

김

Cycling Safety Analysis: A Close Look at Vehicle Type Association with Bicycle Collisions, Injuries, and Fatalities

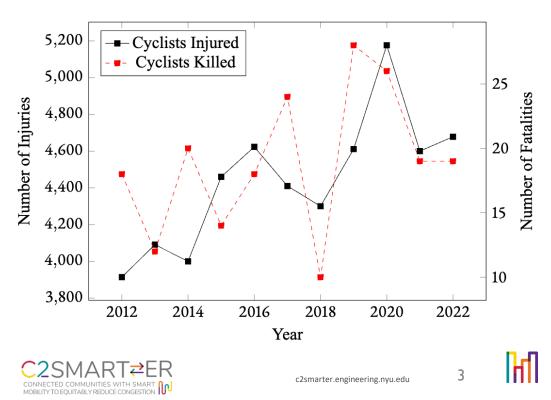
Ы

Suzana Duran Bernardes, Ph.D. Candidate

Department of Civil and Urban Engineering, C2SMART, New York University, Brooklyn, NY, USA

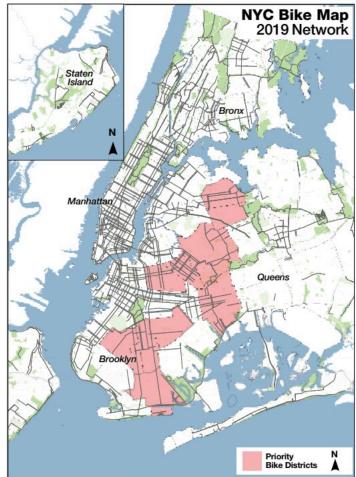
c2smarter.engineering.nyu.edu

Presentation Outline



NYC Bicycle Scenario

- I 234+ miles of bicycle lanes
- I 16% increase in daily bicycle ridership from 2009 to 2019.


 $\overline{}$

Overview

NYC Bicycle Scenario

- Safety priority districts (e.g., higher number of cyclists injured or killed) in areas farther from Manhattan.
- Less access to bicycle infrastructure.
- Lower incomes than other areas.

Source: NYCDOT, 2019. Green Wave: A Plan for Cycling in New York City

Collision Data

Motor Vehicle Collisions - Crashes

NYC OpenData

CRAS	CRAS	BORO	ZIP C	LATI :	LONG	LOCA	ON S	CROS	OFF S	NUM :	NUM :	NUM
04/13/20	0:00	BROOKLYN	11222	40.726444	-73.95233	(40.7264			745 MAN	0	0	0
04/13/20	0:00	BROOKLYN	11231	40.678524	-74.0021	(40.6785			667 HEN	0	0	0
04/13/20	0:00	QUEENS	11420	40.677498	-73.8276	(40.6774	111 STRE	ROCKAW		0	0	0
04/13/20	0:00						ALEXAND			0	0	0
04/13/20	0:00			40.877235	-73.91781	(40.8772	JOHNSO			0	0	0
04/13/20	0:00			40.90021	-73.8865	(40.9002	MOSHOL			1	0	0
04/13/20	0:07	BRONX	10456	40.82942	-73.91226	(40.8294	EAST 166	CLAY AV		1	0	0
04/13/20	0:15	QUEENS	11378	40.727432	-73.90713	(40.7274	LONG ISL	MAURICE		0	0	0
04/13/20	0:45			40.843956	-73.8978	(40.8439	CROSS B			1	0	0
04/13/20	10:00	BRONX	10463				Ft indepe	Bailey pla		0	0	0
04/13/20	10:00	BROOKLYN	11207	40.686226	-73.9124	(40.6862	BUSHWIC	COVERT		0	0	0
04/13/20	10:00	BROOKLYN	11209	40.634743	-74.03529	(40.6347	NARROW	73 STREET		0	0	0
04/13/20	10:00			40.81782	-73.915276	(40.8178	3 AVENUE	EAST 152		0	0	0

 $\overline{}$

< Previous Next >

Showing Motor Vehicle Collisions 1 to 13 out of 2,043,611

1.11

<u>ك</u>ا

Passenger Vehicles

Light:

Source: Google Images

Source: Google Images

Medium:

Source: Google Images

Source: Google Images

Commercial Vehicles

Light:

Source: Google Images

Source: Google Images

Medium:

Source: The New York Times

Source: Google Images

Commercial Vehicles

Heavy:

Source: Google Images

Source: Google Images

Source: Google Images

Source: Google Images

c2smarter.engineering.nyu.edu

8

₽

Other Categories

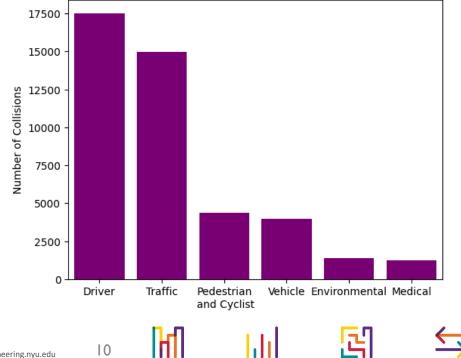
- Two-wheeled and Light Open Vehicles,
 - Light (e.g., Bicycles, E-Bicycles, E-Scooters)
- Emergency and Service Vehicles
 - Light (e.g., Snow Plow)
 - Medium (e.g., Ambulance, Garbage Truck)
 - Heavy (e.g., Fire Truck)
- Public Transport
 - Heavy (e.g., Bus)
- Special or Unclassified
 - Light (e.g., Skateboard)
 - Medium (e.g., Limousine)
 - Heavy (e.g., Dodge Ram)

