5.2: R Output for Calculating Confidence Interval of Odds Ratio with Replicate Weights 
 

point_est    log var     log se 
2.2572       0.027     0.1642 

 
print(ci_95) 

1.635915  3.114411 <- 95% CI for Odds Ratios 
Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 
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From the output in Figure 9.5.2, we can see that the odds ratio estimate is 𝜃𝜃� = 2.2572, the 
standard error of the log odds is 0.1625, and the confidence interval of the odds ratio is 
(1.6359, 3.1144).  
 
Example 9.6. Estimating a Confidence Interval of an Odds Ratio with Replicate Weights and 
Python 
 
This example estimates the odds ratio and variance calculation of rent stabilization status (pre-
1947 or post-1947) and the presence of three or more maintenance deficiencies. The code in 
Figure 9.6.1 first imports statistical function scipy.stats, then identifies the domains of 
interest, and estimates the odds ratio and variance using replicate weights in Python.  
 

Figure 9.6.1: Python Code for Calculating Confidence Interval of Odds Ratio with Replicate Weights 
 
import scipy.stats as sps 
odds_data = hu21.loc[(hu21.OCC == 1) & (hu21.MDEFCOUNT != -1) & (hu21.CSR == 
32)] 
n_11 = odds_data.loc[(odds_data.defect == 1) & (odds_data.time_stable == 
1)].FW.sum() 
n_00 = odds_data.loc[(odds_data.defect == 0) & (odds_data.time_stable == 
0)].FW.sum() 
n_01 = odds_data.loc[(odds_data.defect == 0) & (odds_data.time_stable == 
1)].FW.sum() 
n_10 = odds_data.loc[(odds_data.defect == 1) & (odds_data.time_stable == 
0)].FW.sum() 
point_est = (n_11*n_00)/(n_01*n_10) 
ln_point_est = np.log(point_est) 
 
reps = np.array([0.0]*80) 
for i in range(1,81): 
  n_11 = odds_data.loc[(odds_data.defect == 1) & (odds_data.time_stable == 
1)]["FW"+str(i)].sum() 
  n_00 = odds_data.loc[(odds_data.defect == 0) & (odds_data.time_stable == 
0)]["FW"+str(i)].sum() 
  n_01 = odds_data.loc[(odds_data.defect == 0) & (odds_data.time_stable == 
1)]["FW"+str(i)].sum() 
  n_10 = odds_data.loc[(odds_data.defect == 1) & (odds_data.time_stable == 
0)]["FW"+str(i)].sum() 
  reps[i-1] = np.log((n_11*n_00)/(n_01*n_10)) 
 
reps = (reps - ln_point_est)**2 
se = ((4/80)*reps.sum())**(1/2) 
print(point_est.round(decimals = 4), np.exp(se).round(decimals = 4)) 
 
# 95% Confidence Intervals for Odds Ratios: 
z_value = sps.norm.ppf(0.975) 
ci = [np.exp(ln_point_est - z_value*se), np.exp(ln_point_est + z_value*se)] 
print(ci) 
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The Python code of Figure 9.6.1 generates the output of Figure 9.6.2 with some supplemental 
labels added in. 
 

Figure 9.6.2: Python Output for Calculating Confidence Interval of Odds Ratio with Replicate Weights 
 2.2572 <- Odds Ratio Point Estimate 
 
0.027 <- Log Odds Variance  
 
0.1642 <- Log Odds SE 
 
[1.6359149683461613, 3.1144105055894173] <- 95% CI for Odds Ratios 
 

Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 
 
From the output in Figure 9.6.2, we can see that the odds ratio estimate is 𝜃𝜃� = 2.2572, the 
standard error of the log odds is 0.1642, and the confidence interval of the odds ratio is 
(1.6359, 3.1144).  
 
Example 9.7. Estimating a Confidence Interval of an Odds Ratio with Final weights and SAS 
PROC SURVEYFREQ 
 
If you merely use the final weights with the PROC SURVEYFREQ command, omitting the 
replicate weights and the varmethod option, then PROC SURVEYFREQ defaults to the Taylor 
Linearization Method for estimating the variance of the odds ratio. You will get the same point 
estimate and estimated counts as Example 9.1, but the CI will be slightly narrower. 
 
Figure 9.7.1 provides the PROC SURVEYFREQ code that will calculate the odds ratio using just 
the final weights. 

 
Figure 9.7.1: SAS Code for Calculating Confidence Interval of Odds Ratio with Final weights 

 
proc surveyfreq data=def_analysis ; 
 table def * stabilized / or ; 
 weight FW ; 
run ; 
 

 
The code of Figure 9.7.1 generates the output of Figure 9.7.2. 
 

Figure 9.7.2: SAS Output for Calculating Confidence Interval of Odds Ratio with Final weights 
The SURVEYFREQ Procedure 

Data Summary 

Number of Observations 1701 

Sum of Weights 838760.666 
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Figure 9.7.2: SAS Output for Calculating Confidence Interval of Odds Ratio with Final weights 
Table of def by stabilized 

def stabilized Frequency Weighted 
Frequency 

Std Err of 
Wgt Freq 

Percent Std Err of 
Percent 

0 0 531 231825 10154 27.6390 1.1987 

  1 762 402221 13263 47.9542 1.3804 

  Total 1293 634046 13012 75.5932 1.1793 

1 0 95 41640 4677 4.9645 0.5584 

  1 313 163074 9508 19.4423 1.0993 

  Total 408 204714 10212 24.4068 1.1793 

Total 0 626 273465 10659 32.6035 1.2599 

  1 1075 565296 13753 67.3965 1.2599 

  Total 1701 838761 10995 100.0000   

 

Odds Ratio and Relative Risks (Row1/Row2) 

Statistic Estimate 95% Confidence Limits 

Odds Ratio 2.2572 1.6945 3.0068 

Column 1 Relative Risk 1.7975 1.4424 2.2401 

Column 2 Relative Risk 0.7964 0.7426 0.8540 

Sample Size = 1701 
 

Source: U.S. Census Bureau, 2021, New York City Housing and Vacancy Survey. 
 
 
Example 9.8. Estimating a Confidence Interval of an Odds Ratio with Normalized Weights and 
SAS PROC FREQ 

 
In this estimation of the CI, we estimate the variance with the normalized weights, which 
reduces the underestimation of the variance that we will see in estimating a CI with final 
weights in Example 9.9. Normalized weights are not provided by NYCHVS but can easily be 
calculated as the final weight divided by the mean of all of the final weights with a positive 
value.  
 
Normalizing the final weight produces a weight that accounts for the unequal weights that 
reflect that sample units contribute unequally to the estimates. The normalized weights have a 
mean value of 1.0. So the normalized weights have the same magnitude as if you didn’t use 
weights – all sample units have a weight of 1.0 – and the variance (Example 9.8) produces a 
more reasonable estimate of the variance as compared to Example 9.9. 
 
Table 9.8.1 provides the weighted estimates of the frequencies of each cell. The final weight 
and Equation (9.2) were used to produce the totals. 
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Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 
 
Using the weighted totals, the odds of having three or more deficiencies given the HU is rent 
stabilized pre-1947 is calculated as 
 

{Odds of Y given Rent Stabilized Pre − 1947 (𝑋𝑋 = 1)} =
330.713
84.446

= 3.9163 

 
and we calculate the odds ratio as 

 

𝜃𝜃� =
330.713 ∗ 470.139
815.701 ∗ 84.4458

= 2.2572 

 
Figure 9.8.1 provides the PROC FREQ code that will calculate the odds ratio using the 
normalized weights.  

 
Figure 9.8.1: SAS Code for Calculating Confidence Interval of Odds Ratio with Normalized 

Weights 
 
data def_analysis ; 
 set def_analysis ; 
 * This is the formula for normalizing weights 
  Number of observations in sample (n) divided by sum of weights 
  (i.e. the mean of the weights) ; 
 fw_normalized = FW * (1701/838761) ; 
run ; 
 
proc freq data = def_analysis ; 
 table def * stabilized / or nocol norow ; 
 weight fw_normalized ; 
run ; 

 
 
The SAS code of Figure 9.8.1 generates the output of Figure 9.8.2. 
 

