Exploratory data analysis and modeling of public building construction in New York City

Culture + Data — December 14, 2022

Sara Venkatraman

Cornell University, Statistics and Data Science skv24@cornell.edu

Data overview

The DDC maintains a database of ~170 attributes of ~8000 public building and infrastructure projects in NYC from the last 35 years

Project phases:

Initiation \rightarrow Design \rightarrow Construction procurement \rightarrow Construction \rightarrow Closeout

Project ID	Borough	Phase	Phase Start	Phase End	Project Type	 Budget	Sponsor	Private Funding	Demolition
227Duffield	ВК	Design	7/16/2021	10/31/2021	Structural Work Steel	 \$ X ₁	DCAS	0	NA
227Duffield	ВК	Construction	12/1/2021	2/28/2023	Structural Work Steel	 \$ X ₂	DCAS	0	NA
PV788-REN	MN	Construction	2/1/2018	5/30/2018	Misc.	 \$ X ₃	Cultural Affairs	1	0
ACEDOS501	Citywide	Construction	8/11/2015	4/8/2016	Misc.	\$ X ₄	DCAS	NA	NA
AGX001LC	BX	Initiation	4/21/1996	8/21/1996	NA	\$ X ₅	Aging	0	1

- Our focus: Analyzing construction duration for public buildings
- Challenges: Identifying relevant data (projects + variables), missing values

Project types

Projects are primarily divided into:

- Interior renovations (38%)
- Exterior renovations (20%)
- Miscellaneous (20%)
- Major rehabilitation (16%)
- New construction (6%)

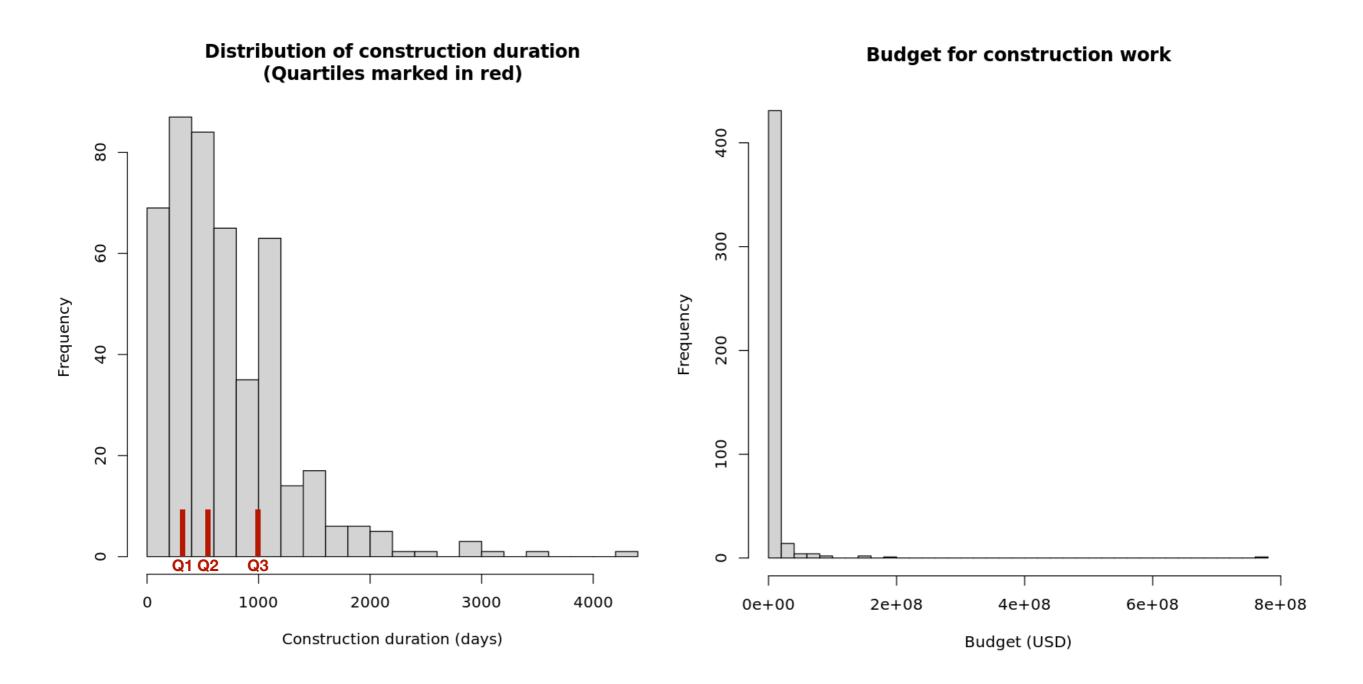
Within these, we can have:

