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Earth Engineering Center (EEC)

The mission of the EEC is to:

e Conduct research and education on the use of materials and energy
resources for sustainable development, with preservation of land and water
resources

* Disseminate this information by means of publications, presentations, and
the web.

The guiding principle is that responsible management of renewable and non-
renewable resources must be based on science, best available technology, and
economics that include "external"™ environmental costs.
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Hierarchy of sustainable waste management
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Venn diagram depicting various economies in green economy

pted from Kardung and Wesseler 2019
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The 9R framework of Circular Economy approaches
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Illustration of material flowchart in the circular economy
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Life cycle stages in the construction

EXTRACTION

FORWATION

&5 COLUMBIA | ENGINEERING

7% The Fu Foundation School of Engineering and Applied Science




Life cycle environmental impacts of Construction and Demolition Waste treated according to different methods

Treatment Global warming potential, kg COze/Mg Primary Energy, MJ/Mg Land Use*, PDFm?a/Mg

Collection 6 100 0.15
Landfill 15 300 0.80
Recycling 2.5 45 0.18

*Potentially Disappeared Fraction [PDF-m?y] of species over a certain amount of m? during a certain
amount of year is the unit to “measure” the impacts on ecosystems. “The PDFm?y represents the fraction of
species disappeared on 1m? of earth surface during one year. For example, a product having an ecosystem

quality score of 0.2 PDFm?y implies the loss of 20% of species on 1m? of earth surface during one year.”
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The pre-demolition waste audit process
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Construction & demolition materials include but not limited to:

Concrete, sione, brick. Gypsum, glass, [errous and non-[errous metals,

wood, asphalt, plastic, railway ballast, paper ashestos,

gravel, rock and other materials

excavated soil,
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600 million tons of C&D debris were generated in the United States in 2018

Nationwide, C&D debris accounts for 25% to 45% of the total solid waste stream

In NYC, C&D accounts for more than 60% of the solid waste stream
* When clean fill materials (concrete, dirt, brick or asphalt) are excluded, C&D in NYC accounts for

about 39% of the waste stream, which is comparable with national figures.

NYC produces 19,500 tons of "fill material®, 13,500 tons of other C&D materials per day

https://www.nyc.gov/html/ddc/downloads/pdf/waste.pdf
https://www.epa.gov/facts-and-figures-about-materials-waste-and-
recycling/construction-and-demolition-debris-material
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https://doi.org/10.1016/j.jclepro.2019.119238

Construction and Demolition Waste composition
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https://doi.org/10.1016/j.resconrec.2018.04.016
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ReSOLVE approach (Ellen MacArthur Foundation)

Regenerate: Encouraging to move the focus from traditional to renewable technologies and
prevent the destruction of ecosystem.

Share: Driving towards increasing the lifespan via efficient maintenance schemes and sharing
the recyclable and reusable resources and assets.

Optimize: Enhancing the efficacy of recycled goods by cutting unwanted wastes via efficient
and green supply chain.

Loop: Providing the required technology to recreate and recycle the wastes.
Virtualize: Dematerializing in both direct and indirect way.

Exchange: Encouraging and enhancing the adoption of innovative construction materials and

newer teCh n Iq ues. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8745857/

lied Science
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Key loops in C&D waste

Closing loops consists of creating a circular flow of resources resulting from the use
phase that are generally considered waste. This is achieved through recycling
processes.

Slowing loops refers to lengthening the use and reuse of a product through actions
such as repair, refurbishment and remanufacture.

Narrowing loops is about reducing the use of resources and maximizing efficiency
in production processes

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8745857/
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Closed-loop recycling of demolition waste

Construction and Demolition Waste

|

\L

v

¥

Organic

Mineral

Metallic

Polymers Timber

Re-Use

— Closed-Loop Recycling

Open-Loop Recycling
— Mixed mechanical
recycling

Open-Loop Recycling
Feedstock recycling

Open-Loop Recycling
Board
Mulch

Open-Loop Recycling
Composting
Anaerobic Digestion

‘—+  Recovery of Energy

-~

Ceramics

Re-Use

Concrete

Closed-Loop Open-Loop Recycling Closed-Loop
Recycling

Recycling

Aggregate

Gypsum

Copper

-

Open-Loop Recycling
Soil Amendment

Re-Use

Closed-Loop
Recycling

&5 COLUMBIA | ENGINEERING

7% The Fu Foundation School of Engineering and Applied Science




Summary of different wastes which can be incorporated as aggregates in concrete.