Table 9.8.1: Estimated Counts for Maintenance Deficiencies Example 
 Fewer than 3 

maintenance 
deficiencies 

3 or more 
maintenance 
deficiencies 

Total 

Rent Stabilized 
Post 1947 n00 = 470.139 n01 = 84.446 n0+ = 554.585 

Rent Stabilized 
Pre-1947 n10 = 815.701 n11 = 330.713 n1+ = 1146.41 

Total 
 n+0 = 1285.84 n+1 = 415.159 n = 1701.00 
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Figure 9.8.2: SAS Output for Calculating Confidence Interval of Odds Ratio with Normalized 
Weights 

 
The FREQ Procedure 

Frequency 

Percent 
 

 

Table of def by stabilized 

def stabilized 

0 1 Total 

0  470.139 

27.64 
 

815.701 

47.95 
 

1285.84 

75.59 
 

1  84.4458 

4.96 
 

330.713 

19.44 
 

415.159 

24.41 
 

Total 554.585 

32.60 
 

1146.41 

67.40 
 

1701 

100.00 
 

 

Statistics for Table of def by stabilized 
 

Odds Ratio and Relative Risks 

Statistic Value 95% Confidence Limits 

Odds Ratio 2.2572 1.7325 2.9408 

Relative Risk (Column 1) 1.7975 1.4665 2.2032 

Relative Risk (Column 2) 0.7964 0.7471 0.8489 

 

Sample Size = 1700.9993226 
 

Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 
 
 

Example 9.9. Estimating a Confidence Interval of an Odds Ratio with Final weights and SAS 
PROC FREQ 

 
If we calculate the variance with the usual estimator of the variance of a log odds, Equation 
(9.3), and insert the weighted estimates from Table 9.3.1, we get  
 

𝑣𝑣�(log 𝑜𝑜𝑂𝑂𝑂𝑂𝑂𝑂) =
1

231,825
+

1
402,221

+
1

41,640
+

1
163,074

= 0.000037 

 
and a standard error of 𝑂𝑂𝑔𝑔�(log 𝑜𝑜𝑂𝑂𝑂𝑂𝑂𝑂) = 0.0061. 
 
This answer is about two orders of magnitude smaller than the weighted estimate using the 
replicate weights and is misleading because it results in much smaller CIs.  
 
Figure 9.9.1 provides the PROC FREQ code that will calculate the odds ratio using the replicate 
weights. 
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Figure 9.9.1: SAS Code for Calculating Confidence Interval of Odds Ratio with Final weights 
 
proc freq data = def_analysis ; 
 table def * stabilized / or nocol norow; 
 weight FW ; 
run ; 
 

  
 
The SAS code of Figure 9.9.1 generates the output of Figure 9.9.2. 
 

Figure 9.9.2: SAS Output for Calculating Confidence Interval of Odds Ratio with Final weights 
 

The FREQ Procedure 

Frequency 

Percent 
 

 

Table of def by stabilized 

def stabilized 

0 1 Total 

0  231825 

27.64 
 

402221 

47.95 
 

634046 

75.59 
 

1  41640.1 

4.96 
 

163074 

19.44 
 

204714 

24.41 
 

Total 273465 

32.60 
 

565296 

67.40 
 

838761 

100.00 
 

 

Statistics for Table of def by stabilized 
 

Odds Ratio and Relative Risks 

Statistic Value 95% Confidence Limits 

Odds Ratio 2.2572 2.2305 2.2842 

Relative Risk (Column 1) 1.7975 1.7811 1.8141 

Relative Risk (Column 2) 0.7964 0.7941 0.7987 

Sample Size = 838760.66597 
 

Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 
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Example 9.10. Estimating a Confidence Interval of an Odds Ratio with No Weights and SAS 
PROC FREQ 
 
The unweighted counts for the maintenance deficiencies example are provided in Table 9.10.1.  

Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 
 
If we completely ignore the sample weights, the odds of having three or more maintenance 
deficiencies given the HU is rent stabilized pre-1947 is calculated as 
 

{Odds of Y given Rent Stabilized Pre − 1947 (𝑋𝑋 = 1)} =
313
95

= 3.2947 

 
and we estimate the odds ratio as 
 

𝜃𝜃� =
313 ∗ 531
762 ∗ 95

= 2.2959 

 
The log odds, or the natural log of the odds ratio θ̂ , is log odds= ln�𝜃𝜃�� = 0.8311. The 
unweighted variance of the log odds can be calculated using Equation (8.3) and Table 9.9.1 as 
 

𝑣𝑣�(log 𝑜𝑜𝑂𝑂𝑂𝑂𝑂𝑂) =
1

531
+

1
762

+
1

95
+

1
313

= 0.0169 

 

and the standard error is 𝑂𝑂𝑔𝑔�(log 𝑜𝑜𝑂𝑂𝑂𝑂𝑂𝑂) = 0.1301. With the estimate of θ̂  and the standard 
error, we can use Equation (7.4) to calculate the CI of (1.7793, 2.9626) 
 
The SAS code of Figure 9.10.1 shows how the CIs for the odds ratio can be calculated directly. 
 

 

Table 9.10.1: Unweighted Counts for Maintenance Deficiencies Example 

 
Fewer than 3 
maintenance 
deficiencies 

3 or more 
maintenance 
deficiencies 

Total 

Rent Stabilized 
Post-1947 n00 = 531 n01 = 95 n0+ = 626 

Rent Stabilized 
Pre-1947 n10 = 762 n11 = 313 n1+ = 1075 

Total 
 n+0 = 1293 n+1 = 408 n = 1,701 
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Figure 9.10.1: SAS Code for Calculating Confidence Interval of Odds Ratio without Weights 
 
proc freq data=def_analysis ; 
  table def * stabilized / or nocol norow ; 
run ; 
 

 
The SAS code of Figure 9.10.1 generates the output of Figure 9.10.2. 
 

Figure 9.10.2: SAS Output for Calculating Confidence Interval of Odds Ratio without Weights 
 

         The FREQ Procedure 

Frequency 

Percent 
 

 

Table of def by stabilized 

def Stabilized 

0 1 Total 

0  531 

31.22 
 

762 

44.80 
 

1293 

76.01 
 

1  95 

5.58 
 

313 

18.40 
 

408 

23.99 
 

Total 626 

36.80 
 

1075 

63.20 
 

1701 

100.00 
 

 

 

Statistics for Table of def by stabilized 
 

Odds Ratio and Relative Risks 

Statistic Value 95% Confidence Limits 

Odds Ratio 2.2959 1.7793 2.9626 

Relative Risk (Column 1) 1.7637 1.4617 2.1282 

Relative Risk (Column 2) 0.7682 0.7161 0.8241 

 

Sample Size = 1701 
 

 Source: U.S. Census Bureau, 2021 New York City Housing and Vacancy Survey. 
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10. How the Replicate Weights Are Calculated 
 
 
As with most large-scale household surveys, in an effort to control costs, the NYCHVS uses a 
complex sample design involving multi-stage sampling and unequal sampling rates. Weights are 
needed in the analysis to compensate for unequal sampling rates as well as for nonresponse. 
Further, most estimates from complex samples are non-linear statistics, so estimates of the 
standard errors are often obtained using the first-order Taylor series approximations or 
replication methods such as balanced repeated replication or jackknife replication. Therefore, 
the complex sample design needs to be considered in estimating the precision of survey 
estimates. Not accounting for these sample design features will lead to inaccurate point 
estimates and underestimated variance. This section describes methods used for generating 
accurate variance estimates. 
 
Variance Estimates with Replication 
 
Replication methods provide estimates of variance for a wide variety of designs using 
probability sampling, even when complex estimation procedures are used. This method 
requires that the sample selection, the collection of data, and the estimation procedures be 
carried out (replicated) several times. The dispersion of the resulting estimates can be used to 
measure the variance of the sample. 
 
In the variance estimation of NYCHVS, we use SDR. This technique is embodied by the replicate 
factors that are produced for the NYCHVS replicate variance estimator. 
 
