

Flushing Creek Combined Sewer Overflow Long Term Control Plan

Public Meeting #2

Al Oerter Recreational Center

October 23, 2014

Welcome & Introductions

Shane Ojar DEP

Agenda

Topic

- 1 Welcome and Introductions
- 2 Long Term Control Plan (LTCP) Process
- 3 Waterbody/Watershed Characteristics
- 4 Water Quality Current Improvement Projects
- 5 Draft Alternatives for LTCP
- 6 Next Steps
- 7 Discussion and Q&A Session

Meeting Objectives

- Provide background and understanding of the Long Term Control Plan process for Flushing Creek
- 2. Provide summary of existing water quality improvement projects
- 3. Gather public input on draft alternatives

Public Involvement and LTCP Process

ONGOING PUBLIC/STAKEHOLDER INPUT

Overview of Combined Sewer Overflow Long Term Control Plan Process

Shane Ojar DEP

What is a Combined Sewer Overflow?

- NYC's sewer system is approximately 60% combined, which means it is used to convey both sanitary and storm flows.
 - Heavy rain and snow storms can lead to higher than normal flows in combined sewers.
 - As it was designed to work, when the sewer system is at full capacity, a diluted mixture of rain water and sewage, also known as combined sewage, are released into local waterways. This is called a combined sewer overflow (CSO).
 - CSOs become a concern when they occur too frequently or in large amounts. When they do, they can affect water quality and recreational uses in local waterways.

What are Long Term Control Plans (LTCPs)?

Required by state pollution control permits in accordance with the Clean Water Act (CWA) and Federal CSO Control Policy; an agreement between the State and City of New York establishes the time frame for submittal of 11 LTCPs.

Assesses feasibility of attaining current water quality standards and fishable/swimmable standards.

Comprehensive evaluation of alternatives to reduce CSOs and improve water quality in NYC's waterbodies.

What is the LTCP Process?

1. Builds off of improvements in Waterbody/Watershed Facility Plans (WWFP);

2. Assess current waterbody and watershed characteristics;

- 3. Identifies and analyze grey-green* infrastructure balance for different watersheds to meet applicable WQS; and
- 4. Select a preferred alternative based on a robust, targeted public process.

^{*}Green: sustainable pollution reducing practices that also provide other ecosystem services.

^{*}Grey: traditional practices such as pipes and sewers.

Waterbody & Watershed Characteristics

Keith Beckmann, P.E. DEP

Current Water Quality Standards

 $DO_i = DO$ concentration in mg/l between 3.0 - 4.8 mg/l

≥ 3.0 mg/l (acute, never less than)

Designated & Recreational Uses

- New York State DEC classifies the best use of the creek as being suitable for secondary contact recreation and fishing.
- Current Water Uses:
 - No designated access for swimming
- All recreational uses identified by the public during Flushing Creek LTCP public meeting on June 11, 2014 are in Flushing Bay and Meadow Lake.

Drainage Area Characteristics

Drainage Area	Area (Acres)
Combined Sewered	6,323
Separate/Direct Drainage	4,693
Total watershed area	11,016

- Within Tallman Island WWTP drainage area
- > DEP wet weather outfalls include:
 - ▲ 3 CSO Outfalls
 - 5 Permitted Stormwater Outfalls

Water Quality Sampling Data

LTCP Receiving Water Sampling

- November 2013 May 2014
- 18 dry weather and 60 wet weather samples per station
- Fecal coliform and enterococci

Geomean (Average) of LTCP Sampling Data

River Station	Enterococci (col/100ml)		Fecal Coliform (col/100ml)			
	Dry	Wet	All	Dry	Wet	All
OW1	32	51	44	130	131	131
OW2	20	99	61	100	433	278
OW3	61	863	468	327	3310	1940
OW4	23	494	232	119	2176	1063
OW5	20	497	223	112	1894	933
OW6	14	221	111	77	910	490

Additional DEP Water Sampling Programs:

Harbor Survey Monitoring

http://www.nyc.gov/html/dep/html/harborwater/har
bor water sampling results.shtml

Sentinel Monitoring

Model Updates & Baseline Assumptions

- Model runs are based on ten years of data (2002 2011) for pathogens; one year of data used for DO ("typical year rainfall -2008")
- 2040 population projections
- Model is calibrated with Harbor Survey data plus LTCP synoptic sampling data

Modeling Runs – Scenario Analysis

- Gap Analysis for Water Quality Standard Attainment
 - Calculate Bacteria and DO for Baseline conditions
 - Include WWFP grey infrastructure
 - Green Infrastructure (GI) as per NYC GI Plan
- Bacteria Source Component Analysis
 - CSO, stormwater, direct drainage, upstream rivers
- Matching CSO Scenarios to CSO Engineering Control Alternatives

Current Improvement Projects

Flushing Creek CSO Retention Facility
Increased Flow Conveyance to Tallman Island WWTP
Area-wide GI Projects
Planned On-site GI Projects
Potential Area-wide GI Contracts

