Introduction

Purpose
Background
Street Design Policy

1 Process

1.0 Introduction
Table 1a
Table 1b

1.1 Operational Projects
1.1.1 Origination
1.1.2 Planning & Design
1.1.3 Implementation

1.2 Capital Projects
1.2.1 Origination
1.2.2 Planning & Design
1.2.3 Construction

1.3 Case Studies
1.3.1 Hoyt Avenue South at RFK Bridge
1.3.2 West Houston Street
1.3.3 Willoughby Plaza

2 Geometry

2.0 Introduction
2.0.1 General Guidelines

2.1 Roadways & Lanes
2.1.1 Bike Lane & Path
a Bike Lane
b Bike Path
2.1.2 Bus Lane & Busway
a Bus Lane
b Busway
2.1.3 Shared Street
2.1.4 Plaza
a Permanent Plaza
b Interim Plaza

2.2 Sidewalks & Raised Medians
2.2.1 Sidewalk
a Full Sidewalk
b Ribbon Sidewalk
2.2.2 Curb Extension
a Curb Extension: Community Facilities
b Curb Extension: Bus Bulb
c Curb Extension: Mid-Block Narrowing
2.2.3 Raised Median
2.2.4 Pedestrian Safety Island
2.2.5 Median Barrier

2.3 Traffic Calming
2.3.1 Lane Narrowing & Lane Removal
2.3.2 Raised Speed Reducer
a Raised Speed Reducer: Speed Cushion
2.3.3 Gateway
2.3.4 Raised Crosswalk
2.3.5 Chicane
2.3.6 Neighborhood Traffic Circle
2.3.7 Roundabout
2.3.8 Raised Intersection
3 Materials

3.0 Introduction 98

3.1 Sidewalks 100
3.1.1 Unpigmented Concrete 101
3.1.2 Pigmented Concrete
 a Pigmented Concrete: Dark 102
 b Pigmented Concrete: Bluestone 103
 c Pigmented Concrete: Granite 104
 d Pigmented Concrete
 with Exposed Light-Colored Aggregate 105
 e Pigmented Concrete
 with Silicon Carbide Treatment 106
3.1.3 Sand-Colored Concrete
 with Exposed Aggregate 107
3.1.4 Concrete with Exposed Glass Aggregate 108
3.1.6 Concrete with London Paver Scoring 109
3.1.7 Hexagonal Asphalt Paver 110
3.1.8 Bluestone Flag 111
3.1.9 Granite Slab 112
3.1.10 Granite Block 113
3.1.11 Precast Square Paver 114
3.1.12 Permeable Interlocking Concrete Paver (PICP) 115
3.1.13 Porous Concrete 116
3.1.14 Rubber Paver 117

3.2 Curbs 118
3.2.1 Unpigmented Concrete 119
3.2.2 Pigmented Concrete 120
3.2.3 Integral Concrete Curb and Gutter 121
3.2.4 Granite 122

3.3 Crosswalks 123
3.3.1 Granite Paver 124

3.4 Roadways 125
3.4.1 Asphaltic Concrete 126
3.4.2 Porous Asphalt 127
3.4.3 Concrete 128
3.4.4 Granite Block 129

4 Lighting

4.0 Introduction 134

4.1 Poles 138
4.1.1 Davit, Round, & Octagonal Poles 139
4.1.2 Flatbush Avenue Pole 141
4.1.3 TBTA Pole 142

4.2 Luminaires 144
4.2.1 HPS Cobra Head Luminaire (discontinued) 145
4.2.2 Standard LED Luminaire 146
4.2.3 Helm Luminaire (discontinued) 147
4.2.4 Stad Luminaire (discontinued) 149
4.2.5 Teardrop & Shielded Teardrop Luminaires 151

4.3 Integrated Streetlights 152
4.3.1 Alliance Luminaire & Pole 153
4.3.2 Bishops Crook Luminaire & Pole 154
4.3.3 City Light Luminaire & Pole 155
4.3.4 Flushing Meadows Luminaire & Pole 156
4.3.5 Type B Luminaire & Pole 157
4.3.6 Type F Luminaire & Pole 158
4.3.7 Type M Luminaire & Pole 159
4.3.8 World’s Fair Luminaire & Pole 160

4.4 Signal Poles 161
4.4.1 Type M-2A Signal Pole 162
4.4.2 Type S-1A Signal Pole 164
4.4.3 Alliance Signal Pole 165
I am pleased to present this updated Second Edition of the New York City Street Design Manual, which has become an essential reference for agencies, designers, engineers, and consultants working on our City streets and public spaces. Since its original release in 2009 and its republishing in 2013, the way we think about and design streets has progressed. DOT is working hard to make New York more sustainable, through major efforts like the citywide transition to LED lighting and the expansion of planted areas on medians in our roadways. Superstorm Sandy reinforced the importance of a resilient transportation network, and DOT has been working with its partner agencies to implement best practices. And through both his Vision Zero initiative and emphasis on equity, Mayor de Blasio has focused on the need to make the City’s streets safer and more accessible for all New Yorkers, regardless of neighborhood or ability. This update to the Second Edition reflects many of these changes in street design.

As the population grows, it has become increasingly evident that the way we design our streets determines how people interact in our City. When we build spaces that make people of all ability levels feel comfortable and encourage people not only to move through, but to stay, we create a more vibrant public realm, with safety, health and economic benefits for all. Since 2013, DOT has refined some of the treatments featured in the Second Edition of the Street Design Manual. For example, the design of the award-winning CityBench was changed to make it easier to use for older New Yorkers, and public space designs now take into consideration navigation by people with impaired vision.

The lessons from Superstorm Sandy are clear: our street network will impact how the City withstands the next major storm surge—and how quickly it bounces back once it passes. Consideration of resiliency must be integral to our planning process. We must plan for water levels twenty years from now, and build green infrastructure that can absorb and store storm runoff to ease the stress on our sewer systems. As resiliency design measures develop, the Street Design Manual will be a critical resource in bringing them together.

This update continues the Manual’s record as a living document. By the time you read this, DOT, our partner agencies, and industry professionals will be working toward publishing a Third Edition of the Manual in 2017—building on the strengths of previous versions and bringing together the latest successes and standards into a playbook ready for a rapidly changing future.

Like our City, the Manual is continuously evolving to serve the needs of our many communities in smarter, stronger and more effective ways.

Polly Trottenberg
Commissioner
This Updated Second Edition of the Street Design Manual infuses the document with a new emphasis on two critical principles, universal design and resiliency, and transmits the latest findings and standards on a broad range of street design elements and processes. It is a digital re-release; pages with new information are noted on the DOT webpage for the Manual (www.nyc.gov/html/dot/html/pedestrians/streetdesignmanual.shtml), and can be substituted directly into existing copies. Where feasible, DOT recommends saving the paper and referring directly to the digital document.