Replicate Weights 
 
The base weights are multiplied by the replicate factors to produce the replicate weights. The 
replicate weights are further adjusted with the same weighting adjustments as applied to the 
final weight including a noninterview and ratio adjustments. For more details on the sample 
design of NYCHVS, please refer to the 2021 NYCHVS Sample Design, Weighting, and Error 
Estimation document (U.S. Census Bureau, 2023). By applying the other weighting adjustments 
to each replicate, the final replicate weights reflect the impact of the weighting adjustments on 
the variance. 
 
Replicate Factors  
 
The theoretical basis for the successive difference method was discussed by Wolter (2007) and 
extended by Fay and Train (1995) to produce the SDR method. See also Ash (2014) and 
Opsomer, Breidt, White, and Li (2016). The following is a description of SDR: 
 
To apply SDR to the sample, we sort the sample by borough (variable on the PUFs: BORO) and 
then within borough by the same order that was used to select the original systematic sample. 
Then each sample unit is assigned two rows of the given Hadamard matrix. For example, the 
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assignment for a Hadamard of order 80 would be rows (1,2) assigned to the first unit, rows (2,3) 
assigned to the second unit, … rows (80,1) assigned to the 80th unit. The assignment is repeated 
in further cycles until the entire sample is assigned two rows. 
 
For a sample, two rows of the Hadamard matrix are assigned to each pair of units creating 
replicate factors, 𝑜𝑜𝑟𝑟,𝑟𝑟  for r = 1,..., R as 
 

𝑜𝑜𝑟𝑟,𝑟𝑟 = 1 + 2 
−3/2ℎ𝑟𝑟+1,𝑟𝑟 − 2 

−3/2ℎ𝑟𝑟+2,𝑟𝑟 
 
where 
i the index on the units of the sample 
r the index on the set of replicates 

rih ,   number in the Hadamard matrix (+1 or −1) for the ith unit in the systematic sample 
R the number of total replicate samples or simply replicates 
 
This formula yields replicate factors of approximately 1.7, 1.0, or 0.3. 
 
Example 10.1. Successive Difference Replication 
 
The following is a simple example showing the SDR method. The sample contains n = 4 units, 
and their weights are shown in Table 10.1.1. 
 

Table 10.1.1: Sample Weights 

Sample HU Sample 
Weight 

1 15.00 

2 23.00 

3 19.00 

4 16.00 
 
We choose to use the following 4 × 4 Hadamard matrix to define the replicate factors: 
 





















 1+1-1-1+ 

 1-1-1+1+ 

 1-1+1-1+ 

 1+1+1+1+ 

=  4H  

 
Two consecutive rows of H4 are assigned to each sample unit as denoted in Table 10.1.2. 
 

Table 10.1.2: Assignment of Rows of the Hadamard Matrix 
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Sample HU Sample Weight Row I Row II 

1 15.00 1 2 

2 23.00 2 3 

3 19.00 3 4 

4 16.00 4 1 

 
Plugging these values into our replicate factor formula of Equation (2.1) we get 
 
Sample HU 1 

( ) ( ) 0.112121221 2
3

2
3

1,2
2
3

1,1
2
3

1,1 =+−++=−+=
−−−−

hhf  

( ) ( ) 7.1
2

1112121221 2
3

2
3

2,2
2
3

2,1
2
3

2,1 ≅+=−−++=−+=
−−−−

hhf  

( ) ( ) 0.112121221 2
3

2
3

3,2
2
3

3,1
2
3

3,1 =+−++=−+=
−−−−

hhf  

( ) ( ) 7.1
2

1112121221 2
3

2
3

4,2
2
3

4,1
2
3

4,1 ≅+=−−++=−+=
−−−−

hhf  

 
Sample HU 2 

( ) ( ) 0.112121221 2
3

2
3

1,3
2
3

1,2
2
3

1,3 =+−++=−+=
−−−−

hhf  

( ) ( ) 3.0
2

1112121221 2
3

2
3

2,3
2
3

2,2
2
3

2,3 ≅−=+−−+=−+=
−−−−

hhf  

( ) ( ) 7.1
2

1112121221 2
3

2
3

3,3
2
3

3,2
2
3

3,3 ≅+=−−++=−+=
−−−−

hhf  

( ) ( ) 0.112121221 2
3

2
3

4,3
2
3

4,2
2
3

4,3 =−−−+=−+=
−−−−

hhf  
 
Sample HU 3 

( ) ( ) 0.112121221 2
3

2
3

1,4
2
3

1,3
2
3

1,2 =+−++=−+=
−−−−

hhf  

( ) ( ) 7.1
2

1112121221 2
3

2
3

2,4
2
3

2,3
2
3

2,2 ≅+=−−++=−+=
−−−−

hhf  

( ) ( ) 0.112121221 2
3

2
3

3,4
2
3

3,3
2
3

3,2 =−−−+=−+=
−−−−

hhf  

( ) ( ) 3.0
2

1112121221 2
3

2
3

4,4
2
3

4,3
2
3

4,2 ≅−=+−−+=−+=
−−−−

hhf  

 
Repeat the process for Sample HU #4 using rows 4 and 1, respectively. 
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If we calculate the replicate factors for every replicate and unit in the sample, we get the values 
in Table 10.1.3. 
 

Table 10.1.3: Replicate Factors 

Sample HU 
Replicate Factors 

Replicate 1 Replicate 2 Replicate 3 Replicate 4 
1 1.0 1.7 1.0 1.7 

2 1.0 0.3 1.7 1.0 

3 1.0 1.7 1.0 0.3 

4 1.0 0.3 0.3 1.0 
 
Next, multiply the sample and corresponding factors to get the replicate weights of Table 
10.1.4. 
 

Table 10.1.4: Final Replicate Weights 

Sample HU 
Full 

Sample Weight 
Replicate Weights 

Replicate 1 Replicate 2 Replicate 3 Replicate 4 
1 15.0 15.0 25.5 15.0 25.5 

2 23.0 23.0 6.9 39.1 23.0 

3 19.0 19.0 32.3 19 5.7 

4 16.0 16.0 4.8 4.8 16.0 

 
 
Other Weighting Adjustments for Replicate Weights 
 
In Example 10.1, we end at the step of adjusting the replicate base weights for the different 
replicates. The next step is to calculate the rest of the weighting adjustments for each set of 
replicate weights. The replicate weights also account for the effect on the variance of the other 
weighting factors. Recalculating the noninterview and ratio adjustments for each replicate 
ensures that the randomness injected or mitigated by the different weighting adjustments is 
represented in each of the replicate estimates. See also Judkins (1990; p. 224) and Brick and 
Kalton (1996) for additional discussion of application of other weighting adjustments within 
replicate weighting. 
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The Factor of 4 in Equation (2.1) 
 
The replication variance estimator of Equation (2.1) includes what looks like an odd term of 4. 
This 4 is required by SDR because as Ash (2014) explains, each of the four rows of the 
Hadamard matrix produce one estimator of the successive difference variance estimator. So 
with NYCHVS, we need to divide the usual replication estimator by 80/4 = 20 and not 80. 
 
The easiest solution to adding the 4 to the PROC SURVEY procedures of SAS is to use the 
varmethod=brr(fay) option which has a default value of 0.5 for the perturbing factor. SAS 
will then use the 4 in the calculation of all replicates, and variance estimates will be correct. 
 
The alternative is to use the PROC SURVEY procedures of SAS with the varmethod=brr option 
and multiply the standard error by 2 or multiply the variance by 4. 
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Appendix A- 1 
 

 
 

GLOSSARY OF TERMS 
 
 
This glossary provides the definitions of several terms used with the technical document. It 
includes both terms related to statistics and the sample design. 
 
Balanced Repeated Replication (BRR) – A method of variance estimation that is often used 
with two-stage sample designs that select one or two PSUs per first-stage strata. The method is 
valuable because it can be applied to estimating the variance of linear and non-linear estimates. 
Also, the intermediate replicate weights can be provided to data users so that they can 
estimate variances themselves using simple expressions for the variance. The main ideas of 
replication are outlined by McCarthy (1966). 
 
Bias – The formal definition of bias of an estimator 𝜃𝜃� of some statistic 𝜃𝜃 is the expected value of 
the absolute value of the difference between the estimator and statistic and its expected value, 
i.e., 𝐵𝐵�𝜃𝜃�� = 𝐸𝐸�𝜃𝜃� − 𝜃𝜃�. Informally, the bias is a measure of how close the estimator is to the 
value it is estimating. 
 
