

Alley Creek and Little Neck Bay CSO Long Term Control Plan

Public Meeting #3

Final LTCP Plan Review

Queensborough Community College November 17, 2015

Welcome and Introductions

Ibrahim Abdul-Matin Director of Community Affairs Assistant Commissioner DEP

Jim Mueller, P.E. DEP

What is a Combined Sewer Overflow (CSO)?

NYC's sewer system is approximately 60% combined, which means it is used to convey both sanitary and storm flows.

- When the sewer system is at full capacity, a diluted mixture of rain water and sewage may be released into local waterways. This is called a combined sewer overflow (CSO).
- 65% to 90% of combined sanitary & storm flow is captured at treatment plants.

What is a LTCP and CSO Consent Order?

Long Term Control Plan (LTCP)

identifies appropriate CSO controls to achieve applicable DEC water quality standards

consistent with the Federal CSO Policy and Clean Water Act

CSO Consent Order

an agreement between NYC and DEC that settles past legal disputes without prolonged litigation

DEC requires DEP to develop LTCPs and mitigate CSOs

How does rainfall affect CSOs?

- ➤ Rainfall characteristics that may trigger a CSO event at Alley Creek / Little Neck Bay:
 - ≥ 0.5-inch of constant rainfall over a period of 1 hour

Of the average 100 rainfall events per year about 16 CSO events may occur at Alley Creek / Little Neck Bay

Photo Credit: Baptisete Pons

Rainfall Selection for Model Updates

Evaluated a comprehensive range of rainfall data:

- Historical data range:42 years from 1969 to 2010
- Four representative rainfall gauges: Central Park, LGA, JFK, and ERW
- Selected 2008 JFK rainfall as the most representative of average annual rainfall across all four gauges

Model Calibration & Updates

- Calibrated with Harbor Survey and LTCP sampling data
- Future wastewater flows based on **2040 population** projections
- Recalibrated based on revised impervious areas
- Alternative Model runs based on 1-yr data (JFK 2008 "Typical Year Rainfall")
- Selected Plan Model runs based on 10-yr data (2001 to 2011) to address elevated rainfall amount due to climate change

Questions?

Summary of Previous Public Meetings

Ibrahim Abdul-Matin
Director of Community Affairs
DEP

LTCP Process and Public Involvement

^{*}Supplemental Documentation was submitted to DEC on 11/4/2013 and 5/6/2015 in response to DEC review comments.

Public Meeting #1 – Summary

Date: October 24, 2012

Location: Alley Pond Environmental Center

Attendees: 15

Presented on:

- ➤ Overview of LTCP Process & Goals
- ➤ Waterbody/Watershed Characteristics
- ➤ Ongoing WQ Improvement Projects
 - Sewer Improvements
 - 5 MG CSO Retention Facility
 - New CSO Outfall TI-025 (at Retention Facility)
 - Ecological Restoration
 - Tallman Island WWTP BNR Upgrade
- Review of Historical WQ Monitoring

Public Meeting #2 – Summary

Date: May 1, 2013

Location: Alley Pond Environmental Center

Attendees: 10

Presented on:

➤ Brief Recap of Meeting #1

- Water Quality Monitoring
 - Harbor Survey Program
 - LTCP Sampling Results
- ➤ Modeling Results
 - Wet Weather Discharges
 - Distribution of Flows & Loads
- > Current Uses
 - Public Waterfront Access
 - Natural Features
- Comparison of Key Alternatives

Questions?

Review of Water Quality Results

Jim Mueller, P.E. Assistant Commissioner DEP

Alley Creek & Little Neck Bay Drainage Area

- Tributary to East River & Long Island Sound
- Little Neck Bay classified for primary contact recreation
 - Class SB Bathing and Fishing
- Alley Creek classified for primary contact recreation*
 - Class I Boating and Fishing
- > DEP wet weather discharges include:
 - ▲ 6 CSO Outfalls
 - 9 Stormwater Outfalls

	Drainage Area
Acres	4,880
Served by combined sewers	47%

Alley Creek & Little Neck Bay Sampling Locations

LTCP Sampling:

2 CSO Outfalls (TI-024 & TI-025)

2 Stormwater Outfalls (TI-623 & TI-624)

Receiving Water Sampling

13 locations
 Alley Creek: (OW0 to OW2)
 Little Neck Bay: (OW3 to OW13)