Current Improvement Projects

Upgrades to Increase Flow Conveyance to Tallman Island WWTP

Cost = \$41 million

Planned On-site GI Projects:

185Q, Edward Bleeker Jr. High

Flushing Town Hall & JSH

Area-wide GI Projects

TI-011

Design Cost = \$3.5 million

Flushing Creek CSO
Retention Facility
Cost = \$349 million

Potential Area-wide GI
Contracts

Status of Current Improvement Projects

➤ Grey Infrastructure Projects

- Flushing Creek CSO Retention Facility Cost \$349 million
 - ✓ Tank operational since May 2007
 - √ 43 MG Storage (28 MG tank storage plus 15 MG sewers storage); 40 MGD pump station
- Upgrades to Increase Flow Conveyance to Tallman Island WWTP Cost \$41 million
 - ✓ New Whitestone Interceptor to come online Winter 2014

Green Infrastructure Projects

- Area-wide GI Contracts Cost \$3.5 million
 - ✓ TI11 and TI22 with NYC Department of Design and Construction
 - ✓ Design underway
- JHS 185Q, Edward Bleecker Jr. High
 - ✓ Rain garden and synthetic turf field for "Schoolyards to Playgrounds" project with Trust for Public Land/School Construction Authority/Dept. of Education
- Flushing Town Hall
 - ✓ Rain garden and swales with the Department of Cultural Affairs

Modeling Pre-WWFP & LTCP Baseline*

*LTCP projections using 2008 Typical Rainfall Year, including 8% GI

Overview of LTCP Targets

Target	Criteria	Dissolved Oxygen (DO) Criteria	Fecal Coliform Criteria	Enterococci Criteria
Existing Water Quality Criteria	Class I	• ≥ 4.0 mg/L	• Monthly Geometric Mean ≤ 2,000 col/100 ml	Not Applicable
Potential Future Standard: Primary Contact	Class SC with RWQC (EPA Recommended Recreational Water Quality Criteria)	 4.8 mg/L Average ≥ 3.0 mg/L 	• Monthly Geometric Mean ≤ 200 col/100 ml	 Rolling 30-Day Geometric Mean 30 col/100 ml STV (90th percentile value) 110 col/100 ml Recreational Season Potential 2015 Modification (RWQC)

Alternatives Evaluation

Keith Beckmann, P.E. DEP

Flushing Creek CSO Mitigation Toolbox

INCREASING COST AND COMPLEXITY

Source Control	Additional Green Infrastructure		Sewer Separation		
Ecological Enhancement	Tidal Wetland Restoration	Floatables Control			
0		Inflatable Dams		Pump Station Expansion	
System Optimization	Fixed Weir	Bending Weirs			
орини		Control Gates		Ελραποιοπ	
CSO Relocation	Interceptor Flow Regulation				
Water Quality	Ae			ition	
Treatment	Outfall Disinfection	CSO Basin Disinfection	High Rate Clarification (HRC)		
Storage	In-System	Shaft	Tank	Tunnel	
Retained alternative Eliminated alternative					

INCREASING COST AND COMPLEXITY

<u>Note</u>: A joint Wetlands Restoration & Dredging project with the US Army Corp of Engineers (ACOE) is being coordinated outside of the LTCP framework.

Reasons Alternatives Eliminated

Option 1 – CSO Basin Disinfection (TI-010)

Concept:

- Disinfect CSO at Existing Tank's Screens
- Operate in recreational season (May October)
- Install disinfection equipment at existing chemical storage location
- Treat flows discharged through outfall TI-010

Benefits:

- 31% bacteria load reduction from baseline
- Maximizes use of existing infrastructure

Water Quality Implications:

Reduces bacteria loads from CSOs during recreational season

Challenges:

- Coordination with on-site Parks Dept. operations
- Operation and maintenance of disinfection facilities
- Potential residual chlorine issues

Capital and O&M Costs: \$4.7 million

Option 2 - Outfall Disinfection at Chamber 3 (TI-010)

Concept

- ➤ Move dosing point from screens to upstream of Diversion Chamber 3
- ➤ Operate in recreational season (May October)
- ➤ Increases amount of flow disinfected prior to discharge

Option 2 - Outfall Disinfection at Chamber 3 (TI-010)

Benefits:

- > Tank discharge and bypass flow disinfected
- ➤ Approximately 40% Recreational Season Bacteria load reduction in Flushing Creek from baseline
- Disinfection equipment can be installed at existing site

Challenges:

- Design to achieve desired contact time
- Dosing point construction site across College Point Boulevard
- May require control structure at end of outfall
- > Potential residual chlorine issues

Capital and O&M Cost:

> \$5.8 Million

Option 3 - Outfall Disinfection at Chamber 5 (TI-010)

- Move dosing upstream of Diversion Chamber 5
- Operate tank as offline storage under lower flows by raising the effluent weir slightly
- Disinfect majority of flows that bypass tank up to design flow rate

Option 3 - Outfall Disinfection at Chamber 5 (TI-010)

Benefits:

