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1 Project Introduction

1.1 Background

This project is conducted with the primary datasets provided by the Project
Controls Unit at NYC Department of Design and Construction (DDC). The project’s
objective is to delve into the predictive analysis of construction project delays and
their potential relation to cost in New York City using advanced machine learning
and Natural Language Processing (NLP) techniques. Our methodology aligns with
the DDC’s project lifecycle as shown below, which includes distinct phases: Planning,
Design, Bid, and Construction. Each phase represents critical junctures where predictive
analytics can yield insights to mitigate risks of delays and manage project timelines.
The construction phase, which is our project’s focal point for risk management analysis,
includes Pre-Construction, active Construction phases, Substantial Completion, Project
Close-Out, and Final Completion stages. The predictive tool developed in Python will
serve as an analytical instrument for the Construction Culture and Data Working Group
and the Town+Gown program, providing them with a model to foresee and manage
project delays. The final outcome of this project aims to enhance decision-making
processes and improve the efficacy of construction project management within the city.

1.2 Problems Statement

The primary focus is the development of risk management tools. This tool aims to pre-
dict and quantify the risk of delays, drawing on historical data such as project phase,
location, and narrative descriptions from the Project Control’s archive of risks and de-
lays. This will enable more informed decision-making and proactive mitigation strate-
gies. While not the main focus, the secondary objective involves laying the groundwork
for a predictive cost estimation tool.

1.3 Existing Work

Earlier studies of DDC construction projects have laid the groundwork for data-
driven decision-making. However, the dataset underpinning our project is a novel com-
pilation for a relatively short time period, which presents a unique opportunity as well
as a challenge. The time limitation and new nature of the data mean that there is a
paucity of directly relevant precedents or studies to draw upon. This gap underscores
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the innovative aspect of our work, as it will contribute original insights and pave the
way for future research in this area.

1.4 Overall Approach

We have access to three datasets for our project: the delay dataset, the portfo-
lio dataset, and the cost dataset. Our approach to this project can be divided into 3
parts/stages: a thorough Exploratory Data Analysis to get a deeper understanding of
the datasets, predictive modeling, and NLP techniques to understand the substantial
description text data.

For EDA, we aim to visualize and analyze 3 datasets respectively. For the delay
dataset, we want to understand aspects such as how delays are distributed among dif-
ferent boroughs, how delays are spread when grouped by individual project types, the
visualization of the delay length distribution, and how delays vary over a period of time.
For the portfolio dataset, we are interested in the connection between delay incidents
and the type of sponsor agency that can serve as a proxy for project type. In terms
of the cost dataset, we want to understand how labor, material, and equipment costs
are distributed for every unit. Hence, we will plot and analyze each of these insights
correspondingly.

With the goal of managing risks, delays, and costs, there are three predictive
models that we want to build. First, the delay duration predictive model since delay
duration is substantial in risk management and also explicitly relates to time where
there could be associated increases in costs. Secondly, the delay category predictive
model. This is designed to identify potential risks across different construction phases.
Lastly, the delay prediction model. Here, we’ll use the combined dataset to develop a
predictive framework designed to forecast possible delays in new construction projects
in New York City.

Finally, since there is a sufficient amount of text data involved in our dataset,
we applied NLP techniques and analysis. This part is composed of 2 main aspects.
Initially, they are model-led features. We examined the NLP-related features that had
already been incorporated into our models. Subsequently, we explored deeply into the
topic modeling process by which we utilized the descriptions of delays for two main rea-
sons: firstly, to gain a more comprehensive understanding of the over 4,000 delays for
NYC agency mentors; secondly, to reveal which factors mentioned in the text have an
impact on risks, providing valuable insights for future studies on what comprehensive
data to gather.

2 Dataset and Exploratory Data Analysis

2.1 Source and Overview

We have access to three datasets for our project: the delay dataset, the portfolio
dataset, and the cost dataset. The delay dataset comprises 13 columns, predominantly
featuring categorical variables. These include details such as the project’s borough,
type, delay start and end dates, and the phase of delay impact. A total of 754 unique
projects are associated with delay text. Given that the number of unique project IDs
is significantly less than the variety of delay descriptions, it’s reasonable to infer that
multiple projects experience more than one type of delay incident.
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The portfolio dataset consists of 5,353 rows and 25 columns. The majority of
these columns offer additional date-related information for each project, such as pro-
jected and actual start dates, as well as projected project closeout. This dataset also
enriches our understanding by including categorical columns like benchmark status,
project sponsor, and the current project phase.

