

Newtown Creek

Combined Sewer Overflow Long Term Control Plan

Public Data Review Meeting

Location: Newtown Creek Visitor Center

Date: February 21, 2017

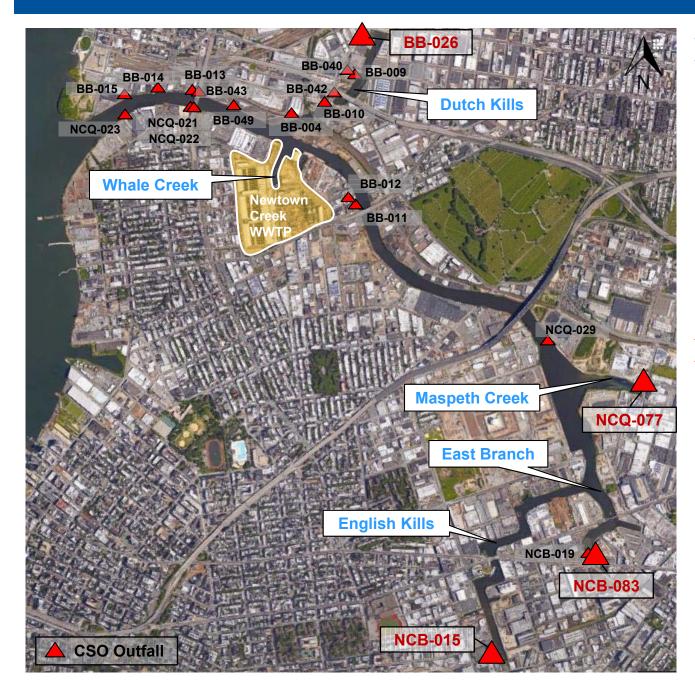
Objective

Focus today is to present the water quality data collected, and to get your thoughts on issues to be addressed in Newtown Creek.

The data shows Newtown Creek has:

- elevated bacteria levels
- excursions below WQS for Dissolved Oxygen
- > slow time to recovery

Agenda


- 1 Introduction
- 2 CSO Sampling, Monitoring, and Model Calibration
- 3 Water Quality Sampling and Model Calibration
- 4 Newtown Creek Alliance / Riverkeeper / Citizen Sampling
- 5 CSO Baseline Modeling
- 6 CSO Control Preliminary Alternatives

1 Introduction

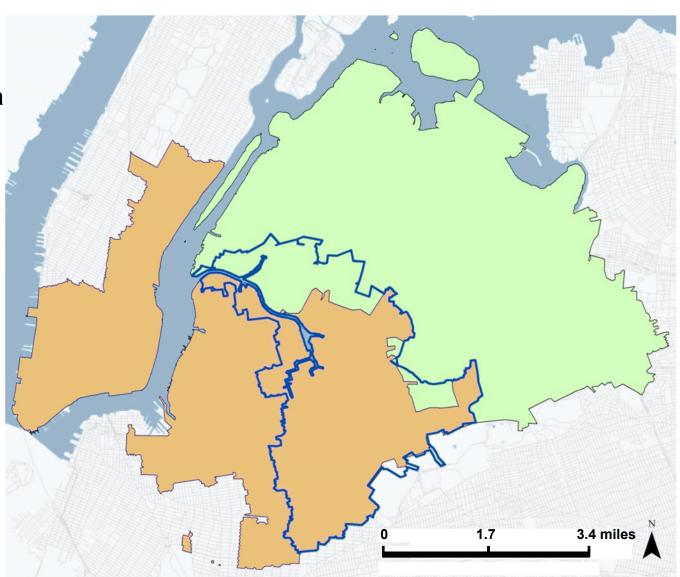
Newtown Creek Overview

▶5 Urban CSO Tributaries

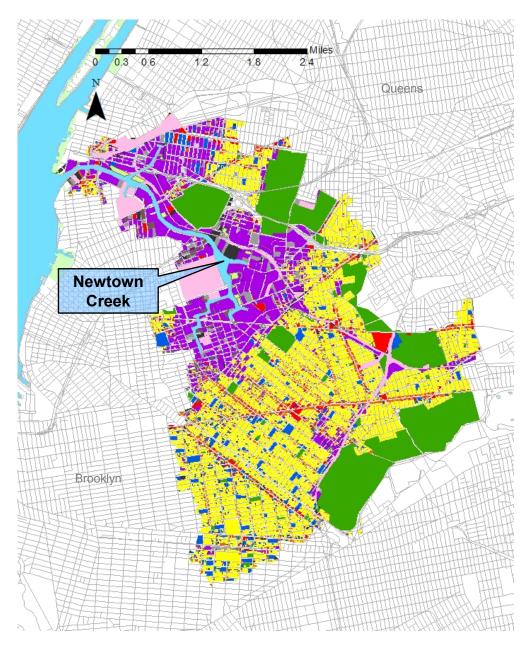
- Dutch Kills
- Whale Creek
- English Kills
- East Branch
- Maspeth Creek

≻21 CSO Outfalls

- - 4 Major Outfalls
 - BB-026
 - NCQ-077
 - NCB-083
 - NCB-015


Drainage Area by WWTP

Drainage Areas:


Citywide Drainage Area ≈ 300,000 acres

- Newtown
 Creek WWTP
 15,033 acres
- Bowery
 Bay WWTP
 14,928 acres
- Portion that
 Drains to
 Newtown Creek
 7,442 acres
 4950 acres (67%) is served
 by combined sewers

Drainage Area and Land Use

Residential Mixed Residential and Commercial Commercial and Office Industrial and Manufacturing Transportation and Utility Public Facilities and Institutions Open Space and Outdoor Recreation Parking Facilities Vacant Land

Residential	37%
Commercial	7%
Industrial & Transportation	24%
Public Facilities	5%
Park & Open Space	22%
Other	6%

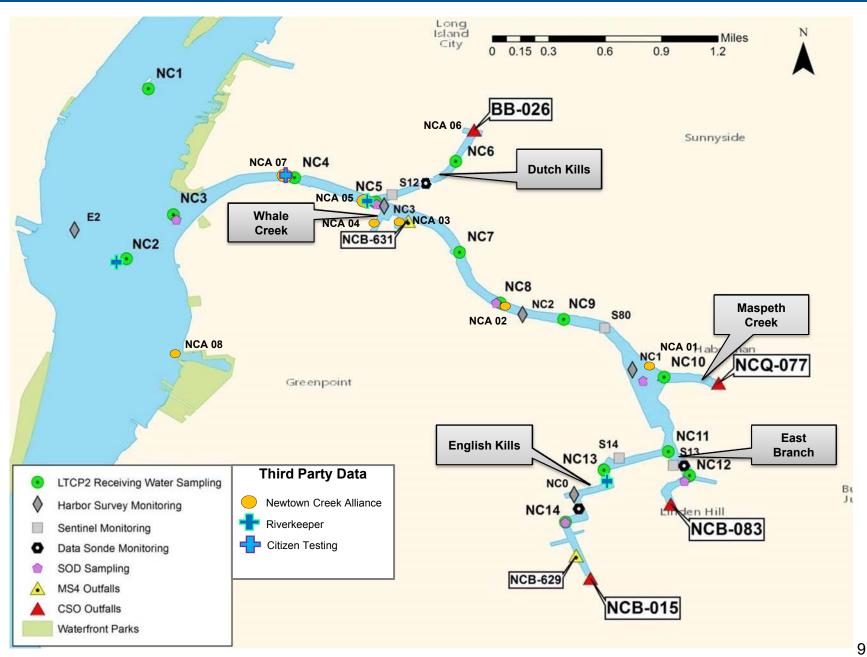
Water Quality Standards & LTCP Goals

CLASS SD

Fish Survival

The **best usage** of Class SD water is **fishing**. These waters shall be suitable for fish, shellfish, and wildlife survival. In addition, the water quality shall be suitable for primary and secondary contact recreation, although other factors may limit the use for these purposes.

Parameter	Criteria*	DEC Water Quality Parameter Reference
Fecal Coliform	Monthly Geometric Mean ≤ 200 col/100 mL	New York Codes, Rules and Regulations(NYCRR Part 703.4)
Total Coliform	Monthly Geometric Mean ≤ 2,400 col/100 mL 80% ≤ 5,000 col/100 mL	New York Codes, Rules and Regulations(NYCRR Part 703.4)
Dissolved Oxygen	≥ 3.0 mg/L (acute, never less than)	New York Codes, Rules and Regulations(NYCRR Part 703.3)


^{*} EPA has also proposed a potential future RWQC for enterococcus: 30-Day Rolling GM ≤ 30 col/100 mL.