Material Benefits
Gl Pozzolanic in nature, high thermal conductivity, reduced shrinkage, improved water
ass
absorption, reduced ecological emissions.
Plastics Increased ductility, reduced shrinkage cracks, lightweight concrete.
) Enhanced strength, required water absorption, low specific weight, and high pozzolanic
Ceramics
nature.
Rubber Protection against high temperatures and increase in strength.
c ) Pozzolanic in nature, high thermal conductivity, reduced shrinkage, improved water
oncrete
absorption, reduced ecological emissions.
Coir & Almond Wastes Increased air content, improved mechanical strength and lower air density.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8745857/
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Summary of different wastes which can be incorporated as supplementary cementitious materials (SCMs) in concrete.

Material Benefits

Metal Slag High shear modulus, chemical stability, high strength.

Silica Fume Pozzolanic nature, increased strength.

Rice Husk Ash Enhanced compressive strength and improved water absorption.
Pozzolanic nature, good durability, low permeability, increased mechanical strength,
Coal Ash/Fly Ash o _
reduced the alkali-silica reaction.

Ceramic Wastes Increased strength, reduced permeability of concrete and increased efficiency.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8745857/
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Integration of the identified best environmental management practices into the construction value chain
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Barriers and Challenges in CE for C&D waste

* Policy and Governance

* Quality and Performance

* Information

* Cost/capital

e Perception and culture

* Knowledge, education, and technology availability

* Permits and specifications

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8745857/
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Other possibilities to decarbonize the construction sector

The cement industry alone contributes to about 7% of global CO2 emissions

CaCOj3 + Heat — CaO + COs.

one ton of clinker approximately produces 0.51 tCO2

(1) increasing energy efficiency in both cement and construction industries; and
(2) using alternative fuels (e.g., biofuels, municipal wastes, etc) in cement kiln;
clinker substitution/blended cement; reuse of C&D waste using circular economy

concept

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8745857/
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Clinker and cement production and energy consumption, US
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Energy use by different fuels in U.S. cement industry
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Replacement ratios of fossil fuels with AF in European countries
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Fuels used in cement industry

