URBAN ROAD DIETS
Making it Fit – For all Road Users

Heidi Wolf, Acting Deputy Director Pedestrian Projects Group, NYC Department of Transportation
Northeast Region Road Diet Peer to Peer Exchange, June 9, 2016
STREET DESIGN, THE OLD WAY

<table>
<thead>
<tr>
<th>Standard No</th>
<th>Distance (ft)</th>
<th>Face</th>
<th>Arrow Points From</th>
<th>Mounting</th>
<th>Side</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. From: 33 St.</td>
<td>1. To: Roosevelt Ave.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- **Paint center lane line, and one lane line 11'0 off each side of center lane line.**

Contract 77-6

<table>
<thead>
<tr>
<th>Prepared by: J. Meyer</th>
<th>Typed: SW</th>
<th>Recommended: E. Chapman</th>
</tr>
</thead>
</table>

City of New York - Department of Traffic
VISION ZERO IN NYC

- Lead by City Hall
- Multi-Agency
- Comprehensive
 - Engineering
 - Enforcement
 - Education
 - Policy
STREET IMPROVEMENT PROJECTS:

9 years of Aggressive Street Re-Engineering
DATA DRIVEN

Corridor Report (2008 - 2012)

Corridor Classes Reference
Middle third of borough corridors in KSI/mile

<table>
<thead>
<tr>
<th>Type</th>
<th>Total Injuries</th>
<th>Severe Injuries</th>
<th>Fatalities</th>
<th>Total KSI/Mile</th>
<th>KSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestrian</td>
<td>111</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Bicyclist</td>
<td>51</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Motor</td>
<td>187</td>
<td>9</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>349</td>
<td>23</td>
<td>0</td>
<td>12.8</td>
<td>23</td>
</tr>
</tbody>
</table>
ROAD DIET BASICS

- Generally ~ 500 cars per lane
- Level of service C is acceptable
- Refuge islands in shadow of left turn bay where applicable
- Road diets help enforce safe driving and the new 25 mph speed limit
STREET DESIGN: 3 CONSTRUCTION OPTIONS

For safety projects, faster construction saves lives.

<table>
<thead>
<tr>
<th></th>
<th>Capital Concrete</th>
<th>In-House Concrete</th>
<th>Temporary Non-Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build Time</td>
<td>5+ years</td>
<td>1-2 years</td>
<td>1-2 years</td>
</tr>
<tr>
<td>Cost</td>
<td>High</td>
<td>Low</td>
<td>Very Low</td>
</tr>
</tbody>
</table>

- **Flatbush Ave Ext, Brooklyn**
- **7th Av & W 23rd St, Manhattan**
- **Madison Square, Manhattan**
Typical 4 to 3 Road Diet Cross-Section

EXISTING

West End Ave from W 72nd to W 106th St

PROPOSED

Sidewalk

10’ Parking Lane

10’ Travel Lane

10’ Travel Lane

10’ Travel Lane

10’ Parking Lane

Sidewalk

13’ Wide Parking/ Bike/Loading Lane

11’ Travel Lane

12’ Turn Bay/ Flush Median

11’ Travel Lane

13’ Wide Parking/ Bike/Loading Lane

Sidewalk
ISSUE: **Interrupted Through Movements**

- **Existing Condition**
 - Double-parked vehicle
 - Autos moving thru
 - Left-turning vehicle waiting for gap
 - Right lane vehicles change lanes twice
 - ID’ing Pedestrians in Crosswalk

- Frequent lane changing
- No “good” through travel lane
Proposed Traffic Movement

- Normal activity doesn’t force lane changes
- One “good” through travel lane
- More orderly and predictable movements
ISSUE: Challenging Left Turns

Existing Condition

2) Identifying Gap in Left Lane

3) ID’ing Gap in Right Lane

(VISIBILITY HINDERED)

Left Turning Motorist Have 4 Concerns

1) Vehicles Approaching from Behind

4) ID’ing Pedestrians in Crosswalk
Proposed Left Turn

Proposal

Vehicles from behind in different lane

Driver only needs ONE gap to turn; can then look at crosswalk
Gerritsen Ave, between Ave W & Ave R, BK

Corridor Redesign: 4 to 3 (2009)

Crashes with Injuries
-40%
Gerritsen Ave, between Ave W & Ave R, BK

Corridor Redesign: 4 to 3 (2009)

- Travel Lane Reduction
- Left Turn Bays
- Channelized Center Median
- Pedestrian Refuge Islands
- Street trees
Empire Blvd, between Bedford Ave & Utica Ave Bk

Corridor Redesign: 4 to 3 (2010)

Crashes with Injuries
-15%
Empire Blvd, between Bedford Ave & Utica Ave Bk

Corridor Redesign: 4 to 3 (2010)

- Travel Lane Reduction
- Left Turn Bays
- Channelized Center Median
- Pedestrian Refuge Islands
- Bicycle Lanes
- Street trees
Vanderbilt Ave, BK
4 lane two-way street: 4 to 3, bike lane

Filled major gap in bike network
Vanderbilt Ave, BK
4 lane two-way street: 4 to 3, bike lane
9th Ave, between 16th St & 23rd St, MN
60’ wide one-way Ave: 4 to 3 protected bike lane

Crashes with Injuries
-52%
9th Ave, between 16th St & 23rd St, MN
60’ wide one-way Ave: 4 to 3 protected bike lane

- Travel Lane Reduction
- Split Left Turn Lanes
- Channelized Center Median
- Pedestrian Refuge Islands
- Bicycle Lanes & Signals
- Street trees
1st Ave, between 1st St & 33rd St MN

70’ Wide One-Way Ave: 5 to 3, Protected Bike Lane

Crashes with Injuries -6%
1st Ave, between 1st St & 33rd St MN

70’ Wide One-Way Ave: 5 to 3, Protected Bike Lane

- Bicycle Path
- Safety Islands
- Landscaping
- Left Turn Bays
- Bus Lane
- Travel Lane Reduction
Adam Clayton Powell
6 to 5 Conversion (2013)

Pedestrian Injuries
-17%
Adam Clayton Powell

6 to 5 Conversion (2013)

• Travel Lane Reduction
• Left Turn Bays
• Median tip extensions
• Bicycle Lanes
Broadway: Greenlight For Midtown, MN
Corridor Redesign- One way with Bike Lane (2009)

Crashes for all users -52%
Broadway: Greenlight For Midtown, MN
Capital Corridor Redesign

Temporary materials were quickly installed and then capitally built.
Columbus Ave, between 77th St & 97th St, MN

Corridor Redesign (2010) – Lane narrowing lead to parking protected bike lane

Crashes with Injuries

-27%
Columbus Ave, between 77th St & 97th St, MN
Complex Corridor Redesign (2010)

- Travel Lane Narrowing
- Left Turn Bays
- Pedestrian Refuge Islands
- Parking Protected Bicycle Lanes
- Street trees
E 180th St, between Webster & Boston Rd, BX
50’ Wide: 2-way lane narrowing (2010)

Crashes with Injuries
-21%

Before

After
E 180th St, between Webster & Boston Rd, BX

50’ Wide: 2-way lane narrowing (2010)

- Travel Lane Narrowing
- Channelized Center Median
- Left Turn Bays
THANK YOU!

Questions?