CSO LTCP Goals and Targets:

- Seasonal Bacteria Compliance
- > Annual Dissolved Oxygen Compliance
- ➤ Time to Recovery for Bacteria of ≤ 24 hours
- > Floatables Control

Overview of Sampling Locations

Overview of Sampling Programs

LTCP Sampling:

	CSO	MS4	Receiving Water•	HSM ♦	SM	SOD	Data Sonde Φ
Sampling Period	9/19 - 10/27	7/29 - 10/27	7/15 - 11/3	1/4 - 11/1	1/22 - 11/2	7/26 - 10/1	7/1 - 8/12
Locations	• 4	• 2	• 14	• 5	• 4	• 6	• 3
Events	• 3 wet	• 3 wet	• Four 4-day events	 Monthly/ Weekly 	Quarterly	• 3 Wet • 1 Dry	• 60 Days Continuous
Parameters	FecalEnteroYSI	FecalEnteroYSI	FecalEnteroYSI	FecalEnteroYSI	• Fecal	• SOD	• DO

3rd Party Sampling:

	NC Alliance	Riverkeeper	Citizen
Sampling Period	April-October	May-October	May-October
Locations	• 8	• 3	• 1
Events	• 40	• 6	• 16
Parameters	• Entero • DO	• Entero	• Entero

CSO Sampling, Monitoring, and Model Calibration

CSO and MS4 Sampling Locations

Rainfall Event Statistics:

Rain Event	Date	Rainfall Depth* (in)	Rainfall Event Duration* (hr)	Rainfall Event Peak Intensity* (in/hr)
1	7/29/16	1.00	6	0.70
2	9/19/16	0.78	6	0.23
3	9/30/16	0.39	12	0.08
4	10/27/16	1.32	12	0.32

*Based on LGA Weather Station 12

CSO Sampling Results

CSO Outfall	Rain				Entero		
oco oatian	Event	GM	Range	GM	Range		
	2	188,806	Min: 33,000 Max: 3,300,000	413,567	Min: 210,000 Max: 1,400,000		
BB-026	3	670,000 ¹	n/a¹	560,000 ¹	n/a¹		
	4	327,914	Min: 210,000 Max: 800,000	213,803	Min: 120,000 Max: 430,000		
	2	349,537	Min: 59,000 Max: 4,600,000	379,802	Min:170,000 Max: 1,800,000		
NCQ-077	3	780,000 ¹	n/a¹	520,000 ¹	n/a¹		
	4	n/a²	n/a²	n/a²	n/a²		
	2	655,564	Min: 300,000 Max: 1,600,000	560,942	Min:310,000 Max: 2,100,000		
NCB-083	3	no overflow	no overflow	no overflow	no overflow		
	4	596,581	Min: 490,000 Max: 900,000	353,526	Min: 270,000 Max: 650,000		

¹⁾ Only one sample collected due to closed tide gate

Note: No overflows were observed at CSO Outfall **NCB-015** during rain events #2, 3, and 4.

²⁾ Hazardous site/traffic conditions – unable to collect samples

MS4 Sampling Results

CSO Outfall	Rain				Entero		
ooo oanan	Event	GM	Range	GM	Range		
NCD 624	1	37,433	Min: 20,000 Max: 60,000	132,035	Min: 60,000 Max: 200,000		
NCB-631	4	13,708	Min: 7,300 Max: 25,000	41,035	Min: 32,000 Max: 63,000		
NCB-629	2	23,153	Min: 20,000 Max: 30,000	108,136	Min: 64,000 Max: 230,000		
NCD-029	4	25,854	Min: 17,000 Max: 44,000	66,828	Min: 53,000 Max: 80,000		

Landside Model Calibration

DEP's process for flow monitoring and modeling has been nationally peer

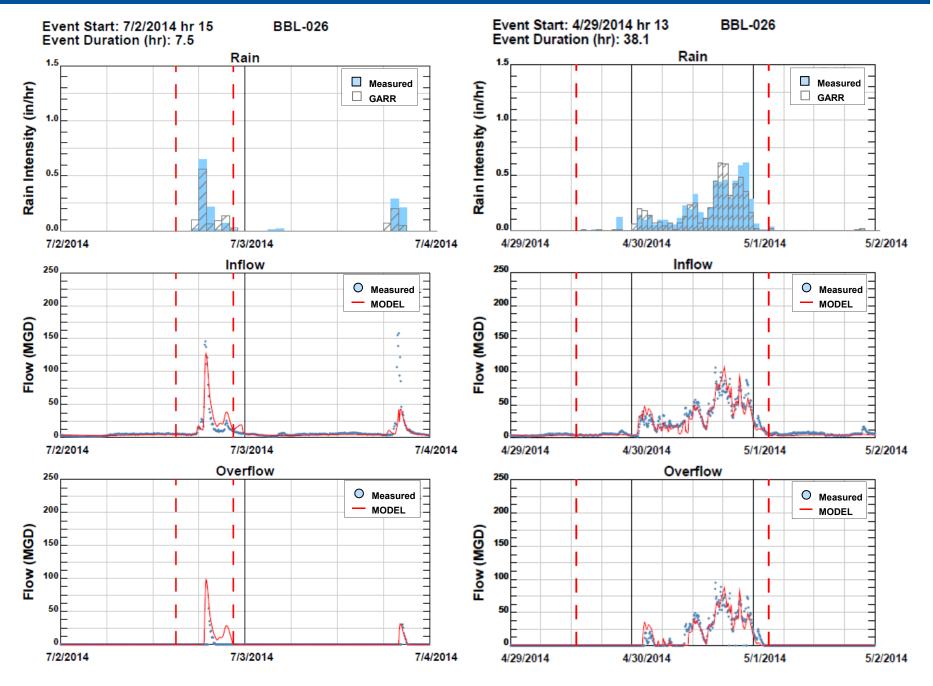
reviewed and published

DEP implemented that process to update and validate its Newtown Creek sewer system model based upon:

- Field surveys and record drawings of physical structures.
- A validation dataset based upon a 12-month sewer-monitoring program and extensive data analyses.
- Data was analyzed using WaPUG approved methodologies and showed very good correlation.

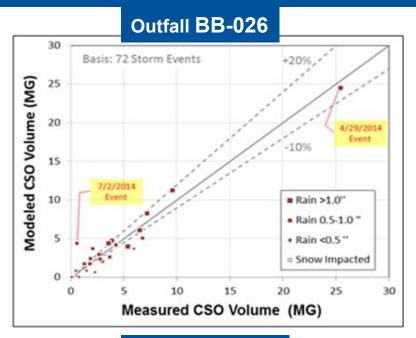
Schematic of Major Features of Landside Model

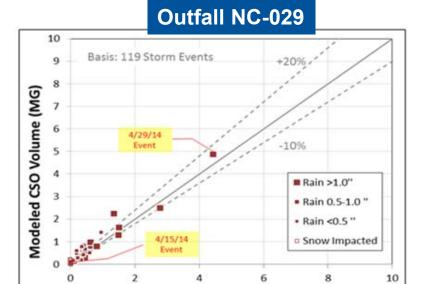
Flow Monitoring Program

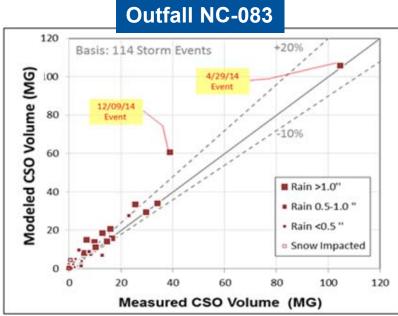

Flow Metering Period: March 28, 2014 - March 27, 2015

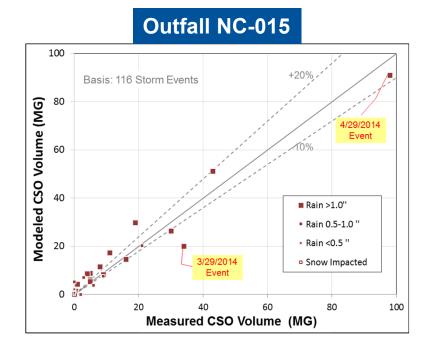
Flow Meter Locations/Configuration:

Outfall	Regulator	Receiving Water Body	Depth/Velocity Measurement Locations	Inclinometer?	Rain Events Monitored
BBL-026	L-4	Dutch Kills	InfluentUnderflowRegulatorOverflow	Yes	115
NCQ-077	Q-1	Maspeth Creek	 Overflow 	No	119
NCQ-029	Q-2	Newtown Creek	InfluentRegulatorOverflow	No	119
NCB-083	St. Nicholas Weir	East Branch	InfluentRegulatorOverflow	No	115
NCB-015	B-1	English Kills	InfluentOverflow	Yes	116