The cost dataset, comprising 42618 rows and 13 columns, presents detailed cost
information for each construction project. Notably, the ’activity’ column suggests that
individual projects may have multiple activities, leading to potential duplication of
project IDs. The dataset includes columns such as Labor UnitCost, Equipment Unit-
Cost, Material UnitCost, etc. However, it’s important to note that the cost columns are
presented as string objects, which requires further preprocessing to convert them into
numerical values.

2.2 Exploratory Data Analysis

2.2.1 Delay Dataset EDA

The bar plot depicting the total number of delay incidents across different bor-
oughs in New York reveals insightful patterns. Notably, Brooklyn and Manhattan
emerge as the focal points of delays, with frequencies of at least twice as high as the other
boroughs. Considering that Brooklyn and Manhattan are the two most densely popu-
lated boroughs in New York, this observation suggests a potential positive correlation
between the intensity of human activities and the occurrence of delays in construc-
tion projects. We applied methods similar to those for categorical variables other than
borough, which yielded some interesting results. For delays across division distribu-
tion, 25% more delays occur for public building project types than for infrastructure
project types. In terms of the delay category, we observed a major reason for the delay
is construction conditions, which can be roughly understood as unexpected events or
conditions during construction.
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The boxplot provides a clear depiction of the distribution of delays grouped by
projects. Most projects are impacted by a relatively moderate number of delays, typ-
ically falling within the range of 15 to 20 incidents. Only a few projects are impacted
by more than 50 delays. We identified an outlier, a single project that experienced over
100 delays. This outlier adds a compelling dimension to the analysis, prompting further
exploration into the factors contributing to such an unusually high number of delays in
that specific project.

The histogram above shows the percentage distribution of all observed consecutive
calendar days (CCDs). With the y-axis as the percentage (y-axis) and the x-axis as the
number of days the delay lasts, we can observe that the percentage roughly follows
an exponential decay. It’s quite right skewed, indicating that most of the CCD values
clustered around the lower end of the distribution, which also implies that the mean is
largely influenced by the presence of higher values in the right tail.
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We further applied several facet wraps, which yielded more exciting results. The
above is subdivided by borough on CCDs. It is apparent that even divided into bor-
oughs, almost each of them still roughly follows a right-skewed, exponential distribution.

When it’s subdivided by delay category, from the previous analysis that the two
major categories of delays are construction conditions and external environments, we
would expect that they should follow the overall trend since they constitute the cen-
tral part of delays. However, although construction conditions follow our expectations,
the external environment’s impact follows a more linear rather than exponential delay.
This might be the natural distribution of weather conditions in a linear decay man-
ner. Similar phenomena also appear when we device the data by delaying the impacted
phase.

Additionally, we are interested in the trend of the number of ongoing delays over
time. The line plot indicates a relatively low and uniform number of delays from around
2004 to 2016, which might be due to a lack of data, records, or a naturally smaller num-
ber of projects considering the projects from the last decade. There is a gradual increase
in delays from 2016 to 2020, potentially due to evolving project complexities or external
factors. Then, we observed a huge spike, almost a vertical ramp, up around March
2020, which aligns with the time of the COVID-19 outbreak. From 2021 onward, the
number of delays drops, possibly reflecting less strict lockdown policies. Starting in
2024, the number of delays decreased further down to the 2004-2016 level, with many
being projected delays (future projects).

We then took a glance at an aggregation of multiple pairs of 2 categorical variables
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on the mean of CCD through heatmap, which can offer an insight into which category
has a specifically high delay.

In the initial heatmap, we made an interesting observation regarding the distribu-
tion of CCD across different boroughs. Notably, the boroughs ”Bronx” and ”Brooklyn”
exhibit relatively lower CCD values for both construction divisions, whereas all other
boroughs display a notable imbalance. For instance, ”Citywide” and ”Manhattan”
demonstrate higher average CCD values in the context of public building project types,
while ”Staten Island” stands out with an exceptionally elevated CCD in the context of
infrastructure project type.