Other Sampling Programs:

Harbor Survey Monitoring

 4 locations (AC1, AC2, LN1, E11)

Sentinel Monitoring

3 locations (S1, S2, S64)

Fecal Coliform Results

November 2012 to December 2012

Fecal Coliform: Pre-Tank vs. Post-Tank

Enterococci Results

November 2012 to December 2012

INCREASING COST

CSO Mitigation Options

INCREASING COMPLEXITY

Source Control	Additional Gree	en Infrastructure	High Level Sewer Separation (HLSS)		
System Optimization	Fixed Weir	Parallel Interceptor / Sewer	Bending Weirs Control Gates	Pump Station Expansion	
CSO Relocation	Gravity Flow Tipping to Other Watersheds Pumping Station Modification		Flow Tipping with Conduit/Tunnel and Pumping		
Ecological Enhancement	Floatables Control		Dissolved Oxygen Improvement		
Treatment	Outfall Disinfection Disinfection Existing CSO Retention Facility		High Rate Clarification (HRC)		
Storage	In-System	Shaft	Enlarge	e Tank	

Preferred Alternative

= Disinfection at Existing CSO Retention Facility

Questions?

LTCP Proposed Final Recommendations

Jim Mueller, P.E. Assistant Commissioner DEP

History of Chlorination

Chlorination of sewage remains the most common practice of wastewater disinfection today

1890's

• Became common practice in English municipal water treatment

1908

Application proven effective in Chicago and Jersey City water districts

1910

• City of Philadelphia first to chlorinate wastewater in U.S.

1911

• First application in NYC for disinfection of Croton water supply

1918

Over 1,000 U.S. cities use chlorination for drinking water supplies

1936

• First application in NYC for seasonal disinfection of wastewater effluent

Today

• Most widely-used disinfectant for water & wastewater treatment in the U.S.

CSO Disinfection

Disinfection with sodium hypochlorite (liquid chlorine) is practiced nationwide for CSO treatment

Key Benefits:

- Liquid chlorine is best suited for the intermittent and variable character of CSO discharges.
- Other disinfection methods are not as effective, reliable or economical.
- > Extensive experience nationwide for CSO treatment.
- NYCDEP has extensive experience in storing, handling, and applying chlorine at water and wastewater facilities.

Common Methods of Disinfection

	%Utilization across USA* (WWTPs > 1 mgd)	Benefits	Challenges
Chlorine	75.3 %	Effective against a wide range of pathogensRelatively inexpensive	Residual chlorine can be toxic to some aquatic life
UV	20.6 %	Effective against a wide range of pathogens	 Relatively expensive Energy intensive Requires larger footprint than chlorination Not as effective as chlorine for CSO disinfection
Ozone	0.2 %	Highly effective against a wide range of pathogens	 Relatively expensive Energy intensive Requires larger footprint than chlorination Not used for CSO disinfection
None	3.9 %	-	-

Pathogens = disease causing organisms

^{*}Source: Disinfection of Wastewater Effluent – Comparison of Alternative Technologies, WERF, 2008.

CSO Disinfection for Alley Creek

Seasonal disinfection is needed to:

- Achieve swimmable goals during recreational season
- Reduce human-sourced bacteria discharged to Alley Creek

Projected Fecal Recreational Season Attainment

(Primary Recreation Contact Criteria)

Preferred Alternative

Disinfect at the Existing 5 MG CSO Retention Facility during Recreational Season (May 1st – Oct 31st)

Benefits:

- Reduce Bacteria Load to Creek
- Small Footprint
- Does not require structural modifications to existing tank

Challenges:

- Site Acquisition
- Additional O&M Requirements
- Control of Residual Chlorine
- Total Capital Cost / Annual O&M
 - \$7.6 M / \$250 K

Residual Chlorine Management

Two commonly used options:

- 1) Instrumentation: to closely monitor & control chlorine dosage
- Dechlorination: add additional chemical (sodium bisulfite) to quench residual chlorine

Spring Creek Pilot

To be completed *in time* to inform final design and control requirements for proposed disinfection facilities

- > Test and measure chlorine residuals and potential toxicity to receiving waters
- Determine proper disinfection control protocols and potential dosage ranges
- > Determine if dechlorination may be required based upon potential toxicity issues

Projected **Primary Contact** Attainment

Bacteria:

