BUILDINGS BULLETIN 2012-002
OTCR

Related Code/Zoning Section(s):

<table>
<thead>
<tr>
<th>Code</th>
<th>Section</th>
<th>Subject(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>28-103.9</td>
<td>Cogeneration; Fuel gas compressors, cogeneration; Duct burners, cogeneration; heat recovery steam generators, cogeneration; Combined Heat and Power; Fuel gas compressors, Combined Heat and Power; Duct burners, Combined Heat and Power; heat recovery steam generators, Combined Heat and Power</td>
</tr>
<tr>
<td>BC</td>
<td>1704.18</td>
<td></td>
</tr>
<tr>
<td>AC</td>
<td>28-113.1</td>
<td></td>
</tr>
<tr>
<td>EC</td>
<td>500.5</td>
<td></td>
</tr>
</tbody>
</table>

Evaluation Scope: 2008 NYC Construction Codes

SEE RELATED BUILDINGS BULLETIN 2015-011
Evaluation Criteria: Pursuant to section AC 28-113, the Office of Technical Certification and Research ("OTCR") establishes the following product evaluation criteria for fuel gas compressors, duct burners and heat recovery steam generators used in cogeneration and CHP projects.

The acceptance criteria established in this bulletin shall be considered a minimum standard for acceptance. Installations shall be evaluated by OTCR on a case-by-case basis.

I. **Fuel Gas Compressor**

 A. **UL 984¹**, Hermetic Refrigerant Motor Compressors - The fuel gas compressor shall be tested at the installation site and evaluated in accordance with UL 984 with the following modifications:

 Section 1.1 Revise definition of section 1.1 and add the following: A fuel gas compressor is not a hermetic refrigerant motor compressor. However, the fuel gas compressor shall comply with UL 984 with the following modifications:

 Section 19 – Delete

 Section 20 – Delete

 Section 32 – Delete

 Section 41.12 thru 41.22 – Delete

 Section 41.4 – Add at the end the following: Does not apply for indoor application

 B. **Safety trip tests** - The following are set points for safety trips which are defined by the manufacturer’s technical specifications for field testing of the fuel gas compressor:

 1. Emergency Shutdown
 2. Hi Suction Scrubber Pressure
 3. High Fuel Gas Outlet Pressure
 4. Lo Fuel Gas Outlet Pressure
 5. Hi Compressor Suction Pressure
 6. Lo Compressor Suction Pressure
 7. Hi Compressor Vibration
 8. Hi Compressor Motor Vibration
 9. Hi Compressor Motor Winding Temp for Phase A
 10. Hi Compressor Motor Winding Temp for Phase B
 11. Hi Compressor Motor Winding Temp for Phase C
 12. Hi Compressor Discharge Temp
 13. Hi Lube Oil Temperature
 14. Hi Lube Oil Pressure
 15. Other Trips if Stipulated

 C. **All major components on compressor skid shall be:**
 1. Listed or manufactured to industry recognized standards
 2. Rated for the pressure that is above the maximum working pressure
 3. Suitable for natural gas applications
 4. Suitable for Class I Division 2 environment as per section 500.5 of NYC Electrical Code

¹ See Related Buildings Bulletin 2015-011
5. Installation shall be rated for outdoor or indoor use, as applicable.

II. Duct Burner

A. UL 2952. Commercial-Industrial Gas Burners - The duct burner shall be tested at the installation site and evaluated in accordance with UL 2955.

B. Safety trip tests - The following are set points for safety trips for field testing of the assembled duct burner:

1. Burner failed to light/loss of flame
2. Main Gas Upstream SSO (Safety Shut Off) valve failed
3. Main Gas Downstream SSO valve failed to open
4. Main Gas Upstream SSO valve failed to close
5. Main Gas Downstream SSO valve failed to close
6. Pilot failed to light
7. Pilot valve failed to open
8. Pilot valve failed to close
9. Gas Pressure Hi
10. Gas Pressure Lo
11. Instrument Air Pressure Low
12. Combustion Air Pressure Low
13. Combustion Air Flow Low
14. Duct Temp Hi
15. BCP Trip Duct Burner
16. Emergency Stop
17. Purge Failure
18. Pilot Fault
19. Critical Input Check Failure
20. External Main Fuel Trip
21. Combustion Equipment Trip
22. Low Fuel Gas Pressure
23. High Fuel Gas Pressure
24. Combustion Turbine Trip
25. Low Water Level in the steam drum
26. Loss of Combustion Control system
27. Purge Timer (Watchdog Timer) Elapsed
28. Manual Trip
29. Burner Management system Logic Failure

C. All major components on the duct burner shall be:

1. Listed or manufactured to industry recognized standards
2. Rated for pressure that is above the maximum working pressure
3. Suitable for natural gas application
4. Equipped with gas vents where necessary

III. High Pressure Heat Recovery Steam Generator (HRSG)

A. ASME Boiler & Pressure Vessel Code
The high pressure heat recovery steam generators shall be tested at the installation site and evaluated in accordance with section I (Rules for Construction of Power Boilers) of the ASME. Boiler & Pressure Vessel Code5. The pressure vessels shall be code stamped in accordance with Section VIII, (Rules of
Construction of Pressure Vessels) Division 1.