The update includes new content, based on feedback from users and comprehensive inter- and intra-agency review. Highlights include:

- Expanded focus on considerations and design practices related to universal design principles in chapter introductions and design treatments
- Additional content on resiliency measures in capital project origination section, chapter introductions and design treatments
- Revised Lighting Chapter representing citywide shift to LED streetlights and the adoption of the BUG rating system
- Updated Landscape Chapter reflecting evolution in the city’s stormwater management practices since 2013

The following agencies participated in the creation of the Manual’s Updated Second Edition: the Departments of Design and Construction (DDC), City Planning (DCP), Environmental Protection (DEP), Parks and Recreation (DPR), and Buildings (DOB), as well as the Economic Development Corporation (EDC), the Landmarks Preservation Commission (LPC), the Public Design Commission (PDC), and the Mayor’s Office.
Acknowledgments

Polly Trottenberg, COMMISSIONER, DOT
Lori Ardito, FIRST DEPUTY COMMISSIONER, DOT
Janette Sadik-Khan, FORMER COMMISSIONER, DOT

Street Design Manual Team, 2nd Edition and updates
Wendy Feuer
Margaret Newman
Nicholas Peterson
Nicholas Pettinati
Patrick Smith

The completion of the second edition and its update would not have been possible without the participation of the following individuals:

Special Contributors
Quemuel Arroyo, DOT
Jeremy Barrick, DPR*
Patricia Browne, DOT
Michael Flynn, DOT*
Neil Gagliardi, DOT
Steve Gomez, DOT
Staci Haber, DOT
Terra Ishee, DOT
Adriana Jacykewycz, DPR
Quinn Kelly, DOT
Kleo King, MOPD
Lynden Miller, PUBLIC GARDEN DESIGNER
Kim Mulcahy, DOT*
Sean Quinn, DOT
Matthew Roe, DOT*
Suchitra Sanagavarapu, DOT
Bruce Schaller, DOT*
David Vega-Barachowitz, NACTO
Matthew Wells, DPR*
Andy Wiley-Schwartz, DOT*
Elisabeth Wooton, DOT

Street Design Task Force and Other Contributors
Magary Aime, DPR
Fekry Azer, DOT
Sameeh Barkho, DOT
Barbara Barnes, DPR*
Eric Beaton, DOT
Mike Bellew, DSNY
Matthew Best, DCPD
Maurice Bruet, DOT*
Kerry Carnahan, DDC
Tom Cocola, DOT
Michelle Craven, DOT
Philip Damashek, DOT
Louann Dunbar, DOT*
Skye Duncan, DCP
Alex Engel, DOT*
Magdi Farag, DEP*
Margaret Forgione, DOT
Elisabeth Franklin, DOT
Mikhail Fridman, DOT*
Steve Galgano, DOT
Jim Garin, DEP
Hillary Gietz, DOT*
Shari Glickman, DOT
Jennifer Greenfield, DPR
Bram Gunther, DPR*
Nina Haiman, DOT
Daila Hall, DOT
Leon Heyward, DOT
Christopher Hrones, DOT*
Christopher James, DCAS
Ed Janoff, DOT*
Joseph Jarrin, DOT
David Jehn, DOT*
Laurie Kerr, OLTPS
Jared Knowles, LPC
Aaron Koch, OLTPS
Joshua Kraus, DOT*
George Kroenert, DPR
Jennifer Leung, DOT
Timothy Lynch, DDC
Patricia Lyons, DOT*
Alan Ma, DOT*
Nicholas Magilton, DOT*
Tom Maguire, DOT*
Vincent Maniscalco, DOT
Michael Marsico, DOT
John Martin, DOT
Maura McCarthy, DOT*
Charles McKinney, DPR
John McLaughlin, DOT

Copy Editor and Indexer
Thomas F. Reynolds

Graphic Design
Pure+Applied
<table>
<thead>
<tr>
<th>Agencies</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCA</td>
<td>New York City Department of Consumer Affairs</td>
</tr>
<tr>
<td>DCAS</td>
<td>New York City Department of Citywide Administrative Services</td>
</tr>
<tr>
<td>DCP</td>
<td>New York City Department of City Planning</td>
</tr>
<tr>
<td>DDC</td>
<td>New York City Department of Design and Construction</td>
</tr>
<tr>
<td>DEC</td>
<td>New York State Department of Environmental Conservation</td>
</tr>
<tr>
<td>DEP</td>
<td>New York City Department of Environmental Protection</td>
</tr>
<tr>
<td>DOB</td>
<td>New York City Department of Buildings</td>
</tr>
<tr>
<td>DOHMH</td>
<td>New York City Department of Health and Mental Hygiene</td>
</tr>
<tr>
<td>DoITT</td>
<td>New York City Department of Information Technology and Telecommunications</td>
</tr>
<tr>
<td>DOT / NYC DOT</td>
<td>New York City Department of Transportation</td>
</tr>
<tr>
<td>DPR</td>
<td>New York City Department of Parks and Recreation</td>
</tr>
<tr>
<td>DSNY</td>
<td>New York City Department of Sanitation</td>
</tr>
<tr>
<td>EDC</td>
<td>New York City Economic Development Corporation</td>
</tr>
<tr>
<td>FDNY</td>
<td>New York City Fire Department</td>
</tr>
<tr>
<td>FEMA</td>
<td>Federal Emergency Management Agency</td>
</tr>
<tr>
<td>FHWA</td>
<td>Federal Highway Administration</td>
</tr>
<tr>
<td>LPC</td>
<td>New York City Landmarks Preservation Commission</td>
</tr>
<tr>
<td>MOPD</td>
<td>Mayor’s Office for People with Disabilities</td>
</tr>
<tr>
<td>MOS</td>
<td>Mayor’s Office of Sustainability</td>
</tr>
<tr>
<td>MTA</td>
<td>Metropolitan Transportation Authority</td>
</tr>
<tr>
<td>NYCT</td>
<td>New York City Transit, an MTA agency</td>
</tr>
<tr>
<td>NYPD</td>
<td>New York City Police Department</td>
</tr>
<tr>
<td>NYS DOT</td>
<td>New York State Department of Transportation</td>
</tr>
<tr>
<td>OCPD</td>
<td>Mayor’s Office of Capital Project Development</td>
</tr>
<tr>
<td>OMB</td>
<td>Mayor’s Office of Management and Budget</td>
</tr>
<tr>
<td>ORR</td>
<td>Mayor’s Office of Recovery and Resiliency</td>
</tr>
<tr>
<td>PDC</td>
<td>New York City Public Design Commission</td>
</tr>
<tr>
<td>SAPO</td>
<td>The Street Activity Permit Office within the New York City Office of Citywide Event Coordination and Management</td>
</tr>
<tr>
<td>SBS</td>
<td>New York City Department of Small Business Services</td>
</tr>
<tr>
<td>US ACE</td>
<td>US Army Corps of Engineers</td>
</tr>
<tr>
<td>US DOT</td>
<td>US Department of Transportation</td>
</tr>
</tbody>
</table>
The Street Design Manual is New York City’s comprehensive resource on street design guidelines, policies, and processes. It aggregates a broad range of resources—from nationally recognized engineering and design guidelines and standards to federal, state, and local laws, rules, and regulations—to provide information on treatments that are allowed and encouraged on New York City streets. The Manual’s intended audience is diverse, consisting of design professionals, city agencies and officials, community groups, and private developers.

The Street Design Manual supplements rather than replaces existing engineering and environmental standards, requirements, or guidelines, such as the Manual on Uniform Traffic Control Devices (MUTCD), AASHTO Policy on Geometric Design of Highways and Streets (“Green Book”), and ADA Standards for Accessible Design. In a city with as many varied and complex conditions as New York, designs must be tailored to the particular needs and opportunities created by the local context, uses, and dimensions of streets. The Street Design Manual leaves ample room for choice, and all designs remain subject to case-by-case DOT approval based on established engineering standards and professional judgment, with the safety of all street users being of paramount importance.