Moving on to the second heatmap, which pivots the data by borough and the
phase impacted by delays, we uncover a consistent pattern. Across all boroughs, there
is a general trend of lower CCD values during the construction phase compared to other
project phases. Conversely, during the closeout phase, there is a marked increase in
CCD, which aligns with our expectations. Notably, ”Staten Island” particularly stands
out with a significantly elevated CCD during the closeout phase.

2.2.2 Portfolio dataset EDA

In the portfolio dataset, we are curious to know whether there are connections
between the delay incidents and each sponsoring agency as a proxy for a particular
building or infrastructure project type. The barplot below depicts the percentage of
delayed projects based on project types by sponsor agency. While several project types
stand out for different proportions of delay, further analysis is necessary to understand
these preliminary observations.
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2.2.3 Cost Dataset EDA

In the cost dataset, every engineer’s estimate (EE) unit cost is composed of labor
cost, material cost, and equipment cost. This horizontally stacked bar plot is made in
the interest of how these three parts are distributed for every different unit. We observed
that the cost of equipment percentage is almost insignificant for all units. Labor cost
is the major composition for every unit, with ‘HR” having labor cost over 90 percent
being the most remarkable one. For unit ‘TON’, labor cost is under 50 percent, which
makes sense since ‘TON’ is a large, heavy-weight unit that doesn’t require much human
labor effort, so material cost is the most composition instead.

2.3 Preprocessing

During the data preprocessing phase of our study, we implemented standard pro-
cedures, including removing duplicates and imputing missing values, to maintain dataset
integrity. We further refined our portfolio dataset, which contains extensive project in-
formation, by retaining only projects that had reached the close-out phase, as we could
not predict future delays. This dataset was then merged with the delay dataset using
Project IDs, resulting in a new binary column indicating the delay status of each project.
Additionally, we excluded projects that began before January 1, 2020, since compre-
hensive delay data was only recorded starting from this date, ensuring our analysis was
based on complete and accurate records.
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3 Prediction Models on Risk Management

With the goal of managing risks and delays, there are three predictive models
that we have implemented during our project: delay duration prediction model, delay
category prediction model, and delay probability prediction model.

3.1 Delay Duration Prediction Model

3.1.1 Motivation and Introduction

The delay duration caused by risks is a critical aspect of risk management, as it
directly relates to the time when the construction is underway, and delays can have cost
impacts. Therefore, the first predictive model we implemented is the Delay Duration
Predictive Model. Initially, we would like to predict the delay days to the exact day,
such as 103 days, as a single numerical value. After that, we shifted our prediction
objective from an exact day to predicting a range due to low accuracy.

3.1.2 Feature Engineering

For this model, we primarily utilized the DDC Project Control’s delay dataset. It con-
tains several directly usable features, such as project division (infrastructure or public
building) and borough (Manhattan, Brooklyn, etc.). In addition to these features that
we can directly incorporate into the feature engine, we also extracted more time-related
and NLP-related features.

Based on the background knowledge of construction projects and corroborated
by the time series graph we plotted, we observed a clear seasonality in delays. There-
fore, we added the season as a new feature. Additionally, from our distribution graph,
we noticed a significant peak in the number of delayed projects from the months follow-
ing January 2021, suggesting that the pandemic period was one of the crucial factors for
delays. As a result, we added a binary feature indicating whether the project occurred
during the pandemic.

Next, we conducted an NLP-related analysis. There’s a column in our datasets
named delay description, which is a lengthy text. Based on this column, we undertook
NLP analyses. We performed sentiment analysis, Term Frequency-Inverse Document
Frequency (TF-IDF), and Latent Dirichlet Allocation (LDA) analysis, subsequently in-
tegrating these three features into the model. The following image shows an example
of LDA analysis.

3.1.3 Model Methodology

We tried numerous mainstream machine learning models, such as ordinary least
squares regression, random forest, etc.

