NYC Department of Environmental Protection: Sound and Noise Module Standards Connections ## **New York State K-12 Science Learning Standards** | DEP Lesson | Standard* | Amplify Lesson(s)** | |--|---|---| | Distinguishing Between Sound and Noise | 3-PS2-2: Make observations and/or measurements of an object's motion to provide evidence that a pattern can be used to predict future motions 4-PS3-1: Use evidence to construct an explanation relating the speed of an object to the energy of that object 4-PS3-2: Make observations to provide evidence that energy is conserved as it is transferred and/or converted from one form to another MS-PS4-1: Develop a model and use mathematical representations to describe waves that include frequencies, wavelength, and how the amplitude of a wave is related to energy in a wave MS-PS4-2: Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials MS-PS4-3: Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals HS-PS4-1: Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling and transferring energy (amplitude, frequency) in various media HS-PS4-5: Communicate technical information about how some technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy | Waves, Energy, and Information 4.1.4: Exploring Sound Waves Waves, Energy, and Information 4.2.2: Visualizing How Sound Travels Waves, Energy, and Information 4.2.5: Modelling Energy Transfer Waves, Energy, and Information 4.3.3: How Sounds Can Differ Harnessing Human Energy 6.1.1: Welcome to the Energy Research Lab | | Demonstrating How the Ear Works | 1-PS4-1: Plan and conduct investigations to provide evidence that vibrating materials can make sound and that sound can make materials vibrate 4-PS4-2: Develop a model to describe that light reflecting from objects and entering the eye allow objects to be seen 4-LS1-1: Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction MS-LS1-3: Construct an explanation supported by evidence for how the body is composed of interacting systems consisting of cells, tissues, and organs working together to maintain homeostasis. HS-LS1-2: Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms | Light and Sound 1.4.2: What Vibrates Light and Sound 1.4.3: Explaining Vibration in Sound Sources Waves, Energy, and Information 4.1.2: Exploring Waves Evolutionary History 8.2.1: How Body Structure Differ Evolutionary History 8.2.5: Reflecting on Differences in Body Structures | - * Aligned with the New York State P-12 Science Learning Standards - ** Aligned with the Amplify Science Curriculum | Reading Listen to the Raindrops | K-ESS3-1: Use a model to represent the relationship between the needs of different plants and animals (including humans) and the places they live K-ESS3-3: Communicate solutions that will reduce the impact of humans on living organisms and non-living things in the local environment 4-LS1-2: Use a model to describe that animals receive different types of information through their senses, process the information in their brain, and respond to the information in different ways MS-LS2-5: Evaluate competing design solutions for maintaining biodiversity | Waves, Energy, and Information 4.3.4:
Seeing Sound
Harnessing Human Energy 6.3.1:
Reading about Energy Systems | |--|--|---| | | and ecosystem stability HS-LS1-3: Plan and conduct an investigation to provide evidence that feedback mechanisms maintain homeostasis | | | Creating Sound and Noise Poetry | K-ESS3-3: Communicate solutions that will reduce the impact of humans on living organisms and non-living things in the local environment 4-PS4-3: Generate and compare multiple solutions that use patterns to transfer information MS-PS4-2: Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials | Waves, Energy, and Information 4.4.1: Human Communication Waves, Energy, and Information 4.4.2: Patterns in Codes Waves, Energy, and Information 4.4.3: Communicating with Codes | | | HS-ESS3-6: Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity | Harnessing Human Energy 6.1.1: Welcome to the Energy Research Lab | | Hearing What Simon Says | K-ESS3-3: Communicate solutions that will reduce the impact of humans on living organisms and non-living things in the local environment 4-LS1-2: Use a model to describe that animals receive different types of information through their senses, process the information in their brain, and respond to the information in different ways MS-LS1-8: Gather and synthesize information that sensory receptors respond to stimuli, resulting in immediate behavior and/or storage as | Light and Sound 1.4.4: Designing Sound Sources Waves, Energy, and Information 4.1.5: Introducing Scientific Explanation Harnessing Human Energy 6.1.1: Welcome to the Energy Research Lab | | | memories HS-LS1-3: Plan and conduct an investigation to provide evidence that feedback mechanisms maintain homeostasis | _ | | Understanding Noise Impacts on Concentration | K-ESS3-1: Use a model to represent the relationship between the needs of different plants and animals (including humans) and the places they live 4-LS1-2: Use a model to describe that animals receive different types of information through their senses, process the information in their brain, and respond to the information in different ways | Light and Sound 1.1.1: Students' Initial Explanations Waves, Energy, and Information 4.2.1: Sound on the Move Harnessing Human Energy 6.2.3: | | | MS-LS1-8: Gather and synthesize information that sensory receptors respond to stimuli, resulting in immediate behavior and/or storage as memories | Writing Scientific Arguments | - * Aligned with the New York State P-12 Science Learning Standards - ** Aligned with the Amplify Science Curriculum | | HS-LS1-2: Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms | | |--|--|--| | Measuring Sound in Our