Sample Flow Data for BBL-026



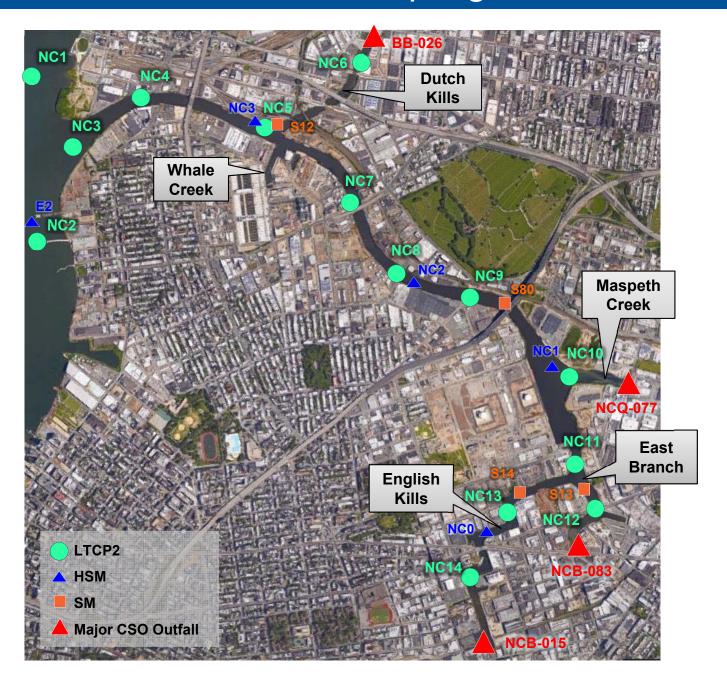

Comparisons of Predicted vs. Measured Volume



Measured CSO Volume (MG)

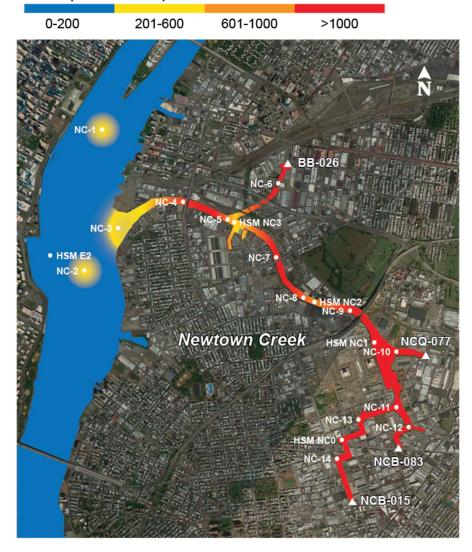
Comparisons of Model vs. Meters

cso	Rain	fall Stati	stics	CSO Overflo		CSO Overflow Events		CSO Volume (MG)				
Outfall	Events	Duration (hr)	Depth (in)	Flow Meter Data	Model	% Difference	Flow Meter Data	Model	% Difference	Flow Meter Data	Model	% Difference
BBL-026	115	871	52.71	38	34	-11%	247	225	-9%	153	144	-6%
NCB-029	119	868	52.06	48	41	-15%	287	246	-14%	21	25	+17%
NCB-083	115	851	52.68	51	50	-2%	277	282	+2%	440	535	+22%
NCB-015	116	852	52.66	24	27	+13%	78	135	+73%	331	356	+8%

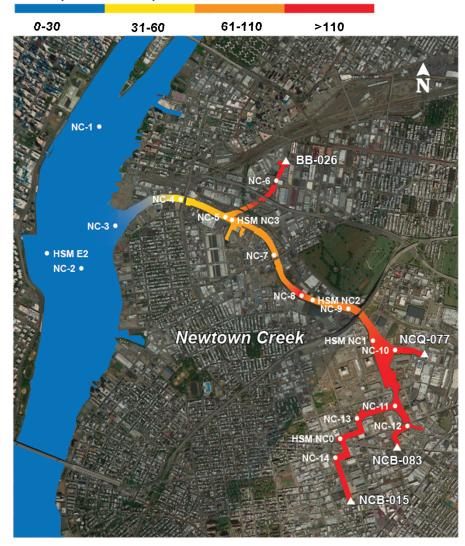

Note: Flow meter data at Outfall NCQ-077 was not valid due to tidal impacts, turbulence and unrealistically high Doppler velocities.

Water Quality Sampling and Model Calibration

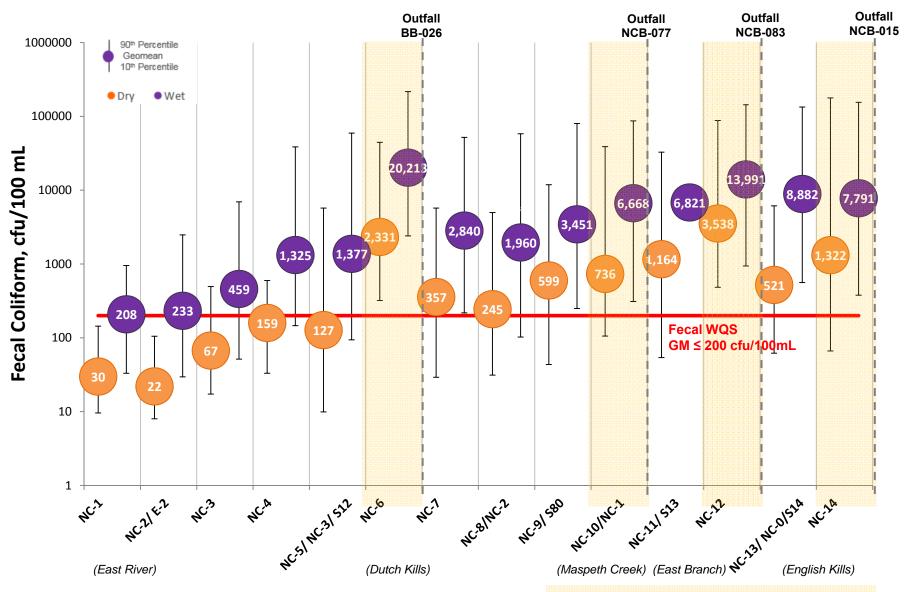
Fecal and Entero Sampling Locations


Overview of Fecal and Entero Geomeans

- LTCP: ~77 Wet samples per location; Jul Nov 2016
- HSM: ~34 Wet samples per location; Jan Nov 2016

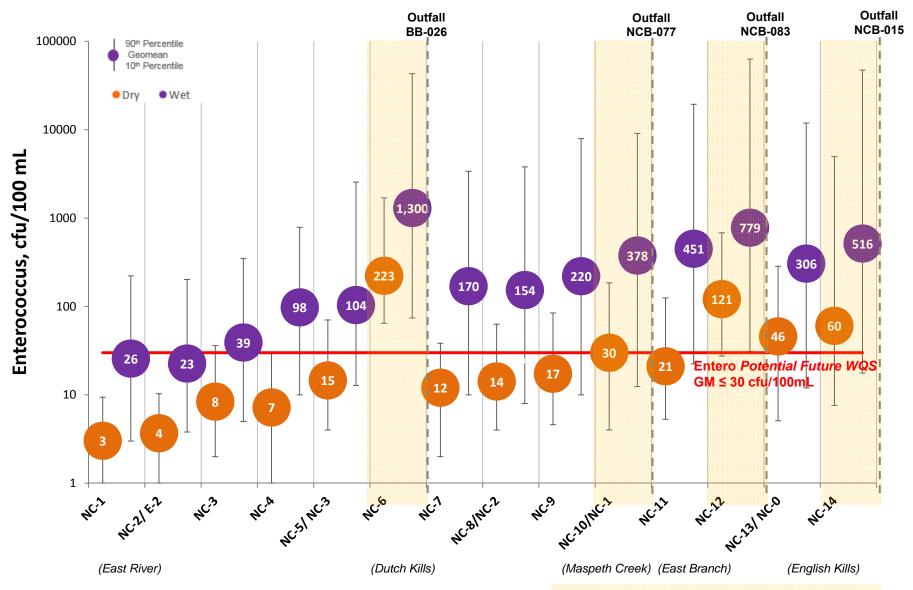

Fecal – Wet Weather

Scale (# col/100 mL)


Entero – Wet Weather

Scale (# col/100 mL)

Fecal Coliform Sampling Results


January 1, 2016 - November 3, 2016

LTCP2: ~ 14 Dry and 77 Wet weather samples per location HSM: ~ 18 Dry and 34 Wet weather samples per location SM: ~ 2 Dry and 2 Wet weather samples per location

Highlighted stations are directly downstream of a major CSO Outfall

Enterococcus Sampling Results

January 1, 2016 - November 3, 2016

LTCP2: ~ 14 Dry and 77 Wet weather samples per location HSM: ~ 18 Dry and 34 Wet weather samples per location

Highlighted stations are directly downstream of a major CSO Outfall

Overview of Fecal and Entero Geomeans

0-30

Recreation Season: May 1, 2016 - October 31, 2016

- LTCP: ~71 Wet samples per location; Jul Oct 2016
- HSM: ~26 Wet samples per location; May Oct 2016

Fecal – Wet Weather

Scale (# col/100 mL)