Borough – A borough is determined by borough code variable (BORO) on the NYCHVS data 
file(s). The code BORO has the values: 1 = Bronx; 2 = Brooklyn; 3 = Manhattan; 4 = Queens; 5 = 
Staten Island. 
 
Calibration – As described by Deville and Särndal (1992), calibration is a technique that can be 
used to reduce the variance of an estimator. Sometimes it can also have the effect of improving 
the coverage of the estimator. Calibration uses a set of known totals: either an “imported 
totals” (Särndal and Lundström, 1999) or a set of variables that are known for all units in the 
universe. Calibration finds weights that are “close” to the original design weights so that the 
estimated known totals with the new weights are the same as the known total. 
 
Coefficient of Variation (CV) – The square root of the variance of an estimate divided by the 

estimate, i.e., �𝑣𝑣�𝜃𝜃�� 𝜃𝜃�� . 

 
Coverage – A measure of how well a frame and sample design includes the universe of interest. 
Usually coverage is expressed as a proportion. For example, if a study has 75% coverage then 
75% of the universe of interest was included by the frame and the sample design. 

Domain of Interest or Domain – A specific subset of the universe. 

Eligible / Ineligible – Refers to the whether a unit of interest is in the universe of interest or not 
in the universe of interest. See also AAPOR (2011). 
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Final Weight – The sample weight that can be used with the sample to make estimates of 
variables collected with the sample. The name “final weight” is used in some sections of the 
guide to distinguish the final weight from the replicate weights. The final weight is also the 
same as the weight for Replicate 0.  

Frame – The list of units in the universe of interest. 

Generalized Variance Function (GVF) – As explained by Wolter (2007), the GVF is a simple 
model that expresses the variance as a function of the expected value of the survey estimate. 

 
Housing Unit – A housing unit is an apartment, a house, a group of rooms, or a single room 
occupied or intended for occupancy as separate living quarters. Housing units must meet both 
of the following qualifications: 1) separateness, meaning occupants live separately from any 
other occupants in the building and 2) direct access, meaning that the entrance to the living 
quarters must be directly from the outside of the building or through a common hall. 
 
Similar to prior cycles, group quarters were not considered housing units and are therefore 
excluded from the NYCHVS. Examples include nursing homes, prisons, rectories and dormitories 
for students or workers. Any persons residing in such places are also not included in the survey. 
 
Interviews – Interviews consists of units that are either: 
 

● Occupied - Outcome Code (OCC) has a value of 1; or 
● Vacant  - Outcome Code (OCC) has a value of 2, 3, or 4. 

 
Non-interview – Units are classified as non-interviews when we expect to get interviews but 
don’t for one of the following reasons: 
 

1. In-scope (Type A) - refused, no one home, temporarily absent, other. 
 

2. Temporarily Out-of-scope (Type B) - permit granted construction not started, 
unfit to be demolished, under construction, converted to temporary 
nonresidential use, other 

 
3. Out-of-scope (Type C) - demolished, condemned, nonresidential, merged, 

damaged by fire, boarded up, list procedure applied, no such address, other. 
 

Please refer to the 2021 NYCHVS Sample Design, Weighting, and Error Estimation 
document for more detailed descriptions of Type A Noninterviews and Type C 
Noninterviews.  
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Occupied Units – Sample units are classified as occupied units if they have people living in them 
at the time of observation, regardless of their condition. Units that are occupied have a value of 
1 for OCC on the NYCHVS questionnaire. They are units that were interviewed. 
 
Owner Occupied – An occupied housing unit is owner occupied if the owner or co-owner lives 
in the unit, even if it’s not mortgaged or not fully paid for. See Owner Occupied Units for values 
of units that are owner occupied. 
 
Owner Occupied Units – Units having a value of 1 for OCC and a value of 2 in Tenure on the 
NYCHVS questionnaire. 
 
Relative Variance, Relvariance, or Relvar – is a measure of the relative dispersion of a 
probability distribution and is defined as the variance divided by the square of the estimate. It is 
also equal to the square of the coefficient of variation, i.e., 𝑟𝑟𝑔𝑔𝑟𝑟𝑣𝑣𝑟𝑟𝑟𝑟�𝜃𝜃�� = 𝑣𝑣�𝜃𝜃��/𝜃𝜃�2  

Renter Occupied – An occupied housing unit is renter occupied if the unit is rented for cash 
rent or occupied without payment of cash rent. See Renter-Occupied Units for values of renter-
occupied units. 
 
Renter-Occupied Units – Units having a value of 1 for OCC and a value of 1 Tenure on the 
NYCHVS questionnaire. 
 
Replicate Sample or Replicate – In replication variance estimation, we make several replicate 
samples where each has a different set of weights. Each of the replicate samples and the 
corresponding replicate weights used to make a replicate estimate that is used in variance 
estimation.  

Replicate Weight – The replicate weight that can be used with the sample to make estimates of 
variables collected with the sample.  

Replicate 0 – Refers to the replicate that uses the final weight. 

Sample Design – Everything about the selection of units into the sample that determines the 
probability of selection for each unit. We think of estimation as separate from sample design, in 
that some estimation procedures are more appropriate than others for a given sample design, 
but any estimator could be used with the sample derived from a given sample design. 

Sampling Fraction – The fraction of the universe that is in the sample. With an equal probability 
sample design, the sampling fraction is the ratio of the sample size and the size of the universe, 
often represented as 𝑜𝑜 = 𝑔𝑔/𝑁𝑁. 

Sampling Interval – The inverse of the sampling fraction. Sometimes referred to as the “take-
every” because we take every f--1 units of the universe into the sample. 
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Standard Error – Is the square root of the variance, i.e., 𝑂𝑂𝑔𝑔�𝜃𝜃�� = �𝑣𝑣�𝜃𝜃�� . 

Successive Difference Replication (SDR) – A replication variance estimation method that 
mimics the successive difference variance estimator and can be used to estimate the variance 
from a sys sample design. The main ideas of replication are outline by Fay and Train (1995). 
 
Systematic Random Sampling or sys – A random sampling method that requires selecting 
samples based on a system of intervals in an ordered population.  
 
Unit – The following definition is from Hájek (1981, p. 4): 
 
“The units making up the population S may be any elements worth studying – persons, families, 
farms, account items, temperature readings, and so on – and their nature will be irrelevant for 
theoretical considerations. We shall assume that the units are identifiable by certain labels 
(tags, names, addresses) and that we have available a frame (list, map) showing how to reach 
any unit given its label.” 

For NYCHVS, unit of interest is the housing unit. 

Universe of interest – In finite population sampling, the universe of interest, or simply the 
universe, is the well-defined set of units for which we would like to produce an estimate. 

Vacant Housing Units – Vacant housing units include vacant for sale, vacant for rent, and 
vacant not for sale or rent units.  
 
1) Vacant, Available for Sale: Vacant housing units that have a value of 3 for Outcome Code 

(OCC). 
 

2) Vacant, Available for Rent or Sale: Vacant housing units that have a value of 2 for Outcome 
Code (OCC). 

 
3) Vacant, not Available for Rent or Sale: Vacant housing units that have a value of 4 for 

Outcome Code (OCC). 
 
 
Variance or Sample Variance – Is a measure of the variability of an estimate. With finite 
population sampling, variance refers to the measure of how the estimate differs if we were to 
select other samples. Formally, the variance of an estimator 𝜃𝜃� is the expected value of the 
squared difference between the estimator 𝜃𝜃� and its expected value, i.e., 𝑣𝑣�𝜃𝜃�� =

𝐸𝐸 �𝜃𝜃� − 𝐸𝐸�𝜃𝜃���
2

. 
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LONGITUDINAL EXAMPLES FOR SAS, STATA, R, PYTHON 
 
To assist data users with the longitudinal examples, this appendix uses 2021 and 2023 data to 
present example code for estimating variance using replicate weights for SAS, STATA, R, and 
Python.  The examples presented cover longitudinal change (Examples 4.6, 5.6, 6.6, and 7.6) 
and percent change (Examples 4.7, 5.7, 6.7, and 7.7). 
 