권

Source: NYC DOT

1.11

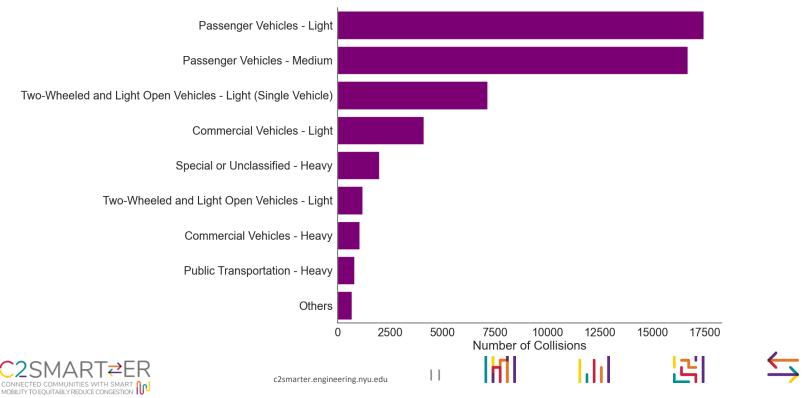
c2smarter.engineering.nyu.edu



Collision Frequency Analysis

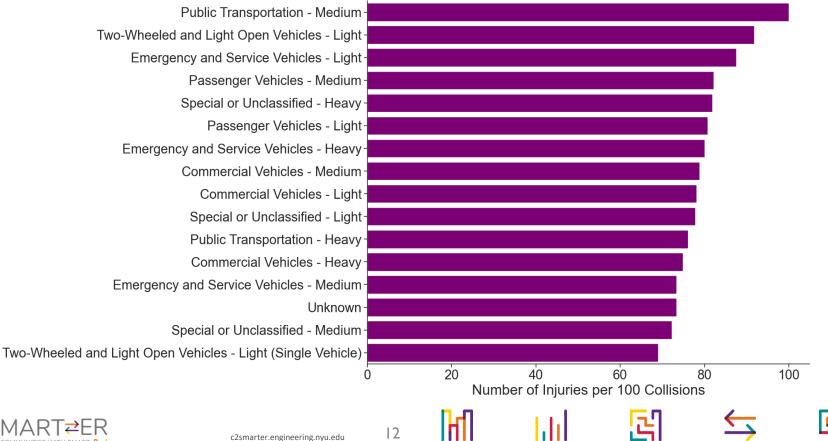
Contributing Factors

According to the NYPD data, most of the bicycle collisions were caused by factors related to the driver (e.g., Driver Distraction, Aggressive Driving, Alcohol Involvement) or traffic violations (e.g., Failure to Yield Right-of-Way, Turning Improperly, Passing Too Closely).



Frequency per Type of Vehicle

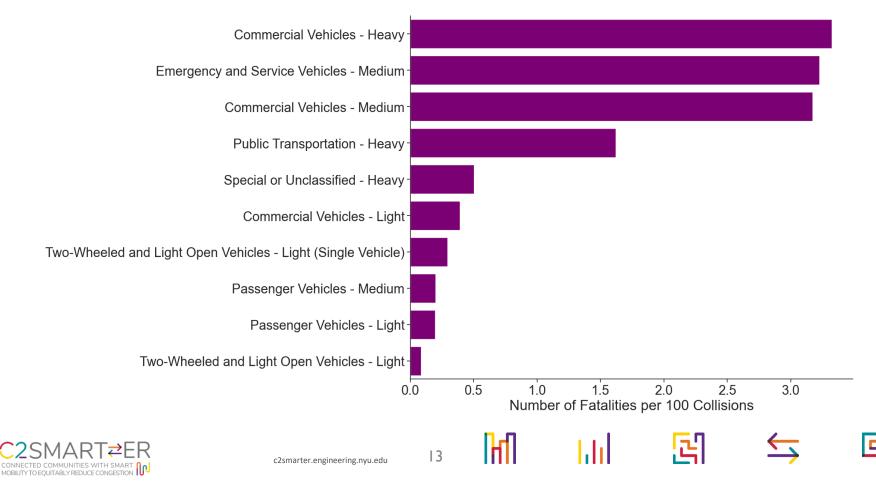
- We identified 62,832 bicycle collisions in the last decade.
- 97.98% of this total involved only two or less vehicles.
- I.88% of this total involved two bicycles.



Injuries and Fatalities in Bicycle Collisions 🔵 🌘

INJURIES PER VEHICLE TYPE

 Injuries were observed in most vehicle types. However, those in the medium to heavy type observed more injuries. The only exception being those with two bikes and/or e-bikes.



FATALITIES PERVEHICLE TYPE

 Fatalities are associated mostly with medium and heavy vehicles, especially those of a commercial or service nature.

Conclusion

- Bicycle safety can still benefit from target policies and initiatives as injuries and fatalities continue to occur.
- It is clear that bigger vehicles are associated with more fatalities. Such patterns can be explained by the characteristics of such vehicles, like blind spots, and overall impact force of such vehicles.
- Initiatives to instruct cyclists on best practices for safe interactions with bigger vehicles and these vehicle drivers on best practices to stay aware of their blind spots.
- It would also be interesting to consider infrastructure alternatives to reduce interactions between cyclists and such vehicles. For example, include physical barriers between bicycle lanes and traffic where these vehicles are common.

님

 $\overline{}$

Thank You!

https://c2smarter.engineering.nyu.edu/

C2SMARTER Connected Communities with Smart Mobility to Equitably Reduce Congestion Department of Civil & Urban Engineering Center for Urban Science + Progress (CUSP) @ New York University (NYU)

Contact: suzanaduran@nyu.edu

ГЛ

c2smarter.engineering.nyu.edu