This Manual is New York City’s comprehensive resource on street design guidelines, policies, and processes.
Background

Until the early twentieth century, streets served not only as transportation routes but as the front yards and public squares of cities. Horse-drawn carriages, people on foot or horseback, and, later, bicycles and streetcars shared streets with pushcart vendors, outdoor markets, children playing, and neighbors socializing. City streets were vibrant, though plagued by safety, sanitation, and mobility problems.

As Peter Norton explains in his book *Fighting Traffic: The Dawn of the Motor Age in the American City*, when motor vehicles were introduced into this mix, they were not accounted for by the laws, engineering and design practices, and public mores of the time. Pedestrian deaths and injuries from motor vehicle crashes were so frequent that the press across the country routinely vilified motorists, and citizens regularly staged parades commemorating the dead. Some municipalities even contemplated requiring speed controls on engines.

As early as the 1910s, automobile-owners’ associations and engineers’ groups launched public relations and legislative campaigns to address both the negative public sentiment and the alarming safety problems. They succeeded in getting new laws and

Over the last 15 years, best practices have increasingly favored street designs that support walking, bicycling, and public transit use.
engineering standards to improve safety; as a byproduct, motor vehicles were given greater standing in the roadway. By 1930, cultural norms had adjusted to this paradigm shift. Cities prioritized automobile movement for most of the twentieth century. But planners, designers, and engineers have come to recognize that this focus has led to an alarming number of crashes resulting in deaths and serious injuries; unsustainable land-development patterns; a reduction of the number of transportation choices; increased noise, pollution, and greenhouse gases; and a decline in social, civic, physical, and economic activity on streets.

Over the last 15 years, best practices have increasingly sought to address these issues by favoring street designs that support walking, bicycling, public transit, and universal access, as well as motor vehicle use. Practitioners (and the public) have also learned that street infrastructure can yield benefits well beyond mobility: enhanced public health, more pleasant environments, and increased economic activity.

This Manual builds on current thinking about street design, materials, lighting, and project implementation around the world to promote a great public realm. It advocates high-quality, sustainable design and encourages greater mode choice. Also, its creation led to the streamlining of DOT’s internal design-review processes, which has made project execution more efficient.
Planning and designing streets in accordance with the goals and principles of this section will contribute to a consistent level of quality and functionality for New York City’s streets. Along with the project’s planning framework, they should be used to resolve conflicting priorities for limited street space.
Goals & Principles

Streets, which take up over a quarter of the city’s land area, are a critical part of New York City’s infrastructure. The condition of these public spaces has a significant impact on the city’s environmental health and on the quality of life for its residents.

DOT’s overall goals and principles are:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Design for Safety</td>
</tr>
<tr>
<td>2</td>
<td>Design to Balance Local Access and Mobility</td>
</tr>
<tr>
<td>3</td>
<td>Design for Context</td>
</tr>
<tr>
<td>4</td>
<td>Design Streets as Public Spaces</td>
</tr>
<tr>
<td>5</td>
<td>Design for Sustainability and Resiliency</td>
</tr>
<tr>
<td>6</td>
<td>Design for Cost-Effectiveness</td>
</tr>
</tbody>
</table>

Accordingly, it is the policy of DOT that practitioners adhere to the following goals and principles when designing city streets, all with an eye to achieving maximum inclusivity and the highest possible aesthetic standards.

Percent of New York City Land Area by Use

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buildings and Parking Lots</td>
<td>45.5%</td>
</tr>
<tr>
<td>Streets</td>
<td>26.6%</td>
</tr>
<tr>
<td>Parks, Cemeteries, and Other Open Space</td>
<td>13.3%</td>
</tr>
<tr>
<td>Airports, Other Transportation Facilities, and Miscellaneous</td>
<td>10.1%</td>
</tr>
<tr>
<td>Vacant Land</td>
<td>4.5%</td>
</tr>
</tbody>
</table>
INTRODUCTION: STREET DESIGN POLICY

Goals & Principles

1. Design for Safety

 The city’s efforts to enhance street safety through engineering, education, and enforcement have contributed to a dramatic drop in the number of pedestrian fatalities and serious injuries in the past 10 years. Designing safe streets will continue to be the first priority for DOT.

 - Prioritize safety for all street users, particularly more vulnerable groups (children, the elderly, those with disabilities) and more vulnerable modes (walking, bicycling).

 - Design local streets for slower speeds to reduce the number of crashes and to discourage cut-through traffic.

 - Research, test, and evaluate innovative safety treatments, particularly those successfully adopted in other cities.

2. Design to Balance Local Access and Mobility

 Street designs should provide efficient ways to move people and goods and improve the economic vitality of the city, but not at the expense of safety and community needs; street designs should therefore balance access within neighborhoods with mobility through them.

 - Provide safe, accessible, convenient, and comfortable facilities for walking, bicycling, and transit, particularly on designated routes and at critical network connections.

 - Accommodate truck traffic and deliveries while minimizing their negative impacts on neighborhoods.

 - Meet or exceed ADA Standards for Accessible Design.

 - Accommodate emergency-vehicle access.

3. Design for Context

 Streets help define the character of neighborhoods. Except for standard furniture, materials, and lighting, a street’s design should interact with the surrounding context, including its history, land uses, and nearby landmarks.

 - Preserve the unique character of neighborhoods.

 - Support connections to adjacent land uses by providing gathering spaces and pedestrian access to and from major destinations.

 - Maintain aesthetic consistency within neighborhoods and corridors.
INTRODUCTION: STREET DESIGN POLICY

Goals & Principles

4 Design Streets as Public Spaces
Beyond their use for moving people and goods, streets comprise an extensive network of public open spaces that can facilitate social, civic, and economic interactions.

- Expand usable public open space by reallocating underutilized roadway space for pedestrian plazas, expanded sidewalks, corner and mid-block curb extensions, and opportunities for green planted areas.
- Design streets to encourage physical activity for all ages and populations by making walking, bicycling, and transit attractive and convenient.
- Design local streets to be traffic-calmomed environments that encourage walking, bicycling, and recreational activities.
- Expand the availability of public seating and bicycle racks.

5 Design for Sustainability and Resiliency
Streets present an extraordinary opportunity to improve the environmental health of the city. Collaborate across agencies in testing, evaluating, and standardizing new materials so that streets are constructed in an environmentally sound way, and respond effectively to more frequent intense storms and catastrophic weather events.

- Minimize impermeable surfaces and maximize vegetation on streets. Street designs should use stormwater source controls wherever possible.
- Utilize resilient materials that can withstand periodic temporary inundation by both fresh and salt water.
- Reduce streets’ rate of heat absorption by maximizing tree canopy cover.
- Minimize the overall lifecycle energy use and pollution associated with projects, including the extraction, transportation, construction, maintenance, and replacement of materials.

6 Design for Cost-Effectiveness
Reconstruction of city streets requires substantial financial resources. The list of worthy projects competing for a limited pool of funding is extensive. Street designs need to be cost-effective.