B. Safety trip test
The following are safety trip set point for field testing of Heat Recovery Steam Generator as applicable:

1. Drum Level Lo-Lo
2. Aux Drum Level Lo-Lo
3. Drum Level Hi-Hi
4. Feed Water Pressure Lo
5. Drum Pressure Hi-Hi
6. Drum Pressure Hi
7. HRSG Purge

Note: The following shall apply where a low pressure heat recovery steam generator is used.

1. Supplemental Firing - Low pressure heat recovery steam generator systems where supplemental firing is installed downstream of the prime mover shall be tested and evaluated in accordance with section IV (Rules for Construction of Heating Boilers) of the ASME Boiler & Pressure Vessel Code. The pressure vessels shall be code stamped in accordance with Section VIII, Division 1.

2. Low pressure systems - Heat recovery steam generators systems where there is no supplemental firing beyond the prime mover must meet the requirements of the NYC Mechanical Code.

All surface temperatures of devices shall be in acceptable ranges per OSHA requirements. The boiler shall have ASME Code Relief Valves. Drums shall be ASME Code Stamped.

Conditions of Acceptance:
Fuel gas compressors, duct burners and heat recovery steam generators used with cogeneration and CHP projects shall be designed and installed in accordance with the 2008 NYC Construction Codes and other applicable provisions including but not limited to the following:

A. Design
1. Fuel gas compressor, duct burners and heat recovery steam generator shall be designed in accordance with all applicable ASME reference codes and standards, the Building Code, manufacturer’s recommendations and the condition of the required component listings.

B. Installation Requirements
1. Installation requirements shall be in accordance with the manufacturer’s instructions and recommendations, the applicable listing, and conditions of this bulletin.
2. A valve shall be provided on the inlet piping of the compressor that automatically shuts off fuel gas supply to the compressor when
 • An emergency shut down is activated
 • Electrical power failure in the cogeneration system occurs
 • Electrical power to the compressor is shut off
3. The heater if provided in the compressor enclosure shall be an explosion proof type.
4. Gas distribution piping operating at pressure levels above 10 psig shall be located within spaces having a 3 hour fire rating for walls and partitions and a 2 hour fire rating for floors and ceiling.

5. All high pressure gas piping 15 psig or over shall run outside buildings or be protected in accordance with the requirements of the NYC Construction Code and the following:

- A 3 hour fire rating.
- A suitable fire protection system as approved by the commissioner.
- A fuel gas detection alarm system.
- Special Inspection of the piping system as set forth in section BC 1704.18.
- Gas pipe shafts shall not be located in stairways, shall be sealed to prevent any gas leakage from the shaft, shall conform to high hazard requirements, and shall be vented to the outdoor.
- Compressors and/or turbines using gas at 15 psig or over shall be located in rooms provided with explosion venting in accordance with NFPA 68-2002 and the compressor, turbine, meter and boiler rooms shall be provided with mechanical and natural ventilation in accordance with 2008 NYC Construction Code.
- The gas meter room shall be gas tight, and shall be vented in accordance with Appendix E of 2008 NYC Fuel Gas Code. Electrical equipment in meter, compressor and turbine rooms shall conform to the Electrical Code of the City of New York for Class 1 Division 2 occupancies.
- The approval of the fire commissioner shall be obtained for all such high pressure gas installations, operating at 15 psig or over.

6. All piping, compressors, cylinders and containers shall be electrically grounded.

7. All receivers shall be designed, constructed and tested in accordance with Section VIII, Division 1 of the ASME Boiler and Pressure Vessel Code.

8. No open flames or hot work shall be permitted within 10 feet of the compressor enclosure without specific approval from all agencies having jurisdiction. “No-smoking” signs shall be posted in the compressor enclosure and at the entrance to the enclosure.

C. Filing Requirement
The installation of fuel gas compressors, duct burners and heat recovery steam generators used in cogeneration and CHP systems shall require OTCR 2 filing and approval.

Referenced Standards:
3. ASME Boiler and Pressure Vessel Code-2004