Environment | K-ESS3-1: Use a model to represent the relationship between the needs of different plants and animals (including humans) and the places they live MS-LS1-8: Gather and synthesize information that sensory receptors respond to stimuli, resulting in immediate behavior and/or storage as memories HS-LS2-7: Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity | Needs of Plants and Animals K.1.3: Observing a Place Harnessing Human Energy 6.2.2: Evaluating Energy Sources | | Understanding the Effectiveness of Different Sound Devices | K-2-ETS1-1: Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool K-2-ETS1-3: Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs MS-PS4-2: Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials HS-PS4-5: Communicate technical information about how some technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy HS-ETS1-3: Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts | Energy Conversions 4.3.2: Converting Energy from Sources Energy Conversions 4.4.4: System Improvement Energy Conversions 4.4.5: Arguments for System Improvements Harnessing Human Energy 6.1.4: Energy Inventions | | Engineering a Speaker and Insulator | K-2-ETS1-2: Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem 1-PS4-4: Use tools and materials to design and build a device that uses light or sound to solve the problem of communicating over a distance 2-PS1-1: Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties 2-PS1-2: Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose 3-5-ETS1-1: Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost | Light and Sound 1.2.3: Investigating Blocking Light and Sound 1.3.1: Investigating Materials That Do Not Block Light and Sound 1.3.2: Let's Test! Light and Sound 1.3.3: Making Sense of Full and Partial Transmission Waves, Energy, and Information 4.1.4: Exploring Sound Waves Harnessing Human Energy 6.1.4: Energy Inventions | - * Aligned with the New York State P-12 Science Learning Standards - ** Aligned with the Amplify Science Curriculum | | 3-5-ETS1-3: Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved 5-PS1-3: Make observations and measurements to identify materials based on their properties MS-PS4-2: Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials HS-PS4-1: Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling and transferring energy (amplitude, frequency) in various media HS-PS4-5: Communicate technical information about how some technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy | | |--|---|---| | | <u>HS-ESS3-4:</u> Evaluate or refine a technological solution that reduces impacts | | | | of human activities on natural systems | | | Mapping Sound and Noise | K-ESS3-3: Communicate solutions that will reduce the impact of humans on living organisms and non-living things in the local environment 3-PS2-2: Make observations and/or measurements of an object's motion to provide evidence that a pattern can be used to predict future motions MS-PS4-1: Develop a model and use mathematical representations to describe waves that include frequencies, wavelength, and how the amplitude of a wave is related to energy in a wave MS-LS2-5: Evaluate competing design solutions for maintaining biodiversity and ecosystem stability HS-PS4-1: Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling and transferring energy (amplitude, frequency) in various media HS-LS2-7: Design, evaluate, and refine a solution for reducing the impacts | Needs of Plants and Animals K.1.2: Science Walk Waves, Energy, and Information 4.2.6: Explaining How Sound Energy Travels Waves, Energy, and Information 4.3.1: Investigating Amplitude Waves, Energy, and Information 4.3.2: Investigating Wavelength Harnessing Human Energy 6.1.1: Welcome to the Energy Research Lab Harnessing Human Energy 6.2.1: Investigating Claims about How Objects Get Energy | | | of human activities on the environment and biodiversity | | | Conducting a Case Study: Brooklyn
Bridge Park | K-2-ETS1-2: Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem 5-PS1-3: Make observations and measurements to identify materials based on their properties MS-ESS3-3: Apply scientific principles to design a method for monitoring | Needs of Plants and Animals K.1.2: Science Walk Needs of Plants and Animals K.1.3: Observing a Place Energy Conversions 4.3.1: Investigating Energy Sources | | | and minimizing a human impact on the environment MS-ETS1-4: Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved | Harnessing Human Energy 6.2.3: Writing Scientific Arguments | - * Aligned with the New York State P-12 Science Learning Standards - ** Aligned with the Amplify Science Curriculum | | HS-ETS1-1: Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants | | |---|--|--| | Listening to Underground Sound in