- Consider not only up-front capital costs, but also full lifecycle costs and benefits; certain options may cost more up front, but may have lower ongoing maintenance and operations costs and/or provide long-term benefits.
- Design streets to meet the city’s future needs. Because streets are reconstructed infrequently, consideration of future conditions and needs should be part of the planning process.
- Maintain a clear and consistent design-review process to streamline project review.
- Establish well-considered and clearly defined goals early in project development and focus on meeting those goals throughout planning and design.

Streetscape enhancements: Columbus Avenue, Manhattan
Bioswale: Dean Street, Brooklyn
Raised median: Grand Concourse, Bronx
Applicability

The policies and guidelines in the Street Design Manual are the foundation of designs for all projects that significantly impact public and private streets in New York City. It should be used by agency staff, design professionals, community groups, and other entities involved in the planning and design of streets. DOT will review projects for consistency with the Manual.

Examples of applicable projects include Capital and Expense projects, such as street reconstructions and resurfacings; operational and traffic control treatments; street work associated with new or renovated buildings; and other public or private construction projects that include roadways, sidewalks, and plazas.

The guidance presented in the Street Design Manual does not supersede any existing federal, state or city laws, rules, and regulations. All projects remain subject to relevant statutes, such as the Zoning Resolution of the City of New York, City Environmental Quality Review (CEQR), and appropriate reviews and approvals of oversight agencies such as the Public Design Commission (PDC), Landmarks Preservation Commission (LPC), and Office of Management and Budget (OMB).

The Manual provides assistance in four areas:

- Setting Appropriate Goals for Each Project
- Providing a Framework for Design Decisions
- Establishing a Clear and Consistent Design Review Process
- Serving as a Central, Comprehensive Reference Guide
The Street Design Manual is structured with six chapters and two appendices. Chapters 2 through 6 contain the bulk of the Manual’s design guidance.

Chapter 1: Process
How DOT projects are conceived, planned, designed, and implemented.

Chapter 2: Geometry
A “toolbox” of geometric street treatments to enhance safety, mobility, and sustainability.

Chapter 3: Materials
Specific materials with recommendations for use and references to appropriate specifications.

Chapter 4: Lighting
Street and pedestrian lights that meet energy efficiency, technical, and visual quality criteria.

Chapter 5: Furniture
Standard outdoor furniture, including DOT’s coordinated street furniture franchise.

Chapter 6: Landscape
General guidelines on plant selection, design, installation, and maintenance for typical applications in the public right-of-way (ROW).

Glossary
Definitions of frequently used terms and abbreviations.

Appendix A: Agency Roles on the City’s Streets
Agency responsibilities for particular street operations and infrastructure.

Appendix B: Legal & Design Guidance References
Reference to laws, regulations, and reference sources.
The Street Design Manual is focused on providing guidance for the design of streets. But the planning framework that establishes the context and priorities for each design, and the ongoing management and operation of streets once built, are also critical steps to create world-class streets (see below). DOT evaluates the costs and effectiveness of design treatments and management strategies to inform future designs and initiatives. This section provides an overview of the larger planning framework for street design. Appendix B includes a number of useful resources for best planning practices for streets.
Planning
Every street is inseparable from its surrounding community and land uses, and also a part of the larger transportation network of the city and region. Streets should be designed with an understanding of their role in both the local and larger planning contexts. The planning of street projects should begin with the setting of clearly defined goals. Projects should seek to address not only pre-existing issues that have been identified by the community or the city, but also policy objectives or other needs of the city and stakeholders. Appropriate stakeholders should be involved in projects from conception to implementation.

Design
The Street Design Manual’s design guidance includes options for geometric, material, lighting, furnishing, and landscape treatments (Chapters 2–6); in most cases it does not prescribe which specific treatments must be used and in which combination. It also does not dictate which treatment should receive priority when there is a conflict between design alternatives. Rather, it gives users the flexibility to determine which overall design is most appropriate and practical in light of the goals and priorities established through the planning process and the policies enumerated in this Manual. The Design Considerations list in the next section can be a particularly helpful tool for this decision-making process.

Management
Well-functioning, high-quality streets are not just a product of their planning and design—the way a street is operated and managed once built is just as important as its design. For example, curbside regulations and traffic controls (signs, signals, and markings) are a central factor in determining how streets operate and the quality of the public realm. Likewise, access to a street can be limited to pedestrian traffic on certain days or for certain hours, and vehicular traffic can be limited to transit and/or commercial vehicles some or all of the time. Finally, maintenance of street materials, furnishings, and plantings is critical to the long-term success of street designs.
Design Considerations

Street Context

History & Character
Details for the specific project area

Land Use
Predominant land uses and densities within the project area (e.g., light residential, dense commercial), any historic districts or special zoning districts, proximity to transit

Network Role
Role of the street in the neighborhood, city, and regional transportation system

Trip Generators
Trip generators within or proximate to the project area, including prominent landmarks, commercial, cultural and civic institutions, public spaces, and facilities serving people with disabilities

Street Width
Available space and how its allocation will be prioritized

Street Operations

Pedestrians
Pedestrian safety, volumes, comfort and convenience of movement, access or mobility needs of people with disabilities, the elderly, and children, ADA compliance, crash history, important walking connections, and quality of the walking environment

Bicycles
Bicycle safety, volumes, comfort and convenience of movement, existing or proposed bike routes and other important bicycling connections, crash history, and bicycle parking

Motor Vehicles

Motor vehicle safety, volumes, access, crash history, important motor vehicle connections, appropriateness of motor vehicle traffic to street scale (e.g., local vs. through traffic), and ways to reduce the negative impacts of motor vehicle traffic

Transit

Safety, bus routes and operations, subway or other transit station access, and transit usability

Trucks/Freight

Safety, truck routes, volumes, access, mobility, and ways to reduce the negative impacts of truck traffic

Curbside Conditions

Curbside demand and usage patterns within the project area, allocation of space for through movement, meter parking, non-metered parking, loading, deliveries, pedestrian space, and sightlines

Public Space

Opportunities for making streets within the project area better public spaces through such measures as traffic calming, pedestrian seating, appropriate lighting, and art

Street Cuts

Frequency of needed access requiring utility “cuts” into the roadway within the project area, and potential improvement or consolidation of utility infrastructure

Community Goals

Factors various community stakeholders express as important to their health, quality of life, and community character

Greening

Street Trees
Canopy coverage within the project area

Vegetation
Existing plantings within the project area and opportunity sites for other planted areas

Maintenance Partner(s)
Potential and/or committed maintenance partners (e.g., BIDs, DPR) and level of commitment (e.g., watering, weeding, pruning, litter removal, replacements)

Resiliency

Stormwater Control
Stormwater runoff conditions, permeability of underlying soil, stormwater source controls, and durability of infrastructure in recovering from water and saltwater exposure

Drainage
Stormwater flow patterns, groundwater infiltration, catch basins, sewer connections, and waterbody impacts

Flooding
Flooding conditions within the project area, coastal storm surge barriers

Permits
Wetlands or coastline areas within 100 feet of the project area; requirements for New York State Department of Environmental Conservation or the Army Corps of Engineers permits

Public Art
Opportunities for temporary and permanent art installations
1.0 Introduction

