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The Urban Intelligence Lab uses high-resolution, large-scale data and multi-
disciplinary computational methods to advance the understanding of complex
urban dynamics and applied data-driven decision-making for sustainability &
resilience, energy & climate, and social justice.
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Data and computation in the urban domain

[ Urban analytics problem typology ]
Operations [ Policy ] Planning
+  Time-to-event models * Decision support * Forecasting & simulation
= Situational awareness * Program evaluation * Scenaric building & impact
= Targeting for resource analysis
allocation & risk analysis *  Community & citizen
*  Optimization engagement
Organizational complexity
Single agency« » Multi-agency
vy
Citizen participation
Complaint-driven » Procedural
Time horizon
Short-term » Long-term

Kontokosta, C.E. 2021. “Urban Informatics in the Science and Practice of
Planning.” Journal of Planning Education and Research, 41: 382-395.
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Kontokosta, C.E. 2021. “Urban Informatics in the Science and
I Practice of Planning.” Journal of Planning Education and
- Research, 41: 382-395.
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Research areas

"
g/
»
Bias and fairness in data-driven Data for climate action Neighborhood dynamics and Al for city management
decision-making inequality
Advancing energy and carbon Building computational methods to
Uncovering data and algorithmic modeling to enable data-driven Using large-scale mobility and support efficient, equitable, and
bias in urban predictive analytics climate policy and energy efficiency social media data to understand sustainable city operations.
and developing fair and transparent investment decisions for more neighborhood change and
methods for public resource sustainable, resilient, and just community connectedness, and to
allocation. cities. develop privacy-preserving
approaches to geolocational
analytics.
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Data for Climate Action
What is the effect of building morphology on energy use?
LiDAR-’based vs. reported h(ﬁights

3D Model of Empire State Building

Exposed Surfoce Rati

e e A R
https://on.nyc.gov/benchmarkingmap
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Bonczak, B., & Kontokosta, C. E. (2019). Large-scale parameterization of 3D building
morphology in complex urban landscapes using aerial LiDAR and city administrative data.

Computers, Environment and Urban Systems, 73, 126-142.


https://on.nyc.gov/benchmarkingmap

' Data for Climate Action
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Can we fairly and effectively grade buildings on energy use? Does Do energy cost burdens disproportinately impact low-income and

EnergyStar work?

minority communities? How could equity-based retrofitting help?

Papadopoulos, Sokratis and Constantine E. Kontokosta. 2019. “Grading Buildings on
Energy Performance: Leveraging City Benchmarking Data and Statistical Learning to
Overcome Uncertainty,” Applied Energy, 233: 244-253.

Kontokosta, C. E., Reina, V. J., & Bonczak, B. 2020. “Energy cost burdens for low-income
and minority households: Evidence from energy benchmarking and audit data in five US
cities.” Journal of the American Planning Association, 86: 89-105.
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Neighborhood Dynamics

Measuring Neighborhood Inequality in Exposure Density, Mobility Behavior, and COVID-19 Risk
Response to Natural Disasters
Exposure density change (%) COVID-19 Positivity Rate (Zip codes)
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Hong, B., Bonczak, B.J., Gupta, A., & Kontokosta, C.E. (2021). Measuring inequality Hong, B., Bonczak, B. J., Gupta, A., Thorpe, L. E., & Kontokosta, C. E. (2021).
incommunity resilience to natural disasters using large-scale mobility data. Nature Exposure density and neighborhood disparities in COVID-19 infection risk.
Communications, 12, 1870. doi.org/10.1038/s41467-021-22160-w Proceedings of the National Academy of Sciences, 118(13).

doi.org/10.1073/pnas.2021258118
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Al for City Management

Is it possible to predict return to shelters

Eviction: 1,301

Other Exit Reason: 1,849

Discord: 758

independent Living: 379

Other Entrance Reason: 643
Family Reunification: 529

I Overcrowding: 396 Overnight End of Stay: 251 l

Hong, B., A. Malik, J. Lundquist, I. Bellach, & C. E.