SAS 
 
Example 4.6. Estimating the Variance of a Longitudinal Change 
 
Both this example and the next consider statistics that measure longitudinal change. This 
example will consider a statistic that measures the change of a rate between two cycles of the 
estimates. Example 4.7 will consider an estimate of percent of change that is calculated at the 
HU level. 
 
In this example, we show how to estimate the variance of a difference in proportion. 
Specifically, we are interested in the estimated difference in gross vacancy rates across two 
survey cycles. We write this as �̂�𝑝𝑡𝑡 = 𝑋𝑋�𝑡𝑡 /𝑁𝑁�𝑡𝑡 ∗ 100, where 𝑋𝑋�𝑡𝑡 is the estimator of the total 
number of vacant HUs at time t, and 𝑁𝑁�𝑡𝑡 is the estimator of the total number of HUs at time t. 
 
We’ll measure the difference in the gross vacancy rate between 2023 and 2021 in this example, 
so the statistic of interest is: 
 

�̂�𝛥𝑡𝑡=2021 =
𝑋𝑋�𝑡𝑡=2023
𝑁𝑁�𝑡𝑡=2023

∗ 100 −
𝑋𝑋�𝑡𝑡=2021
𝑁𝑁�𝑡𝑡=2021

∗ 100 

 
 
To estimate the variance of �̂�𝛥𝑡𝑡 with replicate weights, we first calculate all the pieces of �̂�𝛥𝑡𝑡=2023 
for each of the 80 replicates, making 80 replicate estimates of �̂�𝛥𝑡𝑡=2023, repeat those steps for 
2021, and then apply Equation (2.1). Figure 4.6.1 shows how to do this with SAS. 
 

Figure 4.6.1: SAS Code for Estimating Variance of a Longitudinal Change 
 
*Define Vacant and Occupied HUs. ; 
data temp1 ;  
 set HU23 ; 
 if Occ=1 then type='1'; * Occupied HUs; 
 else if Occ in (2,3,4)  then type='2'; * X-hat 2023* vacant HUs ; 
 * Type 1 & 2 makes total number HUs, N-hat ; 
run; 
 
data temp2 ;  
 set HU21 ; 
 if Occ=1 then type='1'; * Occupied HUs; 
 else if Occ in (2,3,4)  then type='2'; * X-hat 2021* vacant HUs ; 
 * Type 1 & 2 makes total number HUs, N-hat ; 
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Figure 4.6.1: SAS Code for Estimating Variance of a Longitudinal Change 
run; 
 
* This empty data set is produced for the merge later. ; 
data data21 ;  
 length diff0-diff80 8. ; 
run ; 
 
* Estimate the replicate estimates for replicates 0-80. ; 
%macro repssss(rep) ;  
* Get denominator N-hat 2023. ;  
proc means data= temp1 noprint ;  
 where type in ('2','1') ;  
 var fw&rep.; 
 output out=den23rep&rep. sum=den23rep&rep. ;  
run ; 
 
* Get numerator X-hat 2023. ; 
proc means data= temp1 noprint ;  
 where type in ('2') ;  
 var fw&rep.; 
output out=num23rep&rep. sum=num23rep&rep. ;  
run ; 
* Get denominator N-hat 2021. ;  
proc means data= temp2 noprint ;  
 where type in ('2','1') ;  
  var fw&rep.; 
 output out=den21rep&rep. sum=den21rep&rep. ;  
run ; 
 
* Get numerator X-hat 2021. ; 
proc means data= temp2 noprint ;  
 where type in ('2') ;  
 var fw&rep.; 
 output out=num21rep&rep. sum=num21rep&rep.;  
run ; 
 
* Merge the replicate estimates of each year, and get difference  
 in vacancy rate by replicate. ; 
data datamrep&rep.; 
 merge num21rep&rep. num23rep&rep. den21rep&rep. den23rep&rep. ; 
 diff&rep. = (num23rep&rep./den23rep&rep.)*100 - 
(num21rep&rep./den21rep&rep.)*100 ; 
 keep diff&rep.; 
run ; 
 
data data21 ; 
 merge data21 datamrep&rep. ; 
run ; 
%mend repssss ; 
 
%macro doit ; 
 %do i=0 %to 80 ; 
  %repssss(&i.) ; 
  %end; 
%mend doit ; 
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Figure 4.6.1: SAS Code for Estimating Variance of a Longitudinal Change 
%doit ; 
 
* Apply Step 3 to the replicate estimates and estimate the 
variance. ; 
data data22 (keep=diff0 var se) ; 
 set data21 end=eof ;  
 * Fill array with the replicate means. ; 
 array diff{80} diff1-diff80 ;   
 * Fill array with the squared diffs. ; 
 array sdiffsq{80} sdiffsq1-sdiffsq80 ;  
 do j = 1 to 80 ; 
  sdiffsq{j} = (diff{j} - diff0)**2 ; 
  end ;  
 * Sum the squared diffs. ; 
 totdiff = sum(of sdiffsq1-sdiffsq80) ; 
 var = (4/80) * totdiff ; 
 se = (var)**(0.5) ; 
 output ; 
run ; 
 
proc print data=data22 noobs ;  
 var diff0 se ; 
 format diff0 se 8.4 ;  
run ; 
 

 
The SAS code of Figure 4.6.1 produces the output in Figure 4.6.2. 
 

Figure 4.6.2: SAS Output for Estimating Variance of a Longitudinal Change 

 
Source: U.S. Census Bureau, 2021 and 2023 New York City Housing and Vacancy Survey. 

 
Thus, the total gross vacancy rate in NYC for 2023 has decreased 6 percent from 2021 with a 
standard error of 0.43 percent.  
 
 
Example 4.7. Estimating the Variance of a Percent Change in Two Cycles of NYCHVS 
 
This example considers median gross rent and how it changes over time. Both the rate of 
change and resulting variance are calculated.  
 
The statistic of interest is the percent change in the median gross rent from 2021 to 2023. Let 
M� t be the estimator of the median gross rent at time t. The statistic of interest is: 
  

%�̂�𝛥𝑡𝑡 =
𝑀𝑀�𝑡𝑡 − 𝑀𝑀�𝑡𝑡−1
𝑀𝑀�𝑡𝑡−1
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To estimate the variance of %�̂�𝛥𝑡𝑡, we use the 2021 replicate weights and calculate 80 replicate 
estimates of 𝑀𝑀�𝑡𝑡=2021 and similarly use the 2023 replicate weights and calculate 80 replicate 
estimates of 𝑀𝑀�𝑡𝑡=2023. Next, we merge the replicate estimates of 𝑀𝑀�𝑡𝑡=2023 and 𝑀𝑀�𝑡𝑡=2021 by 
replicate and calculate 80 replicate estimates of %�̂�𝛥𝑡𝑡. The final step is to apply Equation (2.1) to 
the replicate estimates of %Δ�t. 
 
Figure 4.7.1 shows how this can be done with SAS. 
 

Figure 4.7.1: SAS Code for Estimating Variance of a Rate of Change 
 
* Subset to renter-occupied units with valid rent. ; 
Data D2023; 
 set HU23; 
 where occ=1 and tenure=1 and Grent not in (-2,-1,-3); 
run; 
 
Data D2021; 
 set HU21; 
 where occ=1 and tenure=1 and Grent not in (-2,-1); 
run; 
 
* This empty data set is produced for the merge later. ; 
data data23 ;  
 length diff0-diff80 8. ; 
run ; 
 
* Steps 1 & 2: Estimate the replicate estimates for replicates 0-80. ; 
%macro repssss(rep) ;  
* Estimate theta for each year. ; 
proc means data= d2023 median noprint ;  
 weight fw&rep. ; 
 var Grent ;  
 output out=datam23rep&rep. median=median23rep&rep. ;  
run ; 
 
proc means data= d2021 median noprint ;  
 weight fw&rep. ; 
 var Grent ;  
 output out=datam21rep&rep. median=median21rep&rep. ;  
run ; 
 