HSM E2

>1000 0-200 201-600 601-1000

HSM NC3

Newtown Creek

HSM NC1

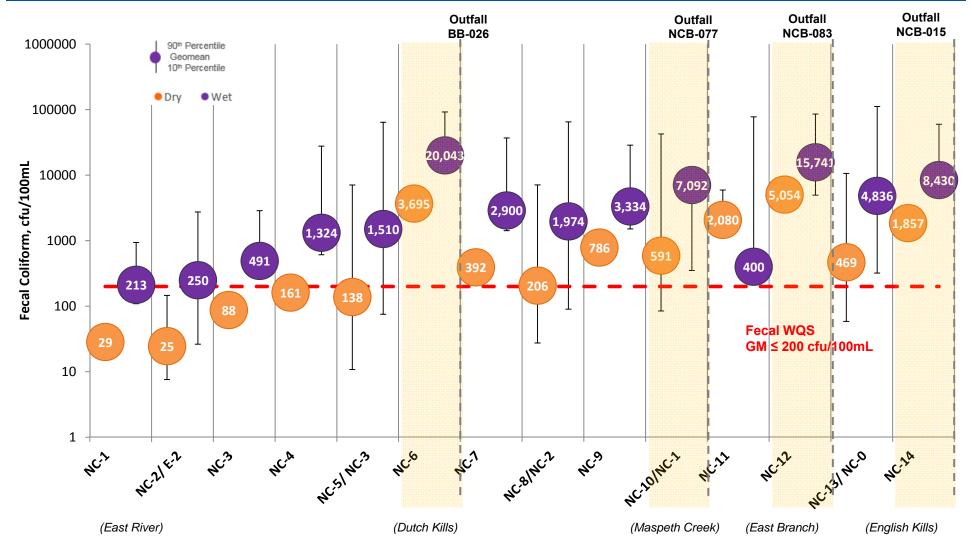
NCQ-077

NCB-083

NCB-015

Entero – Wet Weather

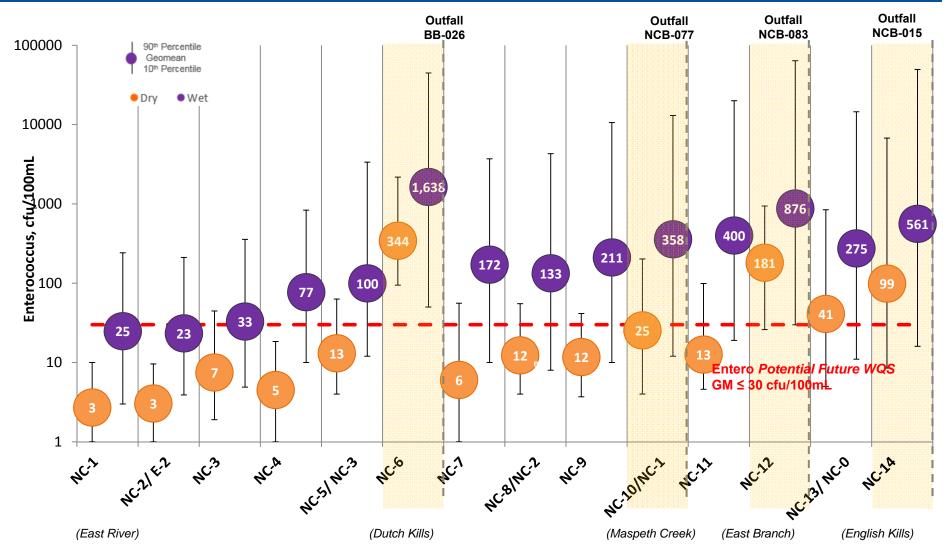
Scale (# col/100 mL)



61-110

>110

Fecal Coliform Sampling Results


May 1, 2016 - October 31, 2016

LTCP2: ~ 10 Dry and 71 Wet weather samples per location HSM: ~ 18 Dry and 26 Wet weather samples per location

Highlighted stations are directly downstream of a major CSO Outfall

Enterococcus Sampling Results

May 1, 2016 - October 31, 2016

LTCP2: ~ 10 Dry and 71 Wet weather samples per location HSM: ~ 18 Dry and 26 Wet weather samples per location

Highlighted stations are directly downstream of a major CSO Outfall

Time to Recovery – Fecal Coliform

Approximate Time to Recovery (hours)

for Fecal Coliform Threshold of 1000 cfu/100 ml based on current conditions and event sampling data:

Location	Sampling Station	Storm Event #1 7/14/16	Storm Event #2 7/31/16	Storm Event #3 10/22/16	Storm Event #4 10/30/16
	NC3	47	35	79	62
	NC4	47	40	79	86
Main Trunk	NC5	43	40	*	86
Maill Hullk	NC8	67	40	*	93
	NC10	72	58	*	*
	NC11	72	*	*	*
Dutch Kills	NC6	75	58	*	95
East Branch	NC12	96	41	*	*

^{*}Never recovered below 1000 cfu/100 ml during the sampling event.

Final Storm Event from which Time to Recovery was calculated:

Storm Event #	Date	Final Event Rainfall (in)	Peak (in/hr)	Peak Time	Event End Time	Duration (hrs)	Total Daily Rainfall
1	7/14/2016	0.50	0.50	7/14/2016 16:00	7/14/2016 16:00	1	0.50
2	7/31/2016	0.52	0.42	7/31/2016 22:00	8/1/2016 0:00	4	0.57
3	10/22/2016	0.30	0.16	10/22/2016 5:00	10/22/2016 8:00	5	0.31
4	10/30/2016	0.48	0.35	10/30/2016 18:00	10/30/2016 19:00	4	0.48

Time to Recovery – Enterococcus

Approximate Time to Recovery (hours)

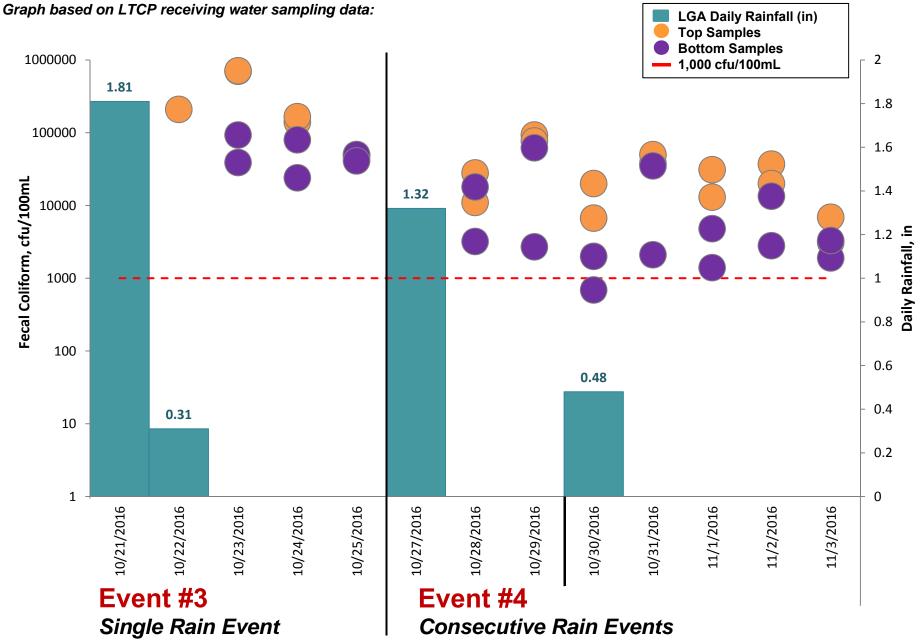
for Enterococci Threshold of 110 cfu/100 ml based on current conditions and event sampling data:

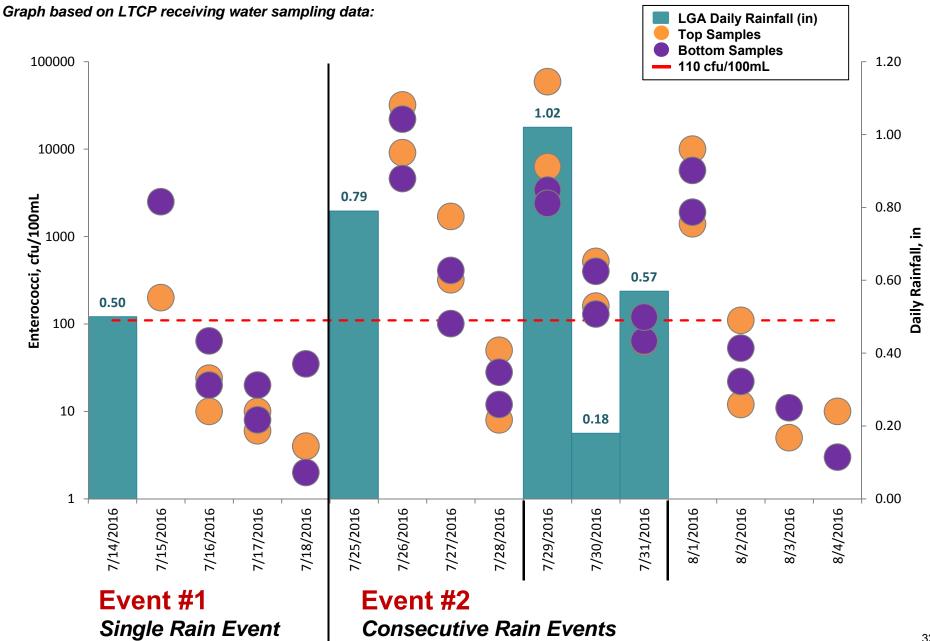
Location	Sampling Station	Storm Event #1 7/14/16	Storm Event #2 7/31/16	Storm Event #3 10/22/16	Storm Event #4 10/30/16
	NC3	0(1)	0(1)	56	62
	NC4	0(1)	35	56	67
Main Trunk	NC5	0(1)	35	56	67
Main Hunk	NC8	0(1)	35	80	86
	NC10	43	35	*	*
	NC11	43	87	*	94
Dutch Kills	NC6	66	*	*	88
East Branch	NC12	*	36	*	*