Project type	Proportion of projects				
Exterior roof replacement	10.8%				
HVAC upgrade/replacement	10.6%				
Fire alarm upgrade	8.7%				
Fuel tanks	7.8%				
Electrical upgrade	7.3%				
Exterior façade renovation	7.1%				
Boiler upgrade	2.1%				
Window replacement	1.8%				
Interior plumbing upgrade	0.9%				
Fire sprinkler upgrade	0.5%				
	•••				

Cluster analysis

- **Objective:** try to automatically identify variables along which construction projects group together
- Methodology:
 - Apply hierarchical clustering algorithm to filtered dataset of public buildings projects in "construction" phase
 - Examine the projects in each cluster: in what ways are they similar?
- Findings: Groups formed around project type, program unit, boroughs
 - E.g. courthouse projects in Manhattan and Brooklyn with larger budgets
 - E.g. health department projects across all boroughs
 - E.g. interior renovations projects sponsored by DCAS
 - E.g. interior and exterior renovations on libraries sponsored by NYPL
 - However: within-cluster variance in construction duration remains high

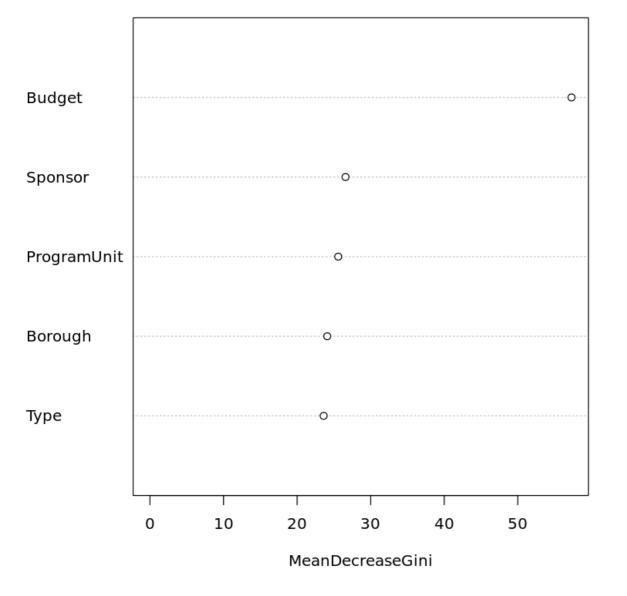
What influences construction duration?


- **Correlations** between construction duration and other attributes (budget for each phase, presence of hazardous materials, demolition required, density of surrounding area, unique safety requirements) Were fairly weak
- Multivariable linear regression models of construction duration as a function of other attributes indicate:
 - **Construction budget** has a statistically significant impact on duration (is budget an indicator of project *complexity*?)
 - Project type also has a significant effect: new construction requires most time, exterior renovation requires least
 - Impacts of **program unit** and **sponsoring agency** are less clear (some significant differences between program units, e.g. courthouses require more time than libraries)
 - **Borough** also has an unclear impact on construction duration, but **citywide projects** take significantly longer

Towards modeling construction durations

Conclusions from previous analyses:

- Several variables seem predictive of construction duration
 - Construction budget (and potentially budgets of other phases)
 - Program unit and sponsoring NYC agency
 - Type of project (at level of interior, exterior, or new)
 - Location (borough-specific, or citywide)
- However: these features may affect duration in complex, nonlinear ways Predictive accuracy from a small number of attributes may be limited; there is a tradeoff between accuracy and interpretability of models.


Towards modeling construction durations

Modeling process

- Split dataset of public buildings into training (75%) and test (25%) sets
- Construct random forest model of construction duration:
 - Predictors: budget, project type, program unit, sponsor, borough
 - Two possible models:
 - Regression model: predicts construction duration in days
 - Classification model: predicts the duration interval to which a project belongs (intervals pre-defined by quantiles)
 - Classification error was highest for mid-length (~ 1.5 3 years) projects, so separate models were constructed for short-term and long-term projects to improve accuracy

Modeling process

Measuring variable importance

Potential extensions to modeling process:

- Transformations of highly-skewed continuous predictors, and revised grouping of categorical predictors
- Expanded set of predictors with external data sources:
 - Population density
 - Traffic density
 - ZIP codes
- Quantitative measure of project complexity
- Missing data analysis/imputation