At first, we tried to predict the delay days to the exact day, such as 103 days,
as a single numerical value. At this stage, we primarily utilized regression models. We
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employed ordinary least squares regression, random forest regression, and support vec-
tor regression. From the results, the best-performing model had an r-squared value of
only 0.092, which is a highly unsatisfactory outcome. At this phase, we thought that
the quantity and quality of our datasets were insufficient for our prediction model to be
precise to the exact day: we had only about 4,000 rows of data, 735 projects, and seven
columns that could serve as features.

After that, we shifted our prediction objective from an exact day to predict-
ing a range. Based on historical data, we derived six quantiles: 0-0.2, 0.2-0.4, 0.4-0.6,
0.6-0.8, 0.8-0.95, and 0.95-1. Our goal then became predicting within which of these six
quantiles a project’s delay days would fall. As a result, we transitioned from using re-
gression models to classification models: this became a six-class classification problem.
We experimented with multi-nomial naive Bayes, K-nearest neighbor(KNN), support
vector machine(SVM), random forests, and adaboost trees.

3.1.4 Results and Visualization

In the end, we retained the random forests model, which yielded the best per-
formance, and did some optimization. Our optimization can be mainly split into two
parts: tuning based on the model itself and tuning the feature engine. In the model-
based tuning, we adjusted parameters such as maximum depth, number of estimators,
and maximum features, ultimately selecting the best parameters. In the feature engine
tuning, we introduced new features based on analysis and background knowledge, as
described above.

At this stage, our six-class classification model achieved a final accuracy of 54.3%.
The following chart shows precision, recall, and F1 scores for each classification quantile.

From the above chart, we can observe that the prediction precision for quantile 1
is the highest, at 77%. The recall score for quantile 5 is the highest, at 69%. Therefore,
overall, the predictions for quartiles 1 and 5 are currently the best performing. This
model is low-performed, and we think it’s primarily because of limited data volume in
terms of both project samples and features. Regarding this, we’ve done some posterior
analysis and provided feedback to NYC agency mentors on future possible data synthesis
strategies, which is illustrated in later sections.

3.2 Delay Category Prediction Model

3.2.1 Motivation and Introduction

This model identifies potential risks across different construction phases, such as
in the sponsor and design phases. Each project could have several risks occurring dur-
ing the whole construction. In varying stages, distinct types of risks can occur, leading
to various degrees of delays and associated escalating costs. The dataset includes nine
categories of delays, such as scope management and stakeholder management. Analy-
sis from the EDA heatmap of delay categories reveals a distinct distribution of delay
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types across each construction phase. This observation is corroborated by background
information from NYC agency mentors, confirming the fact that each phase is charac-
terized by different risks with varying probabilities. For instance, scope management
issues typically arise in the earliest stages. Consequently, after consultations with the
mentors, developing a model for predicting risk categories would be essential to effective
risk management.

3.2.2 Feature Engineering

In addition to the newly extracted time-related features of delays in the previous
model, such as the season when the delay occurs, we have also merged new features from
the data portfolio dataset. As mentioned in the model introduction, each construction
phase has different probabilities for various delay categories. Therefore, phase-related
factors have been incorporated into the engine, such as the month and season when the
design phase and construction phase begin. Additionally, insights from the risk category
and background information indicate that certain risks, like stakeholder management,
can also probably be associated with specific sponsor agencies as proxies for the project
type. Consequently, the sponsor column from the data portfolio dataset, including
program unit, activity, and other background-related features, has been merged into
the engine for different risks.

3.2.3 Model Methodology

This model remains a classification model. We initially attempted multinomial
logistic regression, as theoretically, with limited data volume in terms of both projects
and features, a simpler model might yield better accuracy. We also tried mainstream
machine learning models, including SVM, random forests, and AdaBoost trees. How-
ever, the final outcome still showed that the random forest yielded the highest accuracy.

3.2.3.1 Model Tuning and Feature Selection
We commenced model tuning, with feature selection being the most crucial as-

pect. As mentioned earlier, features like sponsor agencies as proxies for the project
type, each with over 50 unique values, resulted in more than 50 dummy variables in
the model due to their categorical nature. The feature importance analysis from the
random forest indicated that some dummy variables had very low importance values,
with some even at zero.