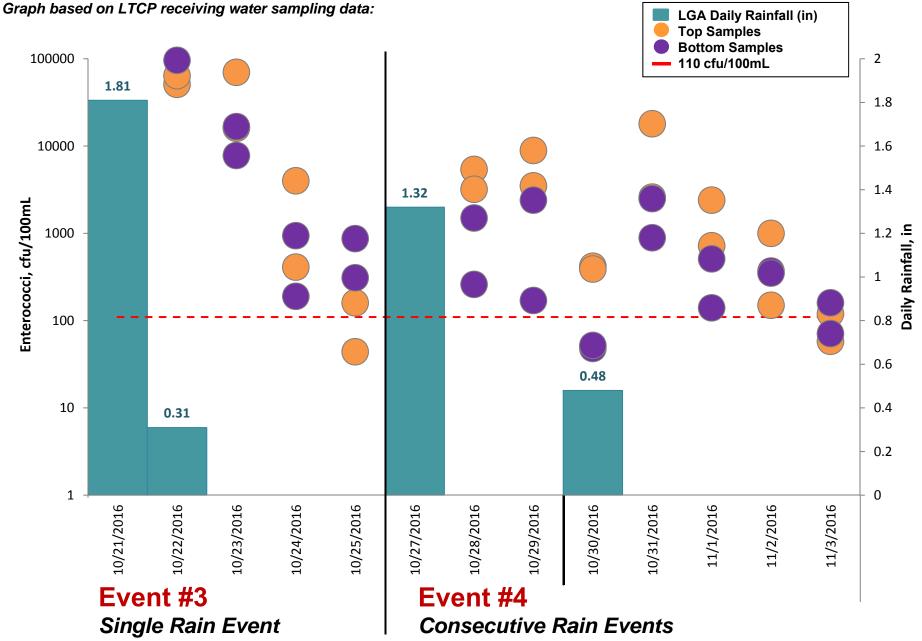
(1) Never exceeded 110 cfu/100ml during sampling event. *Never recovered below 110 cfu/100 ml during the sampling event.

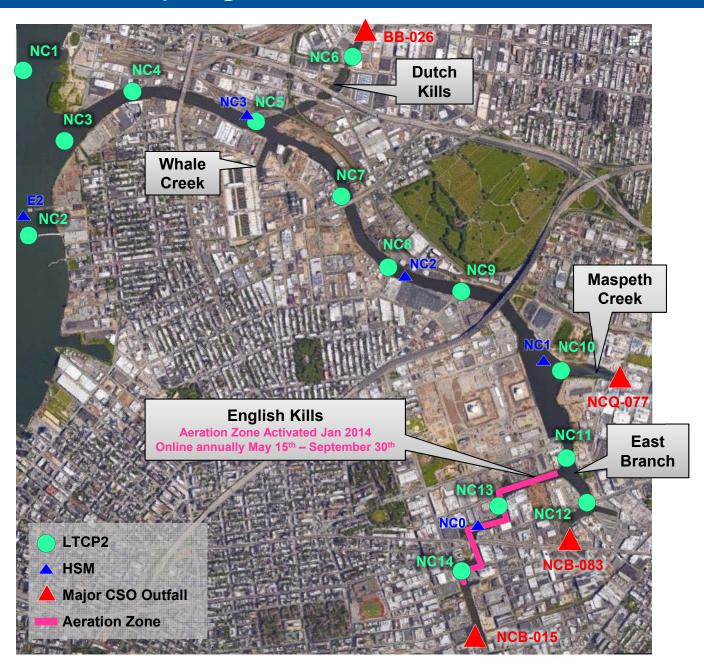
Final Storm Event from which Time to Recovery was calculated:

Storm Event #	Date	Final Event Rainfall (in)	Peak (in/hr)	Peak Time	Event End Time	Duration (hrs)	Total Daily Rainfall
1	7/14/2016	0.50	0.50	7/14/2016 16:00	7/14/2016 16:00	1	0.50
2	7/31/2016	0.52	0.42	7/31/2016 22:00	8/1/2016 0:00	4	0.57
3	10/22/2016	0.30	0.16	10/22/2016 5:00	10/22/2016 8:00	5	0.31
4	10/30/2016	0.48	0.35	10/30/2016 18:00	10/30/2016 19:00	4	0.48


Fecal Coliform Recovery Over Time at NC-10


Fecal Coliform Recovery Over Time at NC-10


Enterococci Recovery Over Time at NC-10


Enterococci Recovery Over Time at NC-10

DO Sampling Locations & Aeration Zone

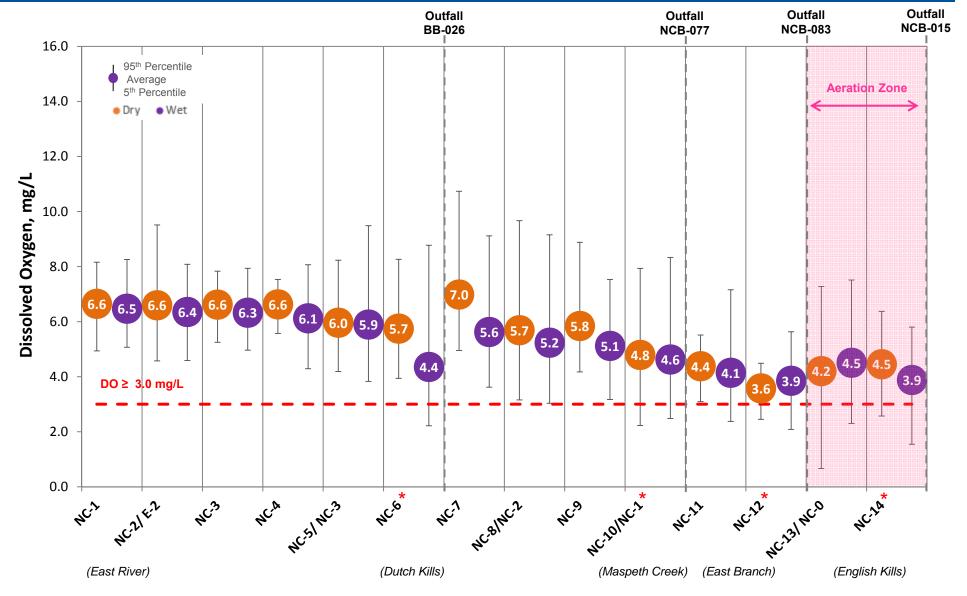
Dissolved Oxygen 5th Percentile Values



2016 YTD: January 1, 2016 - November 3, 2016

- LTCP: ~14 Dry and 77 Wet samples per location; July Nov 2016
- HSM: ~18 Dry and 34 Wet samples per location; January Nov 2016

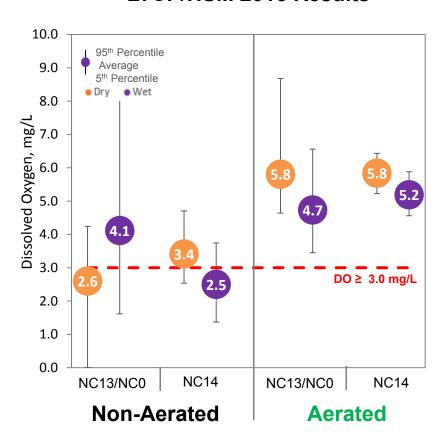
Dry Weather



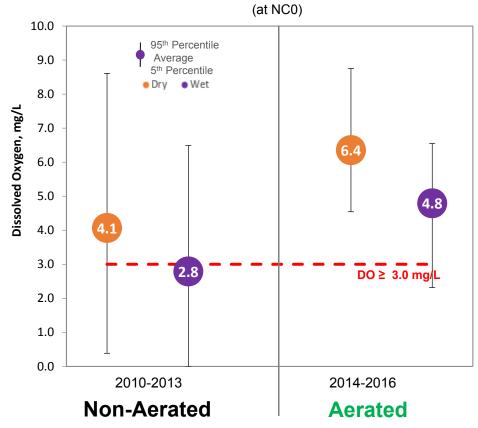
Wet Weather

Dissolved Oxygen Sampling Results

2016 YTD: January 1, 2016 – November 3, 2016 LTCP2: ~ 14 Dry and 77 Wet Weather Samples per location


LTCP2: ~ 14 Dry and 77 Wet Weather Samples per location HSM: ~ 32 Dry and 104 Wet Weather Samples per location