Fuel Type Proximate Analysis (wt. %, as received) Ultimate Analysis (wt. %, dry basis) Alkali LHV HHV
Moistur| Volatile Fixed Ash MJ/kg MJ/kg
e Matter | Carbon € H N S cl o Na K MMBTU/ton| MMBTU/ton
Wood? g g _ 17.1-225" | 18.6-23.9
(12), (18) 5.6-6.3| 69.5-78.5 | 15-16.1 0.5-8.8 46-51.3 | 5.7-5.8 | 0.07-3.8 | 0.01-0.05 =0 35.4-36 =0 =0 14.7-19.4 16.0-206
RDF®
(4) ~(11), 15.9%-17" 17.5-18.4
(14), (19), 3.7-20 | 71.9-76 | 3.9-13.2 | 10.2-13.8 41.7-50.2 | 4.4-7.8 |0.75-1.65| 0.1-0.76 0.7-1.13 |28.5-36.3| 0-0.93 0-0.37 ) ’ ’
13.7-14.6 15.1-15.9
(20), (21),
(31), (32)
Tires 32356 | 3467373
(15), (16), 0.7-4 | 63.8-68.7 | 24-31.1 2.2-8.2 76.7-89.4 | 7-7.8 0.2-05 0.8-2.2 ~0-0.1 0.4-4.5 0-0.9 0-1.1 ) ' )
28.4-30.7 29.8-32.1
(23), (28)
TDE: N 31.8-36.8 | 335-38.4°
(19), (20) 0.9-1.9| 63.4-64 |30.4-30.7 3.3-4.4 83.8-86.7 6.9 0.3-0.6 1.9-2 ~0 0.9-2.3 n/a n/a 27.4-311.7 28.9-33.1
Pecan Shells 18.2" 19.8
28) 14.6 n/a n/a 2.32 46.84 5.41 0.44 n/a nfa nfa nfa nfa 15.7 171
MBM¢ " "
(22), (23) 1.4-8.1| 64.5-79.7 | 7.2-9.7 | 10.4-283 | 42.1-55.7 | 58-8 | 7.2-89 | 0.05-0.4 0.2 [153-384| 15 03 | 196288 21-306
(29) 16.9-24.8 18.1-26.4
PE® - - 0. - N - - 44.6 44.9"
(20), (24) ~0-0.17| 99.8-100 =0 ~0-0.06 86 14 =0 ~0 ~0 ~0 n/a n/a 38.4 38.7
pvC! 17.17 18.1
(13), (24), ~0-0.2 | 85.9-91 6.3-9 1-7.6 35.9-38 4.4-5 0-0.11 ~0 57 ~0 n/a n/a ) ’
14.7 15.6
(30)
Sewage -
Sludge 5256| 40585 | 5101 | 17.9-295 | 36.4-405 | 47-7 | 08450 | 0106 | =0-1 22 ~0 ~ | 23158 [ 104-175
8.0-13.6 9.0-15.1
(19), (23)
Pet. Coke N N N 335-35.4" | 34.4°-36.2
1), (23) 0.8-1.5| 7.6-10 |88.6-89.6 0.5-1 89.5-92.7 | 2.4-3.7 | 1.2-1.7 1.5-4 =0 1.1-12 =0 =0 28.9-30.5 29 6-31.2
Coald N 25.4-31.8" 26.3"-32.9
(19, 25-27) 1.1-3.3| 23-35.3 |44.2-66.8| 6.4-155 65.3-80.9 | 3.7-5.1 | 1.2-141 0.6-5.5 ~0-0.33 | 5.9-12.5 0-0.03 0-0.19 21.9-27.4 227283




* The waste obtained from C&D activities should be efficiently dealt with and handled such that its
quality is not impaired; therefore, its utilization as aggregates or cementitious resource should
remain feasible.

» Selective demolition should be practiced for hazardous materials, such as tubes, asbestos, etc. The
handling should be efficient so that mixing does not occur, which can cause contamination of
recyclable materials.

* On-site sorting should be practiced such that mixing of waste may be avoided. The waste should be
classified on basis of nature and possible economic benéefits.

* Efficient quality control systems should be enforced with proper check and balance on method of
material recovery, waste acceptance criterion, material properties, and pros and cons of material
utilization in construction activities.

e As the concept of CE in the construction sector is not mature, the local and central governments
should come forward and play their part in enlightening the organizations regarding the ecological,
economic, and social benefits of the CE approach.
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Actions in the different stages of construction

* Adoption of 3R principles of reduce, reuse and recycle is imperative at each stage of the construction cycle as the reduce principle
should be prioritized at both planning and designing stage and procurement stage. Meanwhile, all 3R principles should be utilized at the
construction and demolition stage to ensure the waste generated at this stage will be properly managed.

* At the planning and designing stage, modern construction methods reduce the waste generation. Selecting an appropriate material also
could help reducing the waste generation at this stage. Modular design can promote standardization of building components.

* At the procurement stage, it is important to create awareness among the construction actors on having a proper management of C&D
wastes and at the same time provide sufficient training related to the management of C&D wastes. It is necessary to revise the current
standard form of contracts to ensure a better management of C&D wastes gaining more attention from the construction actors.

* Regulations related to the management of C&D wastes should be enhanced by emphasizing the environmental impacts of poor waste
management.

* During the stage of construction and demolition, site management is critical in controlling waste generation at this stage. Labour’s
attitudes also need to be monitored. Besides that, access to recycling facilities should be increased.

* Planning and designing stage should include “Waste Management Plan” and “Construction Methods”.
* Procurement stage should consider “Awareness and Awards” and “Regulations Enhancement”.
* Construction and demolition stage should include “Effective Management”.
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Thank you very much for your attention!
Thanos Bourtsalas: ab3129@columbia.edu
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