We employed three methods to identify important features. The first was using
a correlation matrix, but perhaps due to the abundance of features (total 145 features
including many dummy variables), we couldn’t find any feature with significantly high
or noticeable correlation values with the risk category.

The second and third methods involved selection based on the importance of
random forest features. One approach was a straightforward selection of the top N
important features. With 145 features in total, including many dummy features, we
adjusted the value of N to select the top N features and then reintegrated them into
the model to observe any improvement in accuracy. This approach also involved choos-
ing features exceeding a certain importance value threshold. The other method added
an additional step of considering feature dimension stratification, selecting the top N
dummy features within each feature category or those exceeding a certain importance
value.
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3.2.3.2 Possible Relationship within Risk Categories and Correlation Al-
gorithms

Prior to model implementation, we also contemplated the possibility of interrela-
tionships among the risks, such as the occurrence of one risk potentially increasing the
likelihood of another, given that multiple delay categories often occur within a single
project. After consulting with our mentors, we agreed this was a plausible scenario. To
verify this hypothesis, we employed correlation-related algorithms. The following figure
presents some of the interrelationship information obtained using the Apriori algorithm.

Antecedents: These are the precursor delay categories in our projects. Conse-
quents: The delay categories that often follow the antecedents. Support: Indicates how
often the antecedent-consequent combination appears in our dataset.

The chart displays the top 9 antecedent-consequent pairs with the highest support
values, revealing that all 9 consequents are “External Environment.” The data also in-
dicates that the “External Environment” is the most common type of delay, comprising
64.5% of cases. Therefore, its high frequency may erroneously appear to strengthen
its association with other risks. Nevertheless, the outputs show that 8 antecedent-
consequent pairs have a support value greater than 7%. Given that there are just over
700 projects, a 7% probability is significant enough to warrant analysis. Furthermore,
5 pairs exceed 10%, with two pairs surpassing 15%.

Based on the Apriori algorithm and our mentors’ expert understanding, we believe
that risk interrelationships do exist among certain risk categories. Consequently, these
8 antecedents can become important features in the model for predicting the likelihood
of the consequent risks occurring.

3.2.4 Results and Visualization

The following graph displays the overall accuracy of the model as well as the
predictive accuracy and recall scores for each of the nine risk categories.

The weighted accuracy of the model is 52%. Given the limited data volume, this
result has already surpassed our and our mentors’ expectations. It is evident that there
is a significant variance in the accuracy of risk classification. The precision for construc-
tion conditions risk reached 85%, with a recall of 75%, while the accuracy for other risks
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was as low as 13%. We attribute this to the composition of the dataset’s columns.

Many inputs in the columns are related to construction conditions, whereas, for
risks with lower accuracy, such as stakeholder management, the related inputs might
only be the sponsor’s name. However, as observed in the correlation matrix, the pres-
ence of certain sponsors does not significantly indicate this type of risk. Moreover, with
over 50 different sponsors, the data becomes more dispersed, making it challenging to
validate this conclusion. With other risk categories, for example, resource management,
there are no direct inputs related to it. From the EDA and background information,
only some indirectly related factors, such as the borough location and activity, exist.
Hence, in the absence of these direct and effective inputs, the model shows poor perfor-
mance in accuracy and recall for these risks.

Based on this observation, we contemplated a potential future roadmap: with
professional knowledge of these risks in the industry, can we integrate more compre-
hensive datasets, combining data from various groups? For example, resource-related
data are primarily managed by a group in the department, or integrating data from the
stakeholder side, such as possible reasons for their induced delays or their resources in-
formation, could be beneficial. Integrating data from various groups would undoubtedly
significantly improve the risk prediction model.

3.3 Delay Probability Prediction Model

3.3.1 Motivation and Introduction

For this part of our project, we aimed to establish a predictive framework that an-
ticipates potential delays in new construction projects within New York City. Utilizing
the integrated dataset that merges portfolio and delay data, we can gain insights into
patterns and correlations that might signal impending project setbacks. The dataset
initially comprised three categorical predictive variables: division, program unit, and
sponsor. We also enriched it with derived features to encapsulate the circumstances of
the COVID-19 pandemic. The primary goal was to leverage this enriched dataset to
forecast delays in the construction phase. Given the current limitations of our dataset,
our model serves as an initial step towards a more comprehensive predictive system. It is
designed to evolve and become more refined as additional data is integrated, embodying
a dynamic tool that adapts to new information and improved methodologies.