*Stations are directly downstream of a major CSO Outfall


Impact of Aeration on DO Levels

LTCP/HSM 2016 Results

HSM Historic Summer Results

Non-Aerated

January 1 - May 14 & October 1 - November 3, 2016

LTCP2: \sim 8 Dry and 35 Wet weather samples per location HSM: \sim 8 Dry and 8 Wet weather samples per location

Aerated

May 15 - September 30, 2016

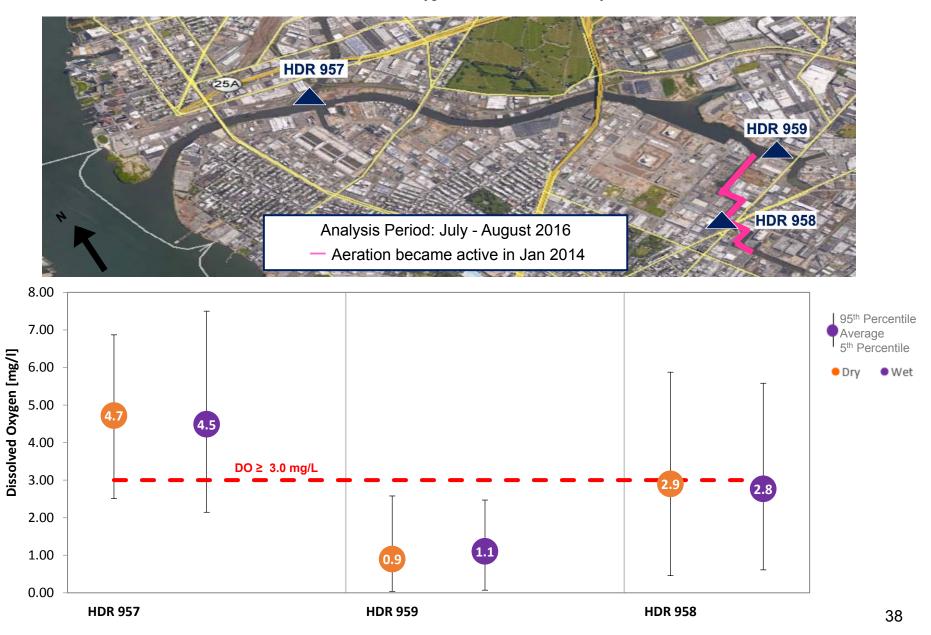
LTCP2: ~ 6 Dry and 37 Wet weather samples per location HSM: ~ 10 Dry and 28 Wet weather samples per location

Non-Aerated

May 15 - September 30, 2010 - 2013

HSM: ~ 68 Dry and 68 Wet weather samples per location

Aerated

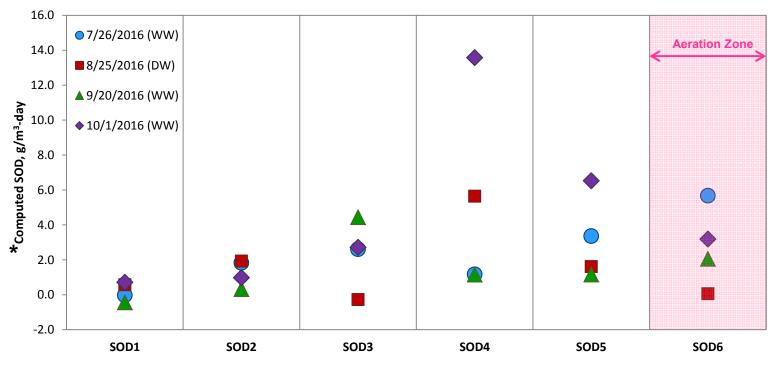

May 15 - September 30, 2014 - 2016

HSM: ~ 50 Dry and 56 Wet weather samples per location

LTCP2 Data Sondes

Continuous Dissolved Oxygen data collection for ~60 days

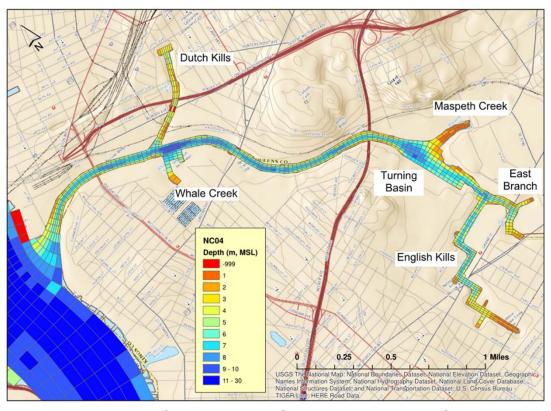
Sediment Oxygen Demand (SOD)


SOD Sampling Dates:

July 26 2016 WW (0.79" on 7/25) Aug 25 2016 DW (0.13" on 8/21) Sept 20 2016 WW (0.78" on 9/19) Oct 1 2016 WW (0.39" on 9/30)

~ 13 Dry and 30 Wet Weather Samples per location

* Note: Aeration was activated January 2014



^{*}SOD values are computed from measurements of the decline in DO concentration over time in the SOD sample, and normalized to area.

Water Quality Model Calibration

- DEP's process for WQ Model development and application has gone through Expert Peer Reviews
- The WQ Model consists of three components that each need be calibrated and validated:
 - 1 Hydrodynamic Transport Model
 - Sediment/Organic Carbon Transport Model
 - Pathogen Indicator Organisms
 Bacteria Model
- The validated WQ Model will be used for evaluation of CSO control alternatives

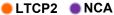
Model Computational Grid Inside Newtown Creek

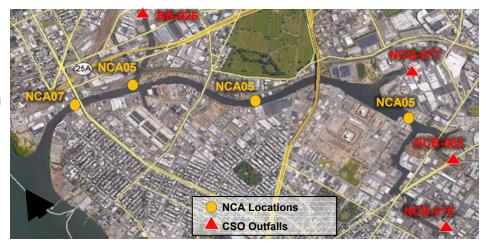
Water Quality Model Calibration

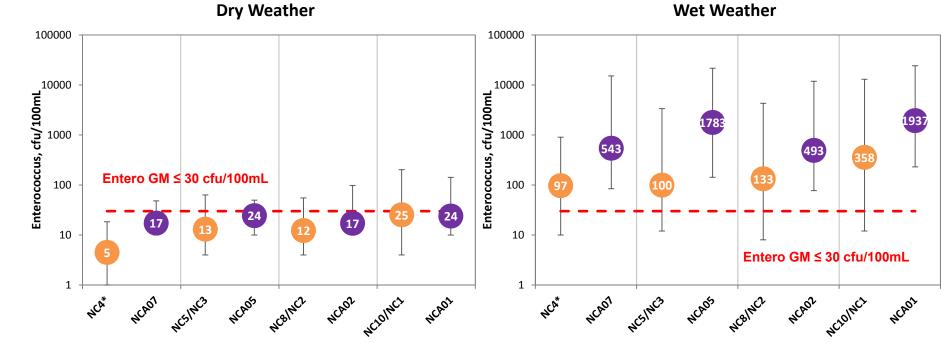
Model Component		Parameters Modeled	Calibration Data Period	Validation Data Period	Status
1	Hydrodynamic Transport	 Groundwater and point source inflows Aeration system effects	2012-2015 (3.75 years)	2016 (9 months)	Completed
2	Sediment / Organic Carbon Transport	Organic solidsDissolved oxygen (DO) sources and sinksAeration system effects	2012-2015 (3.75 years)	2016 (9 months)	In progress
3	Pathogen Indicator Organisms Bacteria	Fecal coliformEnterococcus	2016 (9 months)	2016 (9 months)	In progress

➤ The Hydrodynamic Transport Model replicates tides, temperature and salinity that will drive die-off rates for the bacteria. So it is important to get this first step correct before proceeding with calibrating/validating DO and Bacteria components.