Operational vs. Capital Elements

<table>
<thead>
<tr>
<th>Table 1A</th>
<th>Operational</th>
<th>Capital</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elements</td>
<td>Signals, markings, signs, basic concrete work such as islands or medians, street furniture, landscaping, paint, epoxy gravel. No sub-surface work</td>
<td>No restrictions. Project can include full reconstruction, sub-surface infrastructure upgrades and/or relocation, lighting, permanent streetscape elements, regrading, resurfacing, and green infrastructure. Many streetscape elements that can be Expense-funded can also be Capitally funded</td>
</tr>
<tr>
<td>Funding Source</td>
<td>Mostly City Expense funds; some federal and state grants</td>
<td>Mostly city Capital funds; some federal and state grants</td>
</tr>
<tr>
<td>Budget</td>
<td>No restrictions</td>
<td>$35,000 minimum</td>
</tr>
<tr>
<td>Total Project Timeline</td>
<td>1–2 years</td>
<td>4–7 years</td>
</tr>
<tr>
<td>Coordination with DEP</td>
<td>Generally not necessary, except for concrete work, to avoid disruption to DEP infrastructure</td>
<td>Necessary to avoid negative impacts to DEP infrastructure (including right-of-way bioswales and stormwater greenstreets). Enhancements to DEP infrastructure in the same project may be possible, thereby realizing overall efficiencies and cost savings. DEP requirements may affect implementation schedule</td>
</tr>
<tr>
<td>Reviews by Other Agencies and Utilities</td>
<td>DOT notifies FDNY if there are potential impacts on its operations. Utilities are consulted as necessary. New York State DOT (NYS DOT) reviews projects funded by the Federal Highway Administration (FHWA), and the Federal Transit Administration (FTA) reviews projects that it funds. For major transportation projects*, DOT consults with FDNY, NYPD, the Mayor’s Office for People with Disabilities (MOPD), and SBS. Designs for all works of art and structures† intended for use in a fixed location for more than one year are subject to Public Design Commission (PDC) review‡</td>
<td>OMB, and, if relevant, DPR, FDNY, LPC, NYPD, ORR, and PDC. Utilities also review. DPR, MTA, and Port Authority are consulted as necessary. NYS DOT reviews FHWA-funded projects, and the FTA reviews projects that it funds. Coordination with as many as 40 public agencies and private entities may be required. For major transportation projects*, DOT consults with FDNY, NYPD, the Mayor’s Office for People with Disabilities (MOPD), and SBS</td>
</tr>
<tr>
<td>Coordinating Agency</td>
<td>DOT</td>
<td>DDC</td>
</tr>
<tr>
<td>Useful Life</td>
<td>No requirements</td>
<td>Minimum 5 years</td>
</tr>
<tr>
<td>“No-Build” Clause</td>
<td>Additional Operational and/or Capital work can be done at project site post-completion, as needed</td>
<td>No additional Capital work can be performed at project site for at least 5 years. Operational work is allowed</td>
</tr>
<tr>
<td>Planning</td>
<td>DOT or its consultant</td>
<td>DOT or its consultant</td>
</tr>
<tr>
<td>Design</td>
<td>DOT or its consultant</td>
<td>DDC in-house or consultant, often based upon a conceptual schematic from DOT</td>
</tr>
<tr>
<td>Implementation</td>
<td>DOT or its contractor</td>
<td>DDC contractor</td>
</tr>
</tbody>
</table>

* Major transportation projects are defined by Local Law 90 of 2009 as affecting four or more consecutive blocks or 1,000 consecutive feet (whichever is shorter); a major realignment of the roadway, including either the removal of a vehicular (or travel) lane(s) or full-time removal of a parking lane(s) or the addition of a vehicular lane(s). For further information, see Section 19-101.2 of the New York City Administrative Code.

† See the definition of “structures” in Section 854(b) of the New York City Charter.

‡ For further information see Section 854(g) of the New York City Charter.
Community Participation
DOT conducts extensive outreach to communities whenever the agency implements safety enhancement projects or makes changes to the local transportation network. Input from residents and businesses helps DOT take into account the character and needs of specific neighborhoods in the project-development process. While each DOT unit that manages a project is involved in community outreach, the Borough Commissioners are the agency’s primary liaison with communities and generally conduct the on-going dialogue.

The Borough Commissioners routinely meet with Community Boards, elected officials, business leaders, and other community stakeholders on issues ranging from full-scale intersection redesign projects to parking regulation adjustments. These meetings can be in community rooms or school auditoriums, in agency or other offices, or on site to review specific traffic concerns. In addition, DOT notifies local elected officials of every large project and presents the project to the affected Community Board(s) before implementation begins.

DOT tailors its community outreach to suit the scope, size, complexity, and magnitude of potential impacts of each project. The outreach process is iterative, as DOT often adjusts and modifies projects based on community feedback. For some projects, as with NYC Plaza Program Capital projects, local community institutions may also be involved as maintenance partners and actively engage the wider community. The Department of Design and Construction (DDC) conducts community outreach for DOT street reconstruction Capital projects, often in coordination with DOT.

DOT Design Reviews and Analyses
Multiple DOT divisions review project designs throughout the planning and design phases of projects. They review designs not only to determine and mitigate negative impacts of projects, but also to identify opportunities to advance the agency’s policy goals as enumerated in this Manual and in other DOT publications. Depending on the type of project, DOT divisions consider the following items (some of which overlap with the technical areas addressed by City Environmental Quality Review [CEQR] analyses):

- Safety
- Motor vehicle level of service
- Air quality
- Construction-phase impacts
- Bicycle and pedestrian mobility and access
- Accessibility that meets or exceeds ADA standards
- Network operations
- Parking utilization
- Goods delivery
- Transit access and operations
- Community character
- Public space opportunities
- Street network resiliency
- Stormwater capture and/or filtration
- Plantings
- Aesthetic appeal
- Temporary and permanent art placement
- Community priorities

Motor vehicle level of service (LOS) is a major consideration in developing a project design because of the importance of maintaining traffic flow to the city’s economy. DOT therefore treats LOS as a priority.

DOT conducts design and operations analyses as required by federal, state, and local laws, rules, and regulations (including CEQR procedures); for information on the traffic forecasts that inform these analyses, see “Sustainable Street Design” on (2.0.1) in the Geometry chapter. DOT also conducts its analyses according to standard engineering practices and design guidelines and standards (including those described in this Manual). The level of review varies by project.

The public right-of-way (ROW) serves multiple types of users and functions. LOS must therefore always be balanced with other considerations such as safety and community character.
1.0 Introduction

Reviews by Other Entities

Other city agencies and public utilities regularly review project designs. The New York City Fire Department (FDNY) reviews any designs—whether Operational or Capital—that might affect its operations. The Department of Environmental Protection (DEP) and public utilities review each Capital project for potential impacts on their infrastructure and for opportunities to fold in enhancements to their infrastructure as part of the project.

Aside from FDNY and DEP, other city agencies review DOT projects as necessary. The Department of Parks and Recreation (DPR) reviews all projects that impact existing trees or propose new trees. The New York City Police Department (NYPD) reviews DOT projects that may have security implications. The Mayor’s Office for People with Disabilities (MOPD) reviews Operational projects for consistency with ADA standards.