* Merge the replicate estimates of each year by replicate. ; 
data datamrep&rep. ; 
 merge datam23rep&rep. datam21rep&rep. ; 
 diff&rep. = (median23rep&rep.-median21rep&rep. )/median21rep&rep.; 
 keep diff&rep. ; 
run ; 
 
data data23 ; 
 merge data23 datamrep&rep.; 
run ; 
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Figure 4.7.1: SAS Code for Estimating Variance of a Rate of Change 
%mend repssss ; 
 
%macro doit ; 
 %do i=0 %to 80 ; 
  %repssss(&i.) ; 
  %end ; 
%mend doit ; 
%doit ; 
 
* Apply Step 3 to the replicate estimates and estimate the variance. ; 
data data24 (keep=diff0 var se) ; 
 set data23 end=eof ;  
 * Fill array with the replicate means. ; 
 array diff{80} diff1-diff80 ;   
 * Fill array with the squared diffs. ; 
 array sdiffsq{80} sdiffsq1-sdiffsq80 ;  
 do j = 1 to 80 ; 
  sdiffsq{j} = (diff{j} - diff0)**2 ; 
  end ;  
 * Sum the squared diffs. ; 
 totdiff = sum(of sdiffsq1-sdiffsq80) ; 
 var = (4/80) * totdiff ; 
 se = (var)**(0.5) ; 
 output ; 
run ; 
 
proc print data=data24 noobs ;  
 var diff0 se ; 
 format diff0 se 8.4 ;  
run ; 
 

 
The SAS code of Figure 4.7.1 produces the output in Figure 4.7.2. 
 

Figure 4.7.2: SAS Output for Estimating Variance of a Rate of Change 
 

 
 Source: U.S. Census Bureau, 2021 and 2023 New York City Housing and Vacancy Survey. 

 
So the median gross rent in NYC for 2023 has increased 7.6 percent from 2021, with a standard 
error of 1.5 percent.  
 
STATA 
 
Example 5.6. Estimating the Variance of a Longitudinal Change  
 
Both this example and the next consider statistics that measure longitudinal change. This 
example will consider a statistic that measures the change of a rate between two cycles of the 
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estimates. Example 5.7 will consider an estimate of percent of change that is calculated at the 
HU level. 
 
In this example, we show how to estimate the variance of a difference in proportion. 
Specifically, we are interested in the estimated gross vacancy rate or p�t = X�t /N�t ∗ 100, where 
X�t is the estimator of the total number of vacant HUs at time t, and N�t is the estimator of the 
total number of HUs at time t. 
 
Further, we are really interested in the difference in the gross vacancy rate between 2023 and 
2021, so the statistic of interest is: 
 

�̂�𝛥𝑡𝑡=2021 =
𝑋𝑋�𝑡𝑡=2023
𝑁𝑁�𝑡𝑡=2023

∗ 100 −
𝑋𝑋�𝑡𝑡=2021
𝑁𝑁�𝑡𝑡=2021

∗ 100 

 
To estimate the variance of �̂�𝛥𝑡𝑡 with replicate weights, we first calculate all the pieces of �̂�𝛥𝑡𝑡=2023 
for each of the 80 replicates, making 80 replicate estimates of �̂�𝛥𝑡𝑡=2023, repeat those steps for 
2021, and then apply Equation (2.1). Figure 5.6.1 shows how we do this with STATA. 
 

Figure 5.6.1: STATA Code for Estimating Variance of a Longitudinal Change 
 
* Read in 2023 data: 
use "HU23.dta", clear 
 
* Generate vacancy variable: 
gen vac = (occ != 1) 
 
* Calculating 2023 totals: 
quietly summarize fw if vac == 1 
scalar vac_est23 = r(sum) 
 
quietly summarize fw 
scalar tot_est23 = r(sum) 
 
scalar est23 = (vac_est23 / tot_est23) * 100 
 
* Creating matrix that stores 2023 estimates: 
matrix all_ests_23 = (est23) 
 
* Now going through replicates: 
foreach x of varlist fw1-fw80 { 
    quietly summarize `x' if vac == 1 
    scalar vac_est23_i = r(sum) 
    quietly summarize `x' 
    scalar tot_est23_i = r(sum) 
    scalar est23_i = (vac_est23_i / tot_est23_i) * 100 
    matrix all_ests_23 = (all_ests_23 \ est23_i) 
} 
 
* Now reading in 2021 data: 
import delimited "hu21.csv", clear 
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Figure 5.6.1: STATA Code for Estimating Variance of a Longitudinal Change 
* Generate vacancy variable: 
gen vac = (occ != 1) 
 
* Calculating 2021 totals: 
quietly summarize fw0 if vac == 1 
scalar vac_est21 = r(sum) 
 
quietly summarize fw0 
scalar tot_est21 = r(sum) 
 
scalar est21 = (vac_est21 / tot_est21) * 100 
 
* Creating matrix that stores 2021 estimates: 
matrix all_ests_21 = (est21) 
 
* Now going through replicates: 
foreach x of varlist fw1-fw80 { 
    quietly summarize `x' if vac == 1 
    scalar vac_est21_i = r(sum) 
    quietly summarize `x' 
    scalar tot_est21_i = r(sum) 
    scalar est21_i = (vac_est21_i / tot_est21_i) * 100 
    matrix all_ests_21 = (all_ests_21 \ est21_i) 
} 
 
* Matrix will point estimates for the sample estimate and all replicates: 
matrix diffs = all_ests_23 - all_ests_21 
 
* Now getting squared differences for variance estimation: 
scalar summed_variance = 0 
quietly forvalues i = 2/81 { 
    scalar sq_pt_est_diffs = (diffs[`i',1] - diffs[1,1])^2 
    scalar summed_variance = summed_variance + sq_pt_est_diffs 
} 
 
scalar summed_variance = (4/80) * summed_variance 
scalar se_est = sqrt(summed_variance) 
scalar point_est = diffs[1,1] 
 
* Final Point Estimate: 
display point_est 
 
* Final Estimated Standard Error: 
display se_est 

 
The STATA code of Figure 5.6.1 generates the output of Figure 5.6.2. 
 

Figure 5.6.2: STATA Output for Estimating Variance of a Longitudinal Change 
 
* Final Point Estimate: 
. display point_est 
-6.0005652 
 
. * Final Estimated Standard Error: 
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.  

. display se_est 

.43279899 
Source: U.S. Census Bureau, 2021 and 2023 New York City Housing and Vacancy Survey. 

 
So, the change in the gross vacancy rate from 2021 to 2023 is a 6 percent decrease, with a 
standard error of 0.4 percent.  
 
 
Example 5.7. Estimating the Variance of a Percent Change in Two Cycles of NYCHVS 
 
There are many different statistics that measure the change between two cycles of NYCHVS. 
Differences, percent change, and ratios can be used to measure how much a given statistic 
changed from one cycle of NYCHVS to another. This example considers the housing 
characteristic of the median gross rent and how it can change over time. Both the rate of 
change and resulting variance are demonstrated.  
 
The statistic of interest is the percent change in the median gross rent from 2021 to 2023. Let 
𝑀𝑀�𝑡𝑡 be the estimator of the median gross rent at time t. The statistic of interest is 
  

%�̂�𝛥𝑡𝑡 =
𝑀𝑀�𝑡𝑡 − 𝑀𝑀�𝑡𝑡−1
𝑀𝑀�𝑡𝑡−1

 

 
To estimate the variance of %�̂�𝛥𝑡𝑡, we use the 2023 replicate weights and store 80 replicate 
estimates of 𝑀𝑀�𝑡𝑡=2023 within a matrix, and similarly use the 2021 replicate weights to store 80 
replicate estimates of 𝑀𝑀�𝑡𝑡=2021 in another matrix. Next, we take the difference of these two 
matrices 𝑀𝑀�𝑡𝑡=2023 and 𝑀𝑀�𝑡𝑡=2021 by replicate and then divide each matrix entry by 𝑀𝑀�𝑡𝑡=2021 to get 
our 80 replicate estimates of %�̂�𝛥𝑡𝑡. The final step is to apply Equation (2.1) to the replicate 
estimates of %�̂�𝛥𝑡𝑡. 
 
Figure 5.7.1 shows how this can be done with STATA. 
 