Newtown Creek Alliance / Riverkeeper / Citizen Sampling

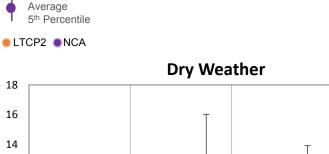

LTCP versus NCA Comparison – Enterococcus



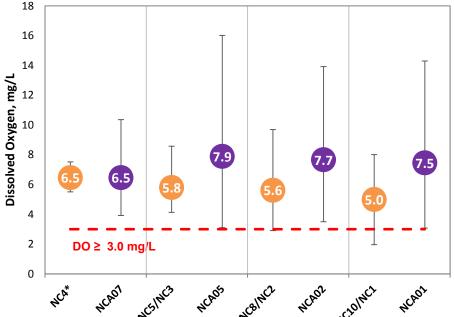

NCA Sampling Period: April 2016 – October 30, 2016

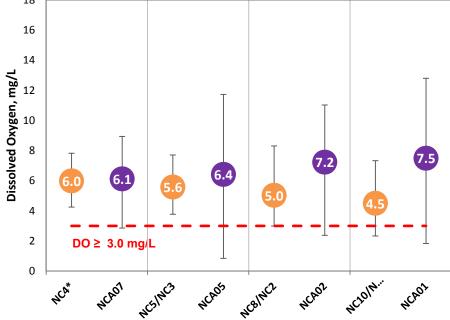
LTCP2/HSM: ~28 Dry and 90 Wet weather samples per location NCA: ~32 Dry and 7 Wet weather samples per location

LTCP versus NCA Comparison – DO



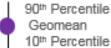
NCA Sampling Period: April 2016 - October 30, 2016

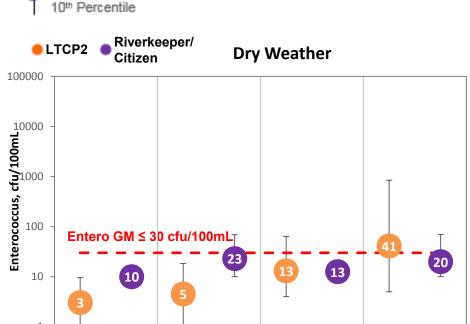

LTCP2/HSM: ~28 Dry and 90 Wet weather samples per location NCA: ~ 32 Dry and 7 Wet weather samples per location

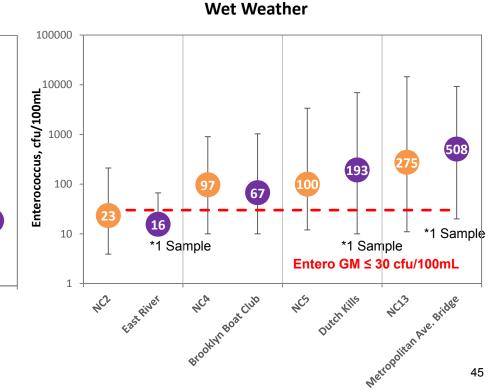

* Note: Aeration was activated January 2014

95th Percentile

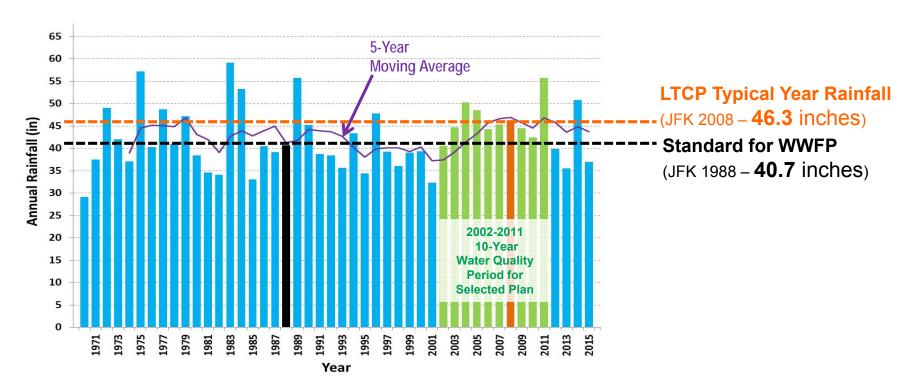
Wet Weather 18




LTCP vs Riverkeeper/Citizen Comparison – Entero


Riverkeeper / Citizen Sampling Period: May 2016 – October 2016

LTCP2: ~ 28 Dry and 90 Wet weather samples per location Riverkeeper: ~9 Dry and 9 Wet weather samples per location Citizen: ~ 26 Dry and 29 Wet weather samples per location



CSO Baseline Modeling

Baseline Model Inputs and Assumptions

- Landside Model calibrated based on flow monitoring data, gauge adjusted radar rainfall data, and satellite flyover impervious data
- Water Quality Model calibrated with Harbor Survey and LTCP sampling data
- Baseline modeling inputs and assumptions include:
 - Committed CSO and BNR projects
 - 2040 sanitary flows and loads
 - JFK 2008 "Typical Year Rainfall" for Alternative Analysis
 - JFK 10-yr data (2001 to 2011) for baseline and selected alternatives

LTCP Baseline Conditions Modeling

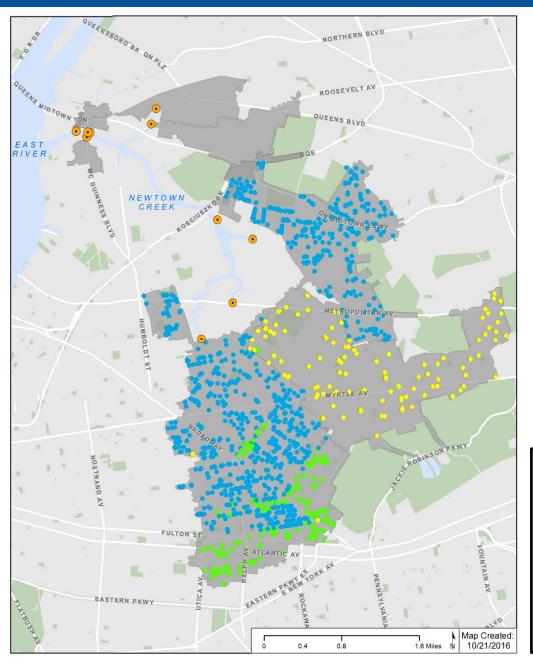
- Continued operation of Brooklyn /
 Queens PS at NC WWTP at up to 400
 MGD during wet weather
- Construction of Bending Weirs and Underflow Baffles at 4 Locations
- Construction of In-Stream Aeration

Committed Green Infrastructure in Newtown Creek watershed

WWFP Plan (\$402 M)¹

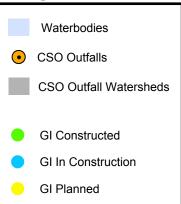
LTCP Baseline ≈1.2 BGY CSO³

3.2% Green Infrastructure (\$45 M for 110 acres)²


¹⁾ Cost pending for Maspeth Creek aeration.

²⁾ Cost to date, more GI projects may be pending.

³⁾ Preliminary estimate.


Newtown Creek Built and Planned GI Projects

- More than 1,300 GI assets within streets, parks, and schools
- 98% are ROW Raingardens (aka bioswales)
- Design resources for public onsite only in NCB-015 & NCB-083
- Other areas will be assessed in 2017 with design resources citywide available in 2018

Legend

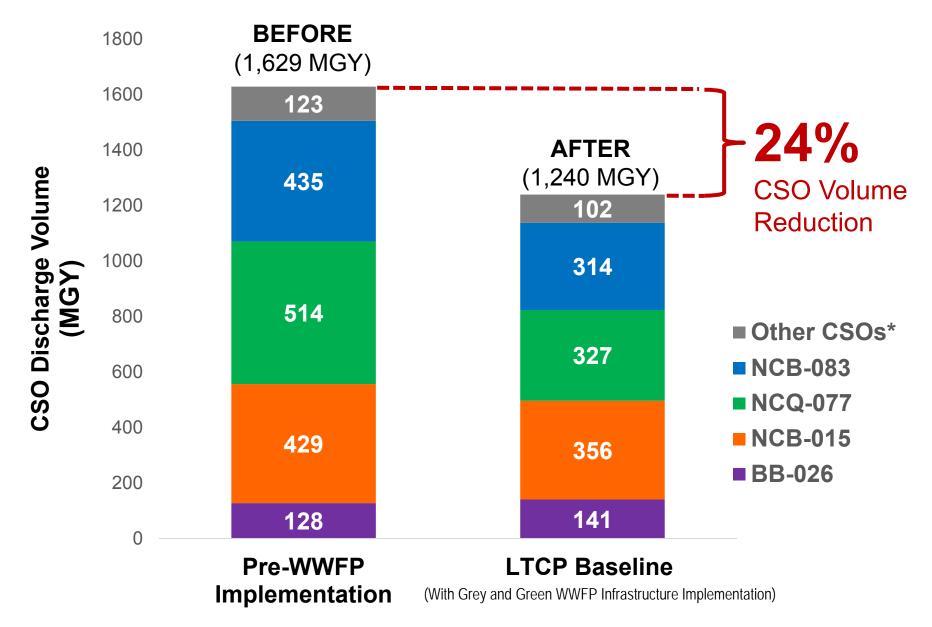
Public Property Retrofit Screening Process