The Public Design Commission (PDC) reviews some Operational projects, depending on whether the design is intended for use in a fixed location during a period of more than one year. At several stages of design, PDC reviews all Capital projects that feature streetscape treatments whose usage is not standard, as indicated in this Manual. These reviews may require multiple submissions; see Design Development and Review Diagram for more information on PDC reviews and their interplay with typical design phases. The Landmarks Preservation Commission (LPC) reviews all Capital projects—and, under certain circumstances, Operational projects—in historic districts.

Major transportation projects (as defined by Local Law 90 of 2009) require notification to the affected community board(s) and council member(s) as well as consultation with multiple agencies per Section 19-101.2 of the New York City Administrative Code.

See Table 1A for more information on reviews of DOT projects by other entities.

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Signalized Intersections</th>
<th>Unsignalized Intersections</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>≤ 10.0</td>
<td>≤ 10.0</td>
</tr>
<tr>
<td>B</td>
<td>> 10.0 and ≤ 20.0</td>
<td>> 10.0 and ≤ 15.0</td>
</tr>
<tr>
<td>C</td>
<td>> 20.0 and ≤ 35.0</td>
<td>> 15.0 and ≤ 25.0</td>
</tr>
<tr>
<td>D</td>
<td>> 35.0 and ≤ 55.0</td>
<td>> 25.0 and ≤ 35.0</td>
</tr>
<tr>
<td>E</td>
<td>> 55.0 and ≤ 80.0</td>
<td>> 35.0 and ≤ 50.0</td>
</tr>
<tr>
<td>F</td>
<td>≥ 80.0</td>
<td>> 50.0</td>
</tr>
</tbody>
</table>

Level of Service (LOS) grades. Traffic engineers and planners use LOS analysis at signalized and unsignalized intersections to measure a project’s impact on vehicular traffic. They analyze and compare intersections under existing and “post-build” conditions. Under the CEQR Manual, project designs that worsen LOS to below mid-D in a model require a full environmental impact statement and often mitigation.

Projects Initiated Outside DOT

While this chapter focuses on projects that originate at DOT, other entities—both public and private—can plan and design projects that affect the ROW. In such cases, DOT works so that the projects meet established criteria—particularly with regard to safety—and provides guidance on meeting other requirements and guidelines, such as those enumerated in CEQR and this Manual.

Project designs must conform to existing contexts or, if other, nearby projects are planned, to future conditions. For instance, a project site might be a segment of an official truck route or of a planned bicycle route, in which case DOT requests that sufficient lane widths be maintained to continue to accommodate trucks, or asks that bike lanes be incorporated into the design.

The New York City Economic Development Corporation (EDC) designs and builds many projects in the ROW. DOT collaborates with EDC on such projects.
Operational Projects

1.1.1 Origination

Operational projects can originate as a result of one or more of the following:

- A DOT citywide safety initiative, such as Safe Streets for Seniors, identifies an area in which to make safety enhancements based on crash data and other factors
- As is the case with the development of a Select Bus Service route and many other projects, a DOT unit leads a citywide or neighborhood-level planning process that identifies modifications
- Another city agency’s project, such as a DCP area master plan, creates an opportunity for DOT to make cost-effective enhancements in the course of the project
- Elected officials provide federal or state grants or earmarks to fund a project
- Elected officials, the general public, business improvement districts, other agencies, or community boards request certain treatments or ask DOT to investigate conditions and issues

The New York City Charter mandates that each community board submit to the mayor and the appropriate borough president statements of its expense budget priorities for the fiscal year. This is one mechanism by which a community board can originate a DOT Operational project. Each community board must also submit its capital budget priorities. See Section 230 of the New York City Charter for more information.
1.1.2 Planning & Design

Scoping (1–4 Months)
DOT plans and designs most of its Operational projects rather than engaging a consultant to do so. When it begins to plan a project, agency staff conduct site visits, talk to stakeholders, and collect appropriate information, which typically includes some or all of the following:

- Crash data
- Traffic speeds
- Pedestrian, bicycle, and motor vehicle volumes
- Turning-movement counts
- Parking utilization
- Contextual information, particularly local land uses, parking regulations, bus/truck route information, etc.
- Inventory of existing infrastructure, such as fire hydrants, storm drains, manholes, sidewalks and curbs, curb cuts, etc.
- Relevant demographic data, such as high proportions of elderly New Yorkers and/or people with disabilities

Preliminary design concepts often emerge from initial data collection and information from stakeholders.

Design (6–12 Months)
DOT surveys the project site and creates a base map to establish existing conditions. Agency staff then design enhancements that meet project goals. DOT may collect additional information as the project is developed if other nearby intersections are determined to be in need of modification.

DOT consults with FDNY to address any concerns about the impact of the designs on its operations. The agency also presents the preliminary concepts to the relevant community board and elected officials for input. If the project is a major transportation project, as defined in Local Law 90 of 2009, DOT also consults with NYPD, the Department of Small Business Services, and the Mayor’s Office for People with Disabilities. The Department of Sanitation (DSNY) is consulted when a design will clearly impact its operations. Designs for all works of art and structures intended for use in a fixed location for more than one year are subject to PDC review.

In some cases, if DOT contemplates making changes to signal timing or narrowing or removing lanes, the agency uses computer modelling to anticipate future conditions and adjust the plan or make improvements as needed.

1.1.3 Implementation (2–90 Days)
Once a project design is completed, the relevant DOT unit and/or outside contractors implement the project. The work season is usually between mid-April and mid-November.

DOT staff monitor and analyze crash data at the project site for up to three years after implementation. DOT also compares pre- and post-implementation motor vehicle, bicycle, and pedestrian data to determine what impact, if any, the project had on mobility. If issues arise out of this analysis, DOT may revisit the project to make modifications. DOT is increasingly measuring other project-performance indicators as well, such as economic and environmental impacts. Much of these data are available in DOT’s annual Sustainable Streets Index report.

DOT’s Traffic Safety Data Viewer displays and exports crash data details and summaries for corridors and intersections. Information from the Viewer informs project scoping.
1.2 Capital Projects

1.2.1 Origination

DOT Capital projects are initiated in any of the following ways:

- DOT identifies structural issues with roadways, bulkheads, retaining walls, or step streets. (This Manual does not cover bridges, tunnels, and viaducts, which are managed by DOT’s Bridges division)
- DOT divisions identify safety, mobility, resiliency, or other issues that need Capital enhancements
- DOT citywide initiative, such as the Safe Routes to Schools program, identifies areas in which to make enhancements. Such initiatives can also employ Operational work
- Another agency’s project, such as a DEP infrastructure upgrade, creates an opportunity for DOT to incorporate enhancements to the ROW
- The general public or community boards make requests, sometimes obtaining funding from their elected officials or from grants
- Elected officials provide grants and earmarks to fund a project
- The mayor or other elected officials establish priorities to be fulfilled by DOT
- Non-profit organizations with community support apply to DOT’s Plaza Program to have public spaces built in under-utilized ROW

1.2.2 Planning & Design

Scoping (3 Months–1 Year)

When a Capital project is proposed, DOT creates an initial project budget and adds the project to the agency’s capital plan, which is updated three times per year. The Office of Management and Budget (OMB) must approve the addition of the project to DOT’s capital plan before work can begin.

DOT begins research into the project location and visits the site with various agency divisions and other stakeholders to discuss the project scope. The agency then defines the project scope; this process generally takes several months to a year, depending on the project’s size and complexity.