3.3.2 Feature Engineering

In response to the substantial impact of the COVID-19 lockdown observed during
our EDA, we introduced two new binary variables to our project dataset: ’ended before lockdown’
and ’started after lockdown.’ These variables are self-explanatory by their names.
’ended before lockdown’ indicates whether a project reached its close-out phase prior to
the onset of the COVID-19 lockdown in New York City, whereas ’started after lockdown’
denotes whether a project commenced subsequent to the initiation of the lockdown mea-
sures. The inclusion of these variables was instrumental in quantifying the lockdown’s
influence on project timelines, allowing for a more nuanced analysis of pandemic-related
disruptions.

3.3.3 Model Methodology

Prior to delving into the methodology of our predictive classification model, it is
imperative to acknowledge a notable limitation regarding model tuning. The merged
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dataset at our disposal comprises merely 97 entries, a figure insufficient to capture the
broader spectrum of scenarios. This limitation in data volume may potentially introduce
significant bias, diminishing the model’s ability to generalize effectively. Consequently,
the insights derived from this model should be interpreted as preliminary guidelines and
references. Future refinements and enhancements to the model will likely be necessary
as more comprehensive datasets become available.

As mentioned before, this model aims to predict whether a project will be de-
layed or not during the construction phase according to the categorical information we
acquire as the project is initiated. In our pursuit of an optimal predictive classification
model, we experimented with various algorithms and methodologies. Ultimately, we
selected the Catboost model, renowned for its effectiveness in handling categorical data
and its robust performance with limited datasets. To address the challenge posed by our
dataset’s imbalance, we also employed the Synthetic Minority Over-sampling Technique
(SMOTE). SMOTE is particularly beneficial in enhancing minority class representation,
thereby mitigating biases towards the majority class. However, it is essential to note
that due to the limited size of our data, we were unable to substantiate our choice
quantitatively with extensive empirical results since the results are easily overfitted or
biased. Theoretical advantages of the Catboost model, such as its built-in handling of
categorical variables and gradient boosting approach, combined with SMOTE’s proven
efficacy in addressing class imbalance, formed the basis of our decision. As more data
becomes available, we anticipate further validation and potential adjustments to our
approach, aligning with the evolving dataset characteristics.

3.3.4 Results and Visualization

The following result shows the test set metrics of our constructed pipeline. As we
can observe, the test metrics reveal that our Catboost model exhibits a high level of
accuracy at 85%, reflecting a solid predictive performance for the negative class. The F1-
score for the positive class, however, suggests an opportunity for model enhancement, as
it currently stands at 0.00. This highlights the model’s potential for further refinement,
especially in the context of our constrained dataset. We anticipate that with a larger
dataset, the model’s ability to discern across different classes will improve, leading to
more balanced and representative performance metrics.

We also produced the feature importance plot of the Catboost Model. We can ob-
serve that the Program Unit Corrections emerges as the most influential feature, holding
the highest importance score and potentially playing a pivotal role in the model’s predic-
tive power. The feature with the second highest importance is ’started after lockdown,’
which aligns with our understanding of the COVID-19 lockdown’s impact on project
timelines. There are other features, such as the building or infrastructure typology,
that suggest considerable importance and require additional analysis and more data
that becomes available to predict outcomes.
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In conclusion, our Catboost model establishes a preliminary pipeline for project
outcome prediction. It’s important to note that the model’s current parameters and
identified feature importances are initial insights that are expected to be refined with
additional data. Our goal is to provide a scalable framework that will enhance accuracy
and reliability as further data becomes available for analysis.

4 NLP Analysis and Topic Modelling

In our dataset, there is a substantial amount of text data about delay description,
which makes NLP analysis a focal area of our study. The NLP-related aspects can be
primarily divided into two parts: one for predictive model features and the other for
topic modeling.