Figure 5.7.1: STATA Code for Estimating Variance of a Rate of Change 
* Read in 2023 data: 
use "puf/alloccvac_23", clear 
 
 
* Generating needed variables - renters and gross rent: 
gen renters = (rent_amount != -2) & (grent > 0) 
gen gross_rent = grent 
replace gross_rent = . if grent <= 0  
 
* Calculating 2023 median gross rent: 
quietly summarize gross_rent [w=fw] if renters == 1, detail 
scalar rent23 = r(p50) 
 
* Matrix to store 2023 estimates: 
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Figure 5.7.1: STATA Code for Estimating Variance of a Rate of Change 
matrix rent_ests_23 = (rent23) 
 
* Now looping through all repweights for 2023: 
foreach x of var fw1-fw80 { 
 
 quietly summarize gross_rent [w=`x'] if renters == 1, detail 
 scalar rent23_ith = r(p50) 
 
 * Adding to matrix that stores 2023 estimates: 
 matrix rent_ests_23 = (rent_ests_23 \ rent23_ith) 
} 
 
* Now to 2021 data: 
import delimited "hu21.csv", clear 
 
* Generating needed variables - renters and gross rent: 
gen renters = (rent_amount != -2) & (grent > 0) 
gen gross_rent = grent 
replace gross_rent = . if grent <= 0  
 
* Calculating 2021 median gross rent: 
quietly summarize gross_rent [w=fw0] if renters == 1, detail 
scalar rent21 = r(p50) 
 
* Creating matrix that stores 2021 estimates: 
matrix rent_ests_21 = (rent21) 
 
* Now looping through all repweights for 2021: 
foreach x of var fw1-fw80 { 
 
 quietly summarize gross_rent [w=`x'] if renters == 1, detail 
 scalar rent21_ith = r(p50) 
 
 * Adding to matrix that stores 2021 estimates: 
 matrix rent_ests_21 = (rent_ests_21 \ rent21_ith) 
} 
 
* Final Matrix - for now storing the numerator of the estimate for 
sample and all replicates: 
matrix med_rent_increase_diff = (rent_ests_23 - rent_ests_21) 
matrix med_rent_increase_est = J(81,1,0) 
 
forvalues i = 1/81 { 
 
 * Converting entries in final matrix to hold final estiamtes for 
full sample and all replicates: 
 matrix med_rent_increase_est[`i',1] = 
med_rent_increase_diff[`i',1] / rent_ests_21[`i',1] 
} 
 
* Now getting squared differences for variance estimation: 
scalar summed_variance = 0 
quietly forvalues i = 2/81 { 
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Figure 5.7.1: STATA Code for Estimating Variance of a Rate of Change 
 scalar sq_pt_med_increase_est = (med_rent_increase_est[`i',1] - 
med_rent_increase_est[1,1])^2 
 scalar summed_variance = summed_variance + 
sq_pt_med_increase_est 
} 
 
scalar summed_variance = (4/80) * summed_variance 
scalar se_est = (summed_variance)^(0.5) 
scalar point_est = med_rent_increase_est[1,1] 
 
* Final Point Estimate: 
display point_est 
 
* Final Estimated Standard Error: 
display se_est 

 
The STATA code of Figure 5.7.1 generates the output of Figure 5.7.2. 
 

Figure 5.7.2: STATA Output for Estimating Variance of a Rate of Change 
 
. * Final Point Estimate: 
. display point_est 
.07555556 
 
.  
. * Final Estimated Standard Error: 
. display se_est 
.01495792 
 

Source: U.S. Census Bureau, 2021 and 2023 New York City Housing and Vacancy Survey. 
 
Therefore, the median gross rent for NYC in 2023 has increased 7.6 percent from 2021, with a 
standard error of 1.5 percent.  
 
 
R 
 
Example 6.6. Estimating the Variance of a Longitudinal Change 
 
Both this example and the next consider statistics that measure longitudinal change. This 
example will consider a statistic that measures the change of a rate between two cycles of the 
estimates. Example 6.7 will consider an estimate of percent of change that is calculated at the 
HU level. We present these two longitudinal statistics as examples thinking these calculations 
are the most likely of calculations that data users would be interested in. 
 
In this example, we show how to estimate the variance of a difference in proportion. 
Specifically, we’ll estimate the gross vacancy rate or �̂�𝑝𝑡𝑡 = 𝑋𝑋�𝑡𝑡 /𝑁𝑁�𝑡𝑡 ∗ 100, where 𝑋𝑋�𝑡𝑡 is the 
estimator of the total number of vacant HUs at time t, and 𝑁𝑁�𝑡𝑡 is the estimator of the total 
number of HUs at time t. 
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Further, we’re interested in the difference in the gross vacancy rate between 2023 and 2021, so 
the statistic of interest is: 
 

�̂�𝛥𝑡𝑡=2023 =
𝑋𝑋�𝑡𝑡=2023
𝑁𝑁�𝑡𝑡=2023

∗ 100 −
𝑋𝑋�𝑡𝑡=2021
𝑁𝑁�𝑡𝑡=2021

∗ 100 

 
To estimate the variance of �̂�𝛥𝑡𝑡 with replicate weights, we first calculate all the pieces of �̂�𝛥𝑡𝑡=2023 
for each of the 80 replicates, make 80 replicate estimates of Δ�t=2023, repeat those steps for 
2021, and then apply Equation (2.1).  Figure 6.6.1 shows how we do this with R. 
 

Figure 6.6.1: R Command for Estimating Variance of a Longitudinal Change 
 
## First Longitudinal Example: 
# Adding vacancy dummy: 
hu23$vac <- ifelse(hu23$OCC != 1, 1, 0) 
hu21$vac <- ifelse(hu21$OCC != 1, 1, 0) 
 
# Calculating 2023 point estimates: 
hu23_vac <- hu23 %>% filter(vac == 1) 
vac_est23 <- sum(hu23_vac$FW) 
total_est23 <- sum(hu23$FW) 
est23 <- (vac_est23 / total_est23) * 100 
 
# Calculating 2021 point estimates: 
hu21_vac <- hu21 %>% filter(vac == 1) 
vac_est21 <- sum(hu21_vac$FW0) 
total_est21 <- sum(hu21$FW0) 
est21 <- (vac_est21 / total_est21) * 100 
 
# Final Point Estimate: 
point_est <- est23 - est21 
 
# Now looping: 
reps <- rep(0,80) 
for (i in 1:80) { 
  vac_rep23 <- sum(hu23_vac[,paste0("FW", as.character(i))]) 
  tot_rep23 <- sum(hu23[,paste0("FW", as.character(i))]) 
  vac_rep21 <- sum(hu21_vac[,paste0("FW", as.character(i))]) 
  tot_rep21 <- sum(hu21[,paste0("FW", as.character(i))]) 
  reps[i] <- ((vac_rep23 / tot_rep23) - (vac_rep21 / tot_rep21)) * 100 
   
} 
 
reps <- (reps - point_est)^2 
se_est = ((4/80)*sum(reps))^(1/2) 
print(paste0(as.character(round(point_est, 4)), 
             ", ", as.character(round(se_est , 4)))) 

 
The R command of Figure 6.6.1 produces the output in Figure 6.6.2. 
 



Appendix B- 12 
 

 
 

Figure 6.6.2: R Output for Estimating Variance of a Longitudinal Change 
 
> # Final Point Estimate: 
> est 
[1] -6.0006 
> # Final Estimate of Standard Error: 
> est_se 
[1] 0.4328 
 

Source: U.S. Census Bureau, 2021 and 2023 New York City Housing and Vacancy Survey. 
 
The change in the gross vacancy rate from 2021 to 2023 is a 6.0 percent decrease, with a 
standard error of 0.4 percent.  
 
Example 6.7. Estimating the Variance of a Percent Change in Two Cycles of NYCHVS 
 
There are many different statistics that measure the change between two cycles of NYCHVS. 
Differences, percent change, and ratios can be used to measure how much a given statistic 
changed from one cycle of NYCHVS to another. This example considers the housing 
characteristic of the median gross rent and how it can change over time. Both the rate of 
change and resulting variance are demonstrated.  
 