No Re-Entry: 3,201

Do street trees — and tree species -
and length-of-stay for homeless families? respir. atory illness?

impact

Tree Inf¢

Re-Entry: 520

Kontokosta. 2018. “Applications of Machine Learning
Methods to Predict Re-admission and Length-of-Stay for
Homeless Families: The Case of WIN Shelters in New York
City,” Journal of Technology in Human Services, 36: 89-104.

Tree genus
Pollination season
Allergenicity

Information
Indoor air quality
Public housing units

Neighborhood Information
Ambient air quality
Population characteristics
Asthma prevalence

Land use

Lai, Y., & Kontokosta, C. E. (2019). The impact of urban street
tree species on air quality and respiratory illness: A spatial
analysis of large-scale, high-resolution urban data. Health &

Place, 56, 80-87.

Can we model household

_ waste generation to
Y, Wy :mprove the efficiency and
fairness of waste
collection?

Kontokosta, C. E., B. Hong, N. Johnson, & D.
Starobin. 2018. “Using Machine Learning and Small
Area Estimation to Predict Building-Level Municipal
Solid Waste Generation in Cities,” Computers.
Environment, and Urban Systems, 70: 151-162.
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Bias and Fairness in Algorithmic Decision-

Making:
311 Data

10
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Co-production:

Practice in the delivery of public services in
which residents are involved in the creation
and allocation of public policies and services

E-government

Use of information and communication
technologies, such as mobile devices and the
Internet, to provide public services to residents

11

NOT FOR DISTRIBUTION OR CITATION WITHOUT PERMISSION OF THE AUTHOR



311 systems
across North
America

More than

Cities

Marker size: population

NOT open to public [53]
Esni [4]

Files (excel or csv) [8]
Opengov [3]

Socrata [30]
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31 1 Open Data More than 50% cities using 311 system publish

through different data sharing methods (Socrata, Esri, OpenGov, etc.)

Complaint volume of cities using Socrata system Per capita complaint volume

Complaint volume

-07- -09- @& Complaint volume (per capita)
Between 2018-07-01 and 2079-09-30 \ Between 2018-07-01 adil2eo.dosan

oauuss (s52,065)
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Research Case

Kansas City, MO

Source: Kontokosta, C. E., & Hong, B. (2021). Bias in smart city
governance: How socio-spatial disparities in 311 complaint
behavior impact the fairness of data-driven decisions.
Sustainable Cities and Society, 64, 102503.
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depending on the nature of problems

Actual street complaints
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Research Case

in New York City

Source: Kontokosta, C. E., Hong, B., & Bonczak, B. J. (2022).
Measuring sensitivity to social distancing behavior during the
COVID-19 pandemic. Scientific reports, 12(1), 1-15.

NOT FOR DISTRIBUTION OR CITATION WITHOUT PERMISSION OF THE AUTHOR
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Social
Distancing
Complaints

e Total 72K complaints
(03/29/2020 ~ 07/04/2020)
e ~500 on daily average
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using 311 Complaints and POl visits

POI level analysis example
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Lowest sensitivity
(< 25 percentile)

SDS score = 61.38

Medium high sensitivity
(50-75 percentile)

SDS score = 69.79

Medium low sensitivity
(25-50 percentile)

SDS score = 67.01

Highest sensitivity
(> 75 percentile)

SDS score = 72.84

20



Closing

thoughts

Bias emerges in both the data and the
algorithm

Reporting propensity — the likelihood of
different subgroups to report a problem -
leads to implicit bias in service allocation
using resident-reported information

Analysis can help to unpack the problem
of fairness, but is insufficient

Connecting bias-aware algorithmic
decision-making with practical knowledge
can improve the fairness and equity of
outcomes
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URBAN

INTELLIGENCE LAB

NYU
NYU

Marron Institute
of Urban Management

Center for Urban
Science + Progress

Thank you!

ckontokosta@nyu.edu
@UrbanlintelLab
www.urbanintelligencelab.org
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