Special attention is given to whether the project is located in a flood-vulnerable area, according to the NYC Preliminary FEMA Flood Map (FEMA, 2015). Capital projects in Flood Hazard Zones may involve many additional resiliency considerations from planting selection and salt tolerance to concrete and asphalt thickness. As of December 2015, New York City is developing a set of resiliency-focused design principles for projects in flood-vulnerable areas.

Scoping also considers the impacts of climate change, including projected sea level rise and coastal storm surge. To ensure consistency in these measurements, all elevations are measured in accordance with the North American Vertical Datum of 1988 (NAVD88).
The likelihood of PDC review should be determined during scoping. If PDC review is considered probable, its extent should be determined, and the design team should structure its schedule accordingly.

PDC Conceptual Review
During Preliminary Design

Necessary for complex or large-scale projects, including those subject to ULURP

PDC Preliminary Review
Beginning of Final Design

This is typically the first time PDC reviews the design. Preliminary review is generally an iterative process that may require multiple submissions.

- Community Board review is required prior to submission
- All necessary interagency coordination should be accomplished prior to submission
- Maintenance responsibilities must be identified and addressed prior to submission
- Significant design changes after preliminary approval must be submitted for PDC review prior to proceeding to 90% final design

PDC Final Review
90% Final Design

Conditions of Preliminary approval must be resolved. Projects — generally those that are narrow in scope — can be submitted for preliminary and final approval simultaneously, provided they comply with all requirements for both levels of review.

- All maintenance concerns must be resolved. Outside maintenance partners must commit to responsibilities, as applicable

Note: See the PDC’s website at http://www1.nyc.gov/site/designcommission/review/requirements/requirements.page for submission guidelines.

Note: If the project affects a landmark or is located in a scenic landmark or historic district, it must be submitted to the Landmarks Preservation Commission.
If the project includes non-standard elements, such as distinctive materials or furnishings, OMB reviews and comments on the preliminary project scope and budget. The project is then transferred to the Department of Design and Construction (DDC) for detailed design and implementation (see “Capital Project Initiation”) using the Capital Project Initiation form (CPI). The CPI includes:

- Project Purpose/Justification
- Site plan
- Project Scope resulting from scoping process
- Cost Estimate and/or Available Funds
- Funding Sources summary
- Conceptual Design, if applicable
- Other relevant reference materials

Design (1–3 Years)
DDC usually awards a contract or task order to a consultant to design the project. For less complex projects, DDC utilizes in-house staff. DDC and the consultant conduct an analysis of existing conditions, and DDC simultaneously requests that all DOT divisions and other relevant agencies provide information that may have some bearing on the project — e.g., traffic analysis, crash data, environmental studies, etc. — and about other planned or ongoing work occurring in the project area or nearby.

The role of Department of Design and Construction (DDC) is to:
- Perform or contract for and oversee design work, procure construction services, and manage the construction process for DOT’s Capital roadway projects
- Coordinate among all stakeholders and manage outreach to communities affected by projects
- Manage Capital street work funded by different city agencies and coordinate Capital programs to minimize conflicts

Schematic Geometric Design
The consultant creates a schematic geometric design — a basic design showing curblines and markings — upon which all DOT divisions comment. Changes in geometry or to the number of moving lanes require further traffic analysis.

Other entities also review project designs. See Table 1.A and REVIEWS BY OTHER ENTITIES (1.0) for more information.

Final Design
Final Design begins the process of creating construction documents. Once DDC and its consultant incorporate all of DOT’s comments on the schematic geometric design, the consultant produces the final design in three stages: 40%, 75%, and 100% completion. DDC circulates each set of drawings to all DOT divisions and to the relevant community boards and elected officials — as well as, in some cases, to other agencies and utilities — for their review. At 40% and 75% design, DOT collates and transmits its comments to DDC, and the consultant incorporates the comments into the next design phase. DDC holds “alignment” meetings with the private utilities during final design, as necessary, to avoid conflicts with their infrastructure and so that there is minimal disruption to the construction schedule.

Acquisition/ULURP as Necessary (1–2 Years)
Capital projects sometimes require the acquisition of private property (e.g., to build a new street or widen an existing street) or Uniform Land Use Review Procedure (ULURP) (e.g., to map a new street or change a street’s mapped width). Either action often necessitates completion of an environmental impact study. These processes will generally add another year or two to a project’s implementation timeline.

1.2.3 Construction (1–2 Years)
Once the design is complete, DDC requests a construction Certificate to Proceed (CP) from OMB and bids out the project to construction management (CM) firms and contractors. OMB typically issues the construction CP before the CMs and contractors respond. Construction can begin when the contract with the selected bidder is finalized with DDC.
Case Studies
Purpose
Enhance safety for all users, improve mobility, add landscaping, and create new public space in an area that sees thousands of pedestrians daily.

Context
The land uses in the area are generally commercial, with some residential. The Astoria Blvd N/Q elevated subway station is a major pedestrian generator and destination, with many subway riders transferring to the M60 bus here to go to LaGuardia Airport.

The recent construction of a senior center at the intersection of 29th Street and Hoyt Avenue South increased the urgency of the project enhancements.

Project Origination
DOT’s Queens Borough Commissioner’s office co-hosted a New York Metropolitan Transportation Council (NYMTC) “Walkable Communities” workshop in late March 2009, focused on the project area. Safety was a major concern: the intersection of 31st Street, Hoyt Avenue, and Astoria Boulevard was the highest crash location in northwestern Queens, and, although pedestrian injuries in the area were low, participants nonetheless perceived this multi-segment intersection as dangerous.
Planning & Design

NYMTC’s workshop served as an ideal start to the planning and design process: it included stakeholders who could provide local expertise (e.g., members of Queens CB 1, local business owners, and officers from the local precinct), and it generated a comprehensive list of problems that DOT could explore in developing proposed solutions.

DOT conducted site visits, collected data (travel times, vehicle volumes, vehicle turning movement counts, pedestrian and bike counts, crash data, curb regulations, and signal timing), took field measurements, analyzed traffic in computer models — in order to develop a comprehensive proposal. DOT met with MTA Bridges & Tunnels on site to discuss adding a new traffic signal and pedestrian crosswalk at 29th Street where the RFK Bridge exits into the neighborhood. DPR collaborated on planning the addition of trees to new and expanded traffic islands.

DOT then presented its findings and recommendations to elected officials as well as Queens CB 1’s Transportation Committee and, as appropriate, made changes to the project design in response to feedback. Queens CB 1’s full board then approved the design.

Implementation

In early December, 2009, DOT crews laid new concrete, resurfaced roadway segments, installed signals, markings, and signs, and changed signal timing. Some work was done on the MTA’s RFK Bridge, and DPR personnel managed the landscaping. All work was completed in five months.

Results

The final design enhanced the pedestrian experience with curb extensions to reduce crossing distances, new and expanded pedestrian spaces, and more convenient transit connections. The project also included the following: new signal phasing and timing throughout the project area; greater travel lane clarity through new markings and signage through intersections; rush hour turn bans off 31st Street; and additional parking spaces on Hoyt Avenue South. New bicycle network connections were also added.

RFK Bridge operations were unaffected, and motor vehicle travel times through the main intersection improved.
Originally conceived as a series of safety enhancements, the West Houston Street Capital project was expanded to include DEP and MTA sub-surface infrastructure upgrades. The end product was therefore considerably more robust and durable.