- Comprehensive GIS and desktop analysis
 - Anticipated soil conditions
 - Former site uses, potential or known hazardous materials
- Screening coordinated with owner agency
 - Compatibility of GI with site uses/programming
 - Alignment with planned capital improvements
 - Facility condition (i.e., state of disrepair)
 - Review of agency records (including environmental contamination) and as-built drawings
 - Site walk through
- Geotechnical investigation
- Design process

Project Status	Parks/ Playgrounds	Public Schoolyards	NYCHA Housing Developments	Total
Potential	0	0	1	1
Preliminary	12	7	7	26
Schematic	5	2	0	7
In Construction	4	0	0	4
Constructed	0	2	1	3
Total	21	11	9	41

Citywide Public Property Retrofits

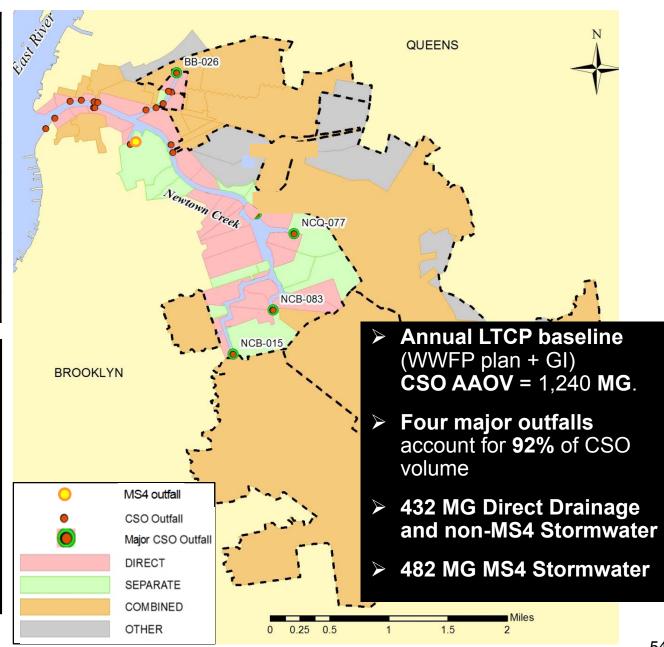
NYC G 2015 AN



	Site Name	Status	Actual/Projected Completion Date				
Parks (DPR)							
1	Houston Playground	Constructed	Fall 2013				
2	Powell Playground (Shiplacoff Playground)	In Construction	Spring 2016				
3	Forest Park- Overlook Area/Park Lane	In Construction	Spring 2016				
4	Edenwald Playground	In Construction	Fall 2018				
5	P.O. Nicholas Demutiis Park	Design Complete	Fall 2018				
6	Watson Gleason Playground	60% Design	Fall 2018				
7	Benninger Playground	Schematic Design	Fall 2018				
8	Carroll Park	Schematic Design	Fall 2018				
9	Ehrenreich-Austin Playground	Schematic Design	Fall 2018				
10	Forest Park-Union Tpk./Metropolitan Ave.	Schematic Design	Fall 2018				
11	Forest Park-Union Tpk./Myrtle Ave JRP Exit	Schematic Design	Fall 2018				
12	Middle Village Playground	Schematic Design	Fall 2018				
13	Real Good Park	Schematic Design	Fall 2018				
14	Starr Playground	Schematic Design	Fall 2018				
15	Betsy Head Park	Preliminary: Geotechnical Investigation	Fall 2018				
16	Brevoort Playground	Preliminary: Geotechnical Investigation	Fall 2018				
17	Corona Golf Playground	Preliminary: Geotechnical Investigation	Fall 2018				
18	Howard Playground (Howard Houses)	Preliminary: Geotechnical Investigation	Fall 2018				
19	Jackie Robinson Park	Preliminary: Geotechnical Investigation	Fall 2018				
20	Maria Hernandez Park	Preliminary: Geotechnical Investigation	Fall 2018				
21	Railroad Playground	Preliminary: Geotechnical Investigation	Fall 2018				
22	South Pacific Playground	Preliminary: Geotechnical Investigation	Fall 2018				
23	Van Dyke Playground (Van Dyke Houses)	Preliminary: Geotechnical Investigation	Fall 2018				
24	Weeksville Playground	Preliminary: Geotechnical Investigation	Fall 2018				
25	Hope Ballfield	Preliminary: Geotechnical Investigation	TBD				
26	Admiral Farragut Playground	Potential	Fall 2019				
27	Barretto Park	Potential	Fall 2019				
28	Belmont Playground	Potential	Fall 2019				
29	Ciccarone Park	Potential	Fall 2019				
30	Fairmount Playground	Potential	Fall 2019				
31	Givan Square/Camponaro Playground	Potential	Fall 2019				
32	Gun Hill Playground	Potential	Fall 2019				
33	Havemeyer Playground	Potential	Fall 2019				
34	Matthews Muliner Playground	Potential	Fall 2019				
35	Vidalia Park	Potential	Fall 2019				
36	Bridge Park 3 - East and West	Potential	TBD				
37	Bulova Park	Potential	TBD				
38	Colgate Close Park	Potential	TBD				
39	Crotona Parkway Malls @ E. 175th St.	Potential	TBD				

- Annual Report names and details the status of all public property retrofit sites
- ➤ In 2015 Report:
 - > 92 Parks and JOPs
 - > 27 Schools
 - > 25 NYCHA properties
 - ➤ 30 TPL/DOE Schoolyards
 - ➤ 61 CPI sites

Newtown Creek: Modeled Baseline CSO Volumes


^{*}Other Newtown Creek CSOs include: BB-009, BB-010, BB-011, BB-013, BB-040, BB-042, NCB-019, NCB-022, NCQ-029 Note: LTCP modeling is currently active and ongoing; any updated model results will be shared at the Alternatives Meeting

Newtown Creek CSO Volume

Bowery Bay WWTP (LL Interceptor)						
Outfall	Volume (MG)	Freq.				
BB-009	49	35				
BB-010	1	7				
BB-011	2	14				
BB-013	17	32				
BB-026	141	39				
BB-040	1	7				
BB-042	2	23				
Sub-Total	213	39				

Newtown Creek WWTP						
Outfall	Outfall Volume (MG)					
NCB-015	356	30				
NCB-019	7	31				
NCB-022	8	29				
NCQ-029	21	42				
NCQ-077	327	41				
NCB-083	314	42				
Sub-Total	1033	42				

CSO Control Preliminary Alternatives

INCREASING COST

Newtown Creek Alternatives Toolbox

INCREASING COMPLEXITY

Source Control	Existing GI	Additional GI	High Level Sewer Separation			ration
System Optimization	Fixed Weir	Parallel Interceptor / Sewer	Weirs Sta		ump ation nization	Pump Station Expansion
CSO Relocation	Gravity Flow Tipping to Other Watersheds	Pumping Station Modification	Flow Tipping with Conduit/Tunnel and Pumping			mping
Water Quality / Ecological Enhancement	Floatables Control	Environmental Dredging	Mechanical Ae	ration	Flushing Tunnel	
Treatment Satellite:	Outfall Disinfection	Retention Treat	ment Basin (RT	В)	High Rate Clarification (HRC)	
Centralized:		WWTP Expansion				
Storage	In-System	Shaft	Tank		Tunnel	

Completed or underway

Newtown Creek: LTCP Delivery Schedule

		2017						
Task	Completion Date	January	February	March	April	May	June	
DATA COLLECTION								
Data Spreadsheet and Presentation	Jan 2017							
Data Collection Memo	Feb 2017							
MODELING								
WQ Bacteria Model Calibration	Feb 2017							
WQ Bacteria Baseline and Performance Gap	Feb 2017							
Sediment Transport DO Model Calibration	Mar 2017							
DO Basline and Performance Gap	Mar 2017							
IW & WQ Modeling for Retained Alternatives	Mar 2017							
IW & WQ Modeling for LTCP Recommendation	Jun 2017							
ALTERNATIVES DEVELOPMENT								
Alternatives Evaluation & DEP Review Meetings	Mar 2017							
DEP Selects Retained Alternatives	Mar 2017							
Evaluation of Retained Alternatives	Apr 2017							2/24 Dublic Data
DEP Selects LTCP Recommendations	May 2017							2/21 Public Data
PUBLIC OUTREACH	Į.							Meeting
Public Data & Modeling Meeting	Mar 2017							
Public Alternatives Meeting	Apr 2017							
LTCP DEVELOPMENT						/		April 2017 Public
Draft LTCP Sections	Apr 2017							Alternatives
DEP Review of LTCP Sections	May 2017							Review Meeting
Submit FINAL Newtown Creek LTCP to DEC	06/30/2017							Review Meeting

Conclusions/Next Steps

- Newtown Creek is a CSO-impacted waterbody
- > The LTCP will likely propose a significant grey infrastructure project
- > See you in Spring when we present the CSO control alternatives