The statistic of interest is the percent change in the median gross rent from 2017 to 2021. Let 
𝑀𝑀�𝑡𝑡 be the estimator of the median gross rent at time t. The statistic of interest is: 
  

%�̂�𝛥𝑡𝑡 =
𝑀𝑀�𝑡𝑡 − 𝑀𝑀�𝑡𝑡−1
𝑀𝑀�𝑡𝑡−1

 

 
To estimate the variance of %�̂�𝛥𝑡𝑡, we first calculate the point estimates of %�̂�𝛥𝑡𝑡. Then, we use 
both the 2021 and 2017 replicate weights to store 80 replicate estimates of %�̂�𝛥𝑡𝑡 within a vector 
and store the squared differences between these replicate estimates and the final point 
estimate in another vector. We apply Equation (2.1) to arrive at our final estimate of standard 
error for %�̂�𝛥𝑡𝑡. 
 
Figure 6.7.1 shows how this can be done with R. 
 

Figure 6.7.1: R Command for Estimating Variance of a Rate of Change 
 
# Calculating 2023 point estimates: 
rent23 <- wgt_per_sas(rent_data, "gross_rent", "FW", 0.5) 
 
# Calculating 2021 point estimates: 
rent_data_21 <- hu21 %>% filter(TENURE == 1 , GRENT != -1, GRENT != -2) 
rent21 <- wgt_per_sas(rent_data_21, "GRENT", "FW0", 0.5) 
 
# Final Point Estimate: 
point_est <- (rent23 - rent21) / rent21 
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Figure 6.7.1: R Command for Estimating Variance of a Rate of Change 
# Now looping: 
reps <- rep(0,80) 
for (i in 1:80) { 
  rent23_est <- wgt_per_sas(rent_data, "gross_rent", 
                  paste0("FW", as.character(i)), 0.5) 
  rent21_est <- wgt_per_sas(rent_data_21, "GRENT", 
                  paste0("FW", as.character(i)), 0.5) 
  reps[i] <- (rent23_est - rent21_est) / rent21_est 
   
} 
 
reps <- (reps - point_est)^2 
se_est = ((4/80)*sum(reps))^(1/2) 
print(paste0(as.character(round(point_est, 4)), 
             ", ", as.character(round(se_est, 4)))) 

 
 
The R code of Figure 6.7.1 produces the output in Figure 6.7.2. 
 

Figure 6.7.2: R Output for Estimating Variance of a Rate of Change 
 
# Final Point Estimate: 
[1] 0.0756 
# Final Estimate of Standard Error: 
[1] 0.0149 
 

Source: U.S. Census Bureau, 2021 and 2023 New York City Housing and Vacancy Survey. 
 
So, the median gross rent for NYC in 2023 has increased 7.6 percent from 2021, with a standard 
error of 1.5 percent.  
 
 
PYTHON 
 
Example 7.6. Estimating the Variance of a Longitudinal Change 
 
Both this example and the next consider statistics that measure longitudinal change. This 
example will consider a statistic that measures the change of a rate between two cycles of the 
estimates. Example 7.7 will consider an estimate of percent of change that is calculated at the 
HU level. 
 
In this example, we show how to estimate the variance of a difference in proportion. 
Specifically, we are interested in the estimated gross vacancy rate or p�t = X�t /N�t ∗ 100, where 
X�t is the estimator of the total number of vacant HUs at time t, and N�t is the estimator of the 
total number of HUs at time t. 
 
Further, we are interested in the difference in the gross vacancy rate between 2021 and 2017, 
so the statistic of interest is: 
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�̂�𝛥𝑡𝑡=2023 =
𝑋𝑋�𝑡𝑡=2023
𝑁𝑁�𝑡𝑡=2023

∗ 100 −
𝑋𝑋�𝑡𝑡=2021
𝑁𝑁�𝑡𝑡=2021

∗ 100 

 
To estimate the variance of Δ�t with replicate weights, we first calculate all the pieces of Δ�t=2023 
for each of the 80 replicates, making 80 replicate estimates of Δ�t=2023, repeat those steps for 
2021, and then apply Equation (2.1).  
 
Figure 7.6.1 shows how we do this with PYTHON. 
 

Figure 7.6.1: Python Code for Estimating Variance of a Longitudinal Change 
 
reps = np.array([0.0]*80) 
vac23 = (hu23.loc[hu23.vac == 1].FW.sum() / hu23.FW.sum())*100 
vac21 = (hu21.loc[hu21.vac == 1].FW0.sum() / hu21.FW0.sum())*100 
point_est = vac23 - vac21 
for i in range(1,81): 
    vac23 = (hu23.loc[hu23.vac == 1]["FW"+str(i)].sum() / 
hu23["FW"+str(i)].sum())*100 
    vac21 = (hu21.loc[hu21.vac == 1]["FW"+str(i)].sum() / 
hu21["FW"+str(i)].sum())*100 
    reps[i-1] = vac23 - vac21    
reps = (reps - point_est)**2 
se_est= ((4/80)*np.sum(reps))**(1/2) 
print( point_est.round(decimals = 4), se_est.round(decimals = 4)) 
 

  
 
The Python code of Figure 7.6.1 generates the output of Figure 7.6.2. 
 

Figure 7.6.2: Python Output for Estimating Variance of a Longitudinal Change 
 

-6.0006 0.4328 
 

Source: U.S. Census Bureau, 2021 and 2023 New York City Housing and Vacancy Survey. 
 
So, the change in the gross vacancy rate from 2021 to 2023 is a 6 percent decrease, with a 
standard error of 0.4 percent.  
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Example 7.7. Estimating the Variance of a Percent Change in Two Cycles of NYCHVS 
 
There are many different statistics that measure the change between two cycles of NYCHVS. 
Differences, percent change, and ratios can be used to measure how much a given statistic 
changed from one cycle of NYCHVS to another. This example considers the housing 
characteristic of the median gross rent and how it can change over time. Both the rate of 
change and resulting variance are demonstrated.  
 
The statistic of interest is the percent change in the median gross rent from 2021 to 2023. Let 
M� t be the estimator of the median gross rent at time t. The statistic of interest is: 

 

%Δ�t =
M� t − M� t−1

M� t−1
 

 
To estimate the variance of %Δ�t, we use the 2023 replicate weights and store 80 replicate 
estimates of 𝑀𝑀�𝑡𝑡=2023 within a matrix, and similarly use the 2021 replicate weights to store 80 
replicate estimates of 𝑀𝑀�𝑡𝑡=2021 in another matrix. Next, we take the difference of these two 
matrices 𝑀𝑀�𝑡𝑡=2023 and 𝑀𝑀�𝑡𝑡=2021 by replicate and then divide each matrix entry by 𝑀𝑀�𝑡𝑡=2021 to get 
our 80 replicate estimates of %Δ�t. The final step is to apply Equation (2.1) to the replicate 
estimates of %Δ�t. 
 
Figure 7.7.1 shows how this can be done with Python. 
 

Figure 7.7.1: Python Code for Estimating Variance of a Rate of Change 
 
rent_data_21 = hu21.loc[hu21.TENURE == 1 & hu21.gross_rent.notnull()] 
reps = np.array([0.0]*80) 
point_est_23 = wgt_per_sas(rent_data, 'gross_rent', 'FW', 0.5) 
point_est_21 = wgt_per_sas(rent_data_21, 'gross_rent', 'FW0', 0.5) 
point_est = (point_est_23 - point_est_21) / point_est_21 
for i in range(1,81): 
    point_est_23 = wgt_per_sas(rent_data, 'gross_rent', 'FW'+str(i), 0.5) 
    point_est_21 = wgt_per_sas(rent_data_21, 'gross_rent', 'FW'+str(i), 0.5)     
    reps[i-1] = (point_est_23 - point_est_21) / point_est_21 
reps = (reps - point_est)**2 
se_est= ((4/80)*np.sum(reps))**(1/2) 
print(point_est.round(decimals = 4), se_est.round(decimals = 4))   

 
The Python code of Figure 7.7.1 generates the output of Figure 7.7.2. 
 

Figure 7.7.2: Python Output for Estimating Variance of a Rate of Change 
 

0.0756 0.0149 
 

Source: U.S. Census Bureau, 2021 and 2023 New York City Housing and Vacancy Survey. 
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Therefore, the median gross rent for NYC in 2023 has increased 7.6 percent from 2021, with a 
standard error of 1.5 percent.  
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