➤ Disinfection of tank bypass flows

➤ 53% Recreational Season bacterial load reduction in Flushing Creek from baseline

Does not chlorinate pump back volume, reducing chlorine use

➤ Disinfection Equipment Can Be Installed at Existing Site

Add Chlorine

Challenges:

- ➤ Design disinfection system for 15 minutes of contact time
- May require control structure at end of outfall
- > Possible floatables & residual chlorine issues

Capital and O&M Cost (NPV):

➤ \$6 Million Capital

Disinfection in TI-011 Outfall

Concept:

- CSO disinfection within existing TI-011 outfall
- Operate in recreational season (May Oct.)
- New disinfection building on existing DEP site

Benefits:

- 30% bacteria load reduction from baseline
- Maximizes use of existing infrastructure
- Utilizes gravity, no effluent pumping
- No construction of retention tank

Water Quality Implications:

Reduces bacteria load from CSO during recreational season

Challenges:

- Operation and maintenance of disinfection facilities
- Potential residual chlorine issues

Capital and O&M Cost: \$9.2 million

Wetland Restoration Opportunities

Restoration – Benefits and Challenges

- ➤ Restore the natural state and functioning of the system to support biodiversity and aesthetic improvements.
- > Expand habitat for diverse species (e.g. fish, aquatic insects, other wildlife).
- > Enhance water quality and increased dissolved oxygen levels.
- ➤ Restoration activities may range from a <u>removal of fill</u> that inhibits natural hydrologic function, to <u>wetland planting</u> and upstream <u>constructed wetland</u>
- > Access, property ownership issues and establishment of proper elevation.
- ➤ Projects should conduct <u>monitoring</u> of conditions after construction, to evaluate effectiveness. This may take considerable time therefore monitoring efforts should be conducted for <u>several years</u> after a project has completed.

Wetland Restoration

Protecting and improving water quality

- Wetlands are part of the solution in keeping with the spirit of the Clean Water Act (CWA)
- Provide critical functions:
 - Water storage
 - Water filtration
 - Reduction of Biological Oxygen Demand (BOD) for increased Dissolved Oxygen

Providing habitat

- Biological productivity
 - Wetlands are one the most biologically productive natural ecosystems known, comparable to tropical rain forests in their productivity species diversity
 - 85% of waterfowl and migratory birds use wetlands

Aesthetic value

- Open space
- Education
- Research

Potential Wetland Restoration Opportunities

- ➤ Approximately 2 to 4 acres of additional wetland restoration are possible outside of USACE/DEP restoration/dredging coordination effort
- ➤ Approximate cost of restoration is \$850K per acre

Other Projects Considered in Addition to LTCP

Dredging and Environmental Restoration with US Army Corp of Engineers (USACE)

Concept:

➤ DEP is working with USACE on dredging and wetland restoration

Benefits:

May improve waterbody aesthetics

Water Quality Implications:

Reduce odor and aesthetic issues

Challenges:

- Not a CSO reduction strategy
- > Does not remove bacteria
- Coordination with ACOE
- > Permitting

Capital Cost: \$35 Million

Shortlisted Alternatives Costs

LTCP Alternative	Recreational Season Bacteria Reduction	DO Improvement	High Level Cost (Millions)
Option 1 Tank Disinfection	31%	No	\$5
Option 2 Outfall Disinfection at Diversion Chamber 3	40%	No	\$6
Option 3 Outfall Disinfection at Diversion Chamber 5	53%	No	\$6
TI-011 Outfall Disinfection	30%	No	\$9

Outside LTCP w/ACOE	Recreational Season Bacteria Reduction	DO Improvement	High Level Cost (Millions)
Wetland Restoration/Dredging	NA	Yes	\$35

Flushing Creek Summary of Considerations

- Flushing Creek's water quality is affected by CSOs.
- Both pathogens and dissolved oxygen must be considered.
- CSO reduction alternatives vary in size, effectiveness and cost.
- CSO reduction alternatives may be bundled together for further effectiveness
- Ratepayers may be directly impacted by the cost of planned CSO reduction alternatives.
- Submitted LTCP will propose a preferred alternative.

Next Steps

Shane Ojar DEP

Next Steps

➤ To have public comments on alternatives incorporated into the LTCP, please send comments by November 17, 2014

- Comments can be submitted to:
 - New York City DEP at: ltcp@dep.nyc.gov

- Flushing Creek LTCP Public Meeting #3
 - Objective & Topics: Present and review proposed Draft LTCP

Additional Information & Resources

- Visit the informational tables tonight for handouts and poster boards with detailed information
- Go to www.nyc.gov/dep/ltcp to access:
 - LTCP Public Participation Plan
 - Presentation, handouts and poster boards from this meeting
 - Links to Waterbody/Watershed Facility Plans
 - CSO Order including LTCP Goal Statement
 - NYC's Green Infrastructure Plan
 - Green Infrastructure Pilots 2011 and 2012 Monitoring Results
 - Real-time waterbody advisories
 - Upcoming meeting announcements
 - Other LTCP updates

Discussion and Q&A Session