	Fecal (Monthly GM ≤ 200 #/100mL)			Enterococcus (30-Day Rolling GM ≤ 30 #/100mL)			
	Baseline	%100 CSO Control		nmended Plan	Baseline	%100 CSO Control	Recommended Plan
	Annual	Annual	Annual	Seasonal	Seasonal	Seasonal	Seasonal
Little Neck Bay	97%	98%	97%	100%	87%	93%	89%
Alley Creek	87%	94%	90%	98%	44%	54%	48%

Compliance = Attainment ≥ 95%

Projected Dissolved Oxygen (DO) Attainment

Alley Creek:

Acute (Hourly) (Never < 4.0 mg/L)		
Baseline	Recommended Plan	
Annual	Annual	
98%	98%	

Compliance = Attainment ≥ 95%

Little Neck Bay:

Chronic (Daily) (Daily Average ≥ 4.8 mg/L)			Acute (Hourly) (Never < 3.0 mg/L)		
Baseline	%100 CSO Control	Recommended Plan	Baseline	Recommended Plan	
Annual	Annual	Annual	Annual	Annual	
95%	96%	95%	99%	99%	

CSO Volume Reduction

Volume Reduction: 75% annual CSO volume reduction through completed / planned Grey and Green infrastructure implementation

CSO: Overflow Frequency Reduction

Frequency Reduction: 57% annual CSO frequency reduction through completed / planned Grey and Green infrastructure implementation

■ Recreational Season

Combined Storm & CSO Frequency Reduction

Frequency Reduction: 80% reduction in annual combined (storm & CSO) overflows through completed / planned Grey and Green infrastructure implementation

■ Recreational Season

Tentative Implementation Schedule

^{*}This is the projected schedule pending DEC approval of the Alley Creek LTCP

LTCP Proposed Final Recommendations

- Continue to operate Alley Creek CSO Retention Facility
- Implement Preferred Alternative:
 - Seasonal disinfection at the Alley Creek CSO Retention Facility
- Initiate a post-construction compliance monitoring program
- Perform a Use Attainability Analysis (UAA) addressing non-compliance
- Establish a wet-weather advisory during the recreational season (May 1st – Oct 31st)

Time to Recovery

(Fecal Coliform Target of 1,000 cfu/100 mL)

Baseline	Post LTCP Recommended Plan
26 hours	10 hours

Questions?

Municipal Separate Storm Sewer (MS4) Program

Pinar Balci Director DEP

Water Quality Improvement: MS4 and CSO

A Municipal Separate Storm Sewer System (MS4) is:

- a conveyance or system of conveyances;
- A system that is owned by a state, city, town, village, or other public entity that discharges to waters of the US;
- designed or used to collect or convey stormwater (including storm drains, pipes, ditches, etc.);
- not a combined sewer; and
- not part of a Publicly Owned Treatment Works (sewage treatment plant).

Affected Areas of NYC under MS4 permit

MS4 Permit Timeline

MS4 Integration with the CSO Program

Requirements for Impaired Waters with Approved LTCPs

- Identify MS4 priority waterbodies
 - Waterbodies where an approved LTCP does not predict compliance with WQ standards and stormwater contributions from MS4 are expected to be a significant contributor
- Categorize sources of pollutants discharging to the MS4 priority waterbodies
- Identify additional or customized non-structural BMPs and a schedule to commence implementation
- Describe opportunities for implementing green infrastructure pilot projects and other structural retrofits

Questions?

Next Steps

Ibrahim Abdul-Matin
Director of Community Affairs
DEP

Next Steps

Public Comments will be accepted for Alley Creek and Little Neck Bay through December 17th, 2015

- > Comments can be submitted to:
 - New York City DEP at: ltcp@dep.nyc.gov

Additional Information & Resources

- Visit the informational tables tonight for handouts and poster boards with detailed information
- ➤ Go to www.nyc.gov/dep/ltcp to access:
 - LTCP Public Participation Plan
 - Presentation, handouts and poster boards from this meeting
 - Links to Waterbody/Watershed Facility Plans
 - CSO Order including LTCP Goal Statement
 - NYC's Green Infrastructure Plan
 - Green Infrastructure Pilots 2011 and 2012 Monitoring Results
 - NYC Waterbody Advisory Program
 - Upcoming meeting announcements
 - Other LTCP updates