Firstly, we will discuss which NLP-related features have already been employed
in our model. Secondly, we delve into topic modeling for two primary reasons: firstly,
to help with mentors’ need to get a comprehensive and summarized understanding of
delay incidents; secondly, as mentioned in the model section, there is a future need to
amalgamate data from various groups. Thus, we can utilize the descriptions of delays
for posterior analysis to assist in identifying which data are imperative to be integrated.

4.1 Model features

In the modeling section, we mentioned extracting certain information from the
context data to serve as features for our model. This primarily involves sentiment anal-
ysis, TF-IDF, and LDA analysis. We incorporated sentiment as a feature for predicting
the duration of delays, hypothesizing that more negative sentiments might lead to longer
delays. TF-IDF and LDA analysis can be understood as clustering features. This in-
volves categorizing projects and delays into N topics to assist in predicting the duration.

From the accuracy and feature importance of models, it is evident that these
NLP-related data have contributed to an improvement in performance, although the
increase is not significantly high. Regarding this, we speculate that the existing NLP
packages may not sufficiently align with the specific context of construction in New
York. Thus, a potential future direction could involve building upon current NLP pack-
ages and using deep learning algorithms, allowing fine-tuning according to our specific
construction scenarios and dataset. We had considered attempting this, but the current
text data pertains to delay descriptions, which are summaries made after a delay has
occurred. Therefore, using this to train the model is ineffective, as these descriptions
are conclusions and not information we can obtain for new projects (except in the risk
duration model, since even after a delay’s occurrence, its exact duration remains uncer-
tain, which is why we only used delay description-related NLP features in the first risk
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duration model).

However with delay descriptions, we can still utilize them for posterior analy-
sis to help future data collection, which will be elaborated in the next section.

As mentioned in the model section, if we can obtain comprehensive preliminary
data from various groups, such as preset descriptions about project type, stakeholders,
resources, quality, etc., for new projects, a fine-tuning process based on the current NLP
predictive model could be highly beneficial. For instance, we could use Bidirectional En-
coder Representations from Transformers (BERT) as a base word encoder model since
it’s potentially the best base for fine-tuning classification tasks. On the head layer of
BERT, we could build a supervised classification neural layer tailored to risks, helping
to align extracted topics better with delay categories or probabilities. Alternatively, we
could also train the model so that text embeddings of the same risk type have closer
cosine similarity. We have also provided feedback on these aspects, and our NYC agency
mentors have adopted our suggestions regarding data integration.

4.2 Topic modeling

This section is primarily focused on topic modeling. Through topic modeling,
we can identify prevalent themes and topics within the delay descriptions, which can
highlight recurring issues or factors contributing to delays. The rationale behind these
analyses stems firstly from gaining a more comprehensive understanding of the over
4,000 delays for NYC agency mentors. Secondly, it’s also a posterior analysis that helps
inform future data collection strategies. By recognizing the influential factors of delay
mentioned in these text data, mentors and groups can tailor their data collection efforts
to capture more relevant and detailed information, potentially improving risk prediction
and management in future models and projects.

4.2.1 Entity Extraction

We initiated our analysis with the named entity extraction. The following image
displays the frequency of some entities and examples in our dataset.

These entities, as mentioned earlier, assist in providing a more comprehensive
understanding of delays. For example, we can identify high-frequency locations where
risks occur and laws that impact construction.

For future projects, this allows us to purposefully observe and collect informa-
tion related to high-frequency entities. For example, we can see that “ORG” (Organi-
zation), “GPE” (Geopolitical Entity), and “FAC” (facility) entity have relatively high
frequency, for new projects,is that possible to collect data on these entities and put
them as features in prediction models.
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4.2.2 N-gram frequency

This part of NLP analysis involves n-grams, which can be understood as extract-
ing and counting high-frequency words or phrases.

A critical aspect of this analysis is word cleaning, which is necessary due to indi-
vidual word usage habits or contexts. This involves custom mapping singular and plural
forms of the same word together, lemmatizing, and mapping nouns. and verb forms,
artificially removing high-frequency yet insignificant words, such as ’due’, ’work’, and
some custom stop words, etc.. Removing words is particularly relevant for 2 and 3-gram
analysis, where we examine the word preceding or following a target word because it
can make adjacent words more meaningful and relevant.