New York | K-ESS2-2: Construct an argument supported by evidence for how plants and animals (including humans) can change the environment to meet their needs. K-ESS3-1: Use a model to represent the relationship between the needs of different plants and animals (including humans) and the places they live 1-PS4-1: Plan and conduct investigations to provide evidence that vibrating materials can make sound and that sound can make materials vibrate MS-LS2-4: Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations MS-ESS3-4: Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems HS-ESS3-6: Use a computational representation to illustrate the | Needs of Plants and Animals K.1.3: Observing a Place Waves, Energy, and Information 4.2.6: Explaining How Sound Energy Travels Waves, Energy, and Information 4.3.3: How Sounds Can Differ | | Analyzing Airplane Noise in New | relationships among Earth systems and how those relationships are being modified due to human activity • K-ESS3-3: Communicate solutions that will reduce the impact of humans on | Waves, Energy, and Information 4.2.6: Explaining How Sound Energy Travels Harnessing Human Energy 6.1.2: Investigating Energy Claims | | York City | MS-ETS1-1: Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions HS-ETS1-4: Use a computer simulation to model that impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem | | | Exploring New York City Noise in the News | K-ESS3-1: Use a model to represent the relationship between the needs of different plants and animals (including humans) and the places they live K-ESS3-3: Communicate solutions that will reduce the impact of humans on living organisms and non-living things in the local environment MS-LS2-4: Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations. HS-ESS3-4: Evaluate or refine a technological solution that reduces impacts of human activities on natural systems | Energy Conversions 4.1.2: Introducing Systems Energy Conversions 4.1.3: Exploring Systems Harnessing Human Energy 6.1.2: Investigating Energy Claims | - * Aligned with the New York State P-12 Science Learning Standards - ** Aligned with the Amplify Science Curriculum | Analyzing Noise Complaints | <u>K-ESS3-1:</u> Use a model to represent the relationship between the needs of | Light and Sound 1.4.5: Sharing Light and | |--|---|--| | | different plants and animals (including humans) and the places they live | Sound Solutions | | | MS-ESS3-3: Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment | Waves, Energy, and Information 4.3.3: How Sounds Can Differ | | | HS-ESS3-6: Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity | Harnessing Human Energy 6.1.2: Investigating Energy Claims | | Applying the New York City Noise
Code | <u>K-ESS3-1:</u> Use a model to represent the relationship between the needs of different plants and animals (including humans) and the places they live | Light and Sound 1.4.5: Sharing Light and Sound Solutions | | Couc | MS-ETS1-2: Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem MS-ETS1-3: Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better | Waves, Energy, and Information 4.4.1: Human Communication Harnessing Human Energy 6.1.2: Investigating Energy Claims Harnessing Human Energy 6.2.3: Writing Scientific Arguments | | | meet the criteria for success. <u>HS-ESS3-4:</u> Evaluate or refine a technological solution that reduces impact of human activities on natural systems <u>HS-ETS1-2:</u> Design a solution to a complex real-world problem by breakin it down into smaller, more manageable problems that can be solved through engineering <u>HS-ETS1-3:</u> Evaluate a solution to a complex real-world problem based or prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social cultural, and environmental impacts | | | Determining How Noise Affects
Other Species | K-ESS3-1: Use a model to represent the relationship between the needs of different plants and animals (including humans) and the places they live MS-ESS3-3: Apply scientific principles to design a method for monitoring | Waves, Energy, and Information 4.3.5: The Scientist Who Cracked the Dolphin Code | | | and minimizing a human impact on the environment | Waves, Energy, and Information 4.3.6: | | | <u>HS-LS2-7:</u> Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity <u>HS-LS4-6:</u> Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity | Discussing Dolphin Communication Waves, Energy, and Information 4.3.7: Explaining How Dolphins Communicate Harnessing Human Energy 6.1.2: Investigating Energy Claims | | Advocating for Noise Reduction | <u>K-ESS3-1:</u> Use a model to represent the relationship between the needs of different plants and animals (including humans) and the places they live <u>K-ESS3-3:</u> Communicate solutions that will reduce the impact of humans on living organisms and non-living things in the local environment | Light and Sound 1.4.5: Sharing Light and Sound Solutions | - * Aligned with the New York State P-12 Science Learning Standards - ** Aligned with the Amplify Science Curriculum | 3-5-ETS1-1: Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost 3-5-ETS1-2: Generate and compare multiple possible solutions to a probler based on how well each is likely to meet the criteria and constraints of the problem 3-5-ETS1-3: Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved MS-ESS3-3: Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment HS-LS4-6: Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity | Designing and Explaining Energy Systems | |---|---| |---|---| - * Aligned with the New York State P-12 Science Learning Standards - ** Aligned with the Amplify Science Curriculum