We began with a 1-gram frequency analysis. The following image illustrates a
word cloud of single high-frequency words.

We retained words with a frequency greater than 50 after cleaning, a total of 195
words. After discussion with mentors, we keep around 30 words. Regarding these 30
words, we further extracted 2 and 3-gram frequencies to gain a better understanding of
delays. The following image shows an example of 2 and 3-gram frequency extraction.

Similar as described before, it’s also helpful both for a comprehensive understand-
ing of delays and future data collection, for example, “utility” is highly frequent, so can
we have a specific column about utility for future projects?

4.2.3 Feature distribution after N-gram frequency

Finally, based on the 2 and 3-gram frequencies, we further narrowed down to
about 10 high-frequency phrases that are significant for risk analysis. We conducted an
EDA-like analysis: when these phrases appear, what is the distribution of other features
of the project? For instance, what is the project division distribution when an ’emer-
gency order’ occurs? Is ’utility interference’ more likely to occur in certain construction
phases? Understanding these distributions is immensely helpful in comprehending the
risks involved.
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The above table is like the heatmap of the distribution of “Division” features
across these keywords. We observed that ‘direct interference’, ‘utility interference’, and
‘con edison’ appear mostly in infrastructure. Notably, ‘con edison’ appeared 412 times.
Considering Con Edison is an electricity, gas, and steam provider to NYC, this indicates
that during infrastructure construction, utility-caused delays are common.

We got similar tables for the other features, like “Delay Impacted Phase”, and
“Borough”. For example, for “Borough,” we also observe that “utility” and “interfer-
ence” are frequent for “Manhattan” and “Brooklyn”.

Therefore, after these results, we can indeed consider collecting specific columns
about utility and interference, or even if the project highly relies on “con edison” or
not.

The above table is the ‘parent project type’ feature distribution across these key-
words. We observed that a significant proportion of these keywords fall into the null
column, which suggests that many of these projects lack a parent project type. There-
fore, we can try to improve this parent project-type data for future projects. Moreover,
according to the background information, issues that affect infrastructure projects, as
shown in the first table, should also affect public buildings. However, it’s interesting
that they didn’t occur for sewer, highway, and green infrastructure, where we would
expect them to. Thus, specific to these three parent project types, we can conduct
further analysis to discover which factors cause their delays so that it can be helpful for
future projects in these categories.

5 Summary

5.1 Conclusion

In conclusion, our project with the NYC Department of Design and Construction
marks an initial foray into harnessing machine learning and NLP to enhance construc-
tion project oversight. Despite the dataset’s current constraints, the application of
these analytical tools has provided a valuable and predictive perspective on project de-
lays from multiple aspects. The incorporation of NLP has been particularly insightful,
providing a deeper understanding of the textual data associated with delays, enriching
the predictive model, and contributing to a more informed risk management strategy
within the existing framework.

5.2 Future Roadmap

The main future roadmap is to continue NLP analysis on delay descriptions to
identify factors influencing delays mentioned in the text, facilitating future data collec-
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tion and integration. After the final presentation next week, we will follow up on this
process with mentors. The current plan includes:

As mentioned earlier, many expected terms related to sewer, highway, and green
infrastructure did not appear. We will continue researching to identify factors impacting
them. Analyzing the distribution of project types (50+ project types) when key phrases
occur. Probably incorporate two additional steps: ”topic coherence” and ”dependency
parsing” to achieve a better understanding of delay summaries.

5.3 Ethical considerations

In the realm of utilizing New York City administrative construction data for our
data science project, identifying and addressing potential ethical issues is imperative.
One key concern is the safeguarding of privacy and confidentiality, particularly in han-
dling sensitive construction information. To mitigate biases within the dataset, we im-
plemented thorough checks and corrections during the analysis process. Additionally,
obtaining explicit consent for data usage is a crucial step in ensuring ethical practices.
By incorporating these measures into our approach, we proactively work towards resolv-
ing and avoiding potential ethical pitfalls associated with the use of this construction
dataset.

18