Purpose

Enhance safety, reduce motor vehicle congestion, and replace aging infrastructure.

Location

At its western end, Houston Street serves as the border between SoHo to the south and the West Village to the north. The project includes part of East Houston Street.

Context

Land uses in the corridor vary: there is a mixture of manufacturing with a commercial overlay at the western extent and mixed commercial and residential in the center. Parking is allowed along most of the street. The M21 bus runs along the entire length of Houston Street, and several subway lines stop along the street.

Project Origination

A number of factors led to the project. Houston Street, last rebuilt in the late 1950s, was in need of upgrading. The corridor’s crash rate was of concern to DOT, with rear-end crashes involving vehicles turning left off Houston Street being the predominant type of crash. Finally, local elected officials provided funding for new plantings in the median to replace dead trees. DOT determined that widening the median would be necessary to support plantings, and this would also enhance pedestrian safety.
1.3.2 West Houston Street

Planning & Design

The Capital Project Initiation form (CPI) was drafted in November 2002. DOT and DDC met with Transportation Committees of Community Boards 2 and 3 several times between 2001 and 2004 to present plans for feedback. CB2 passed a resolution in support of the project in 2004.

Several agencies were involved in the project besides DOT: DDC (engineering, design, and construction); DEP (water and sewer); DPR (new park and trees and other plantings); LPC (review); PDC (review); and MTA New York City Transit, which modified portions of Houston Street between Elizabeth Street and Bowery to facilitate a new subway fan plant. DOT transferred necessary funds to the MTA so the work could be performed in advance of the roadway project.

During the planning process, DEP decided to upgrade its water and sewer lines, thereby transforming the project into a full reconstruction. Also, utility companies decided to make enhancements, adding to the project’s complexity and cost.

The project design reduced crossing distances with wider sidewalks, wider medians modeled on the Broadway malls, curb extensions, bollards, and pedestrian safety islands. The widened medians made possible the addition of left-turn bays and benches. One eastbound travel lane was removed between Avenue of the Americas and W. Broadway/LaGuardia. Also, between Avenue of the Americas and Varick Street, a parking lane was removed to widen the narrow south sidewalk.

Implementation

Construction started August 2005 and was completed in June 2009.

Additional water and sewer main work, funded by DEP, increased the cost of the project from $16,067,439 to $31,099,118 and contributed to a longer construction timeline.

Results

Crashes involving injuries within the project area dropped by 24%. Motor vehicle travel times in westbound lanes dropped dramatically during the weekday afternoon peak; travel times in eastbound lanes increased slightly during the weekday afternoon peak, potentially due to ongoing construction on East Houston.

Amenities included a new park at Bedford Triangle, benches on the medians, extensive landscaping and planting of 74 trees throughout the project area, Davit light poles, pigmented-concrete sidewalks, and granite curbs.

The project enhanced the median landscaping and provided seating where appropriate.
Willoughby Plaza was originally built as an Operational project. This allowed local businesses to experience the street segment as a plaza and to observe the project’s impacts in real time. Once it was clear that the change benefitted the area, DOT reconstructed the site to make it permanent.

Purpose
Enhance pedestrian safety, provide more open space and pedestrian and bicyclist amenities, and address illegal parking on Willoughby Street.

Location
The project site is located in the heart of Downtown Brooklyn, a bustling, mixed-use neighborhood and New York City’s third-largest central business district. The project created a permanent plaza on Willoughby Street between the Adams Street East Service Road and Pearl Street, plus about 120 feet along the service road.

Context
The surrounding area is characterized primarily by medium-to high-density commercial and institutional uses and street-level retail. On the north side of Willoughby Street, two- to 13-story buildings house mostly government and educational uses, while on the south side, lower-rise buildings house retail and small offices. C5-4 and C6-4.5 zoning regulations surround the site.

Project Origination
In 2004 EDC and DCP drafted the Downtown Revitalization Plan, which recommends a series of zoning map text changes, new public open spaces, and other actions. This set the stage for more intense development in the area, which led to significantly increased pedestrian volumes on Willoughby Street. DOT created an interim plaza at this site in spring 2006. Willoughby Plaza eventually became a Capital project and was reconstructed in permanent materials. The project budget was $1.8 million.
Planning & Design

Before and after creating the interim plaza on this segment of Willoughby, DOT conducted extensive community outreach and technical analyses, including an Environmental Assessment Study (EAS). This work included a study of the impacts of the closure on traffic operations, pedestrian volumes, and deliveries. Since DOT conducted an EAS for the Operational project, the Capital project did not require an EAS.

The Capital Project Initiation form (CPI) for the permanent plaza was completed in late July 2007. Entities involved in the project, besides DOT, include DDC (engineering, design, and construction), PDC (review), and the MetroTech Business Improvement District (maintenance partner).

DOT engaged local stakeholders throughout the design process via MetroTech BID, which maintains and programs the plaza. The BID was involved in all aspects of the project design. DOT also worked directly with the adjacent property owner.

The design buffered the plaza from the Adams Street East Access Road with a large, contiguous planter. Also, new trees mirrored a line of existing trees in the heart of the plaza. Finally, the design included nearly 200 linear feet of fixed seating, plus opportunity for nearly 200 movable chairs.

The existence of a significant amount of underground vaults and utilities prevented the incorporation of “green” drainage infrastructure into the design.

Implementation

Construction began in fall 2011 and was completed in spring 2013.

Results

Administered by the MetroTech BID, Willoughby Plaza provides public seating, concessions, and landscaping and cleaning services for pedestrians visiting the nearby restaurant and retail locations, several of which have opened since the plaza’s completion. In addition to acting as a gathering space, the plaza serves as a venue for year-round programming for the community, where activities regularly attract upwards of 100 participants. Events include family-friendly concerts, seasonal activities, and the popular Downtown Brooklyn Nights series, featuring live music, dance lessons, and movies screenings.
<table>
<thead>
<tr>
<th>Section</th>
<th>Geometric Treatment</th>
<th>Wide</th>
<th>Limited</th>
<th>Pilot</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Roadway & Lanes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.1</td>
<td>Bike Lane & Path</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.1a</td>
<td>Bike Lane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.1b</td>
<td>Bike Path</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.2</td>
<td>Bus Lane & Busway</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.2a</td>
<td>Bus Lane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.2b</td>
<td>Busway</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.3</td>
<td>Shared Street</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.4</td>
<td>Plaza</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.4a</td>
<td>Permanent Plaza</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.4b</td>
<td>Interim Plaza</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Sidewalks & Raised Medians</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2.1</td>
<td>Sidewalk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2.1a</td>
<td>Full Sidewalk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2.1b</td>
<td>Ribbon Sidewalk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2.2</td>
<td>Curb Extension</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2.2a</td>
<td>Curb Extension: Community Facilities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2.2b</td>
<td>Curb Extension: Bus Bulb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2.2c</td>
<td>Curb Extension: Mid-Block Narrowing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2.3</td>
<td>Raised Median</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2.4</td>
<td>Pedestrian Safety Island</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2.5</td>
<td>Median Barrier</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Traffic Calming</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3.1</td>
<td>Lane Narrowing and Lane Removal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3.2</td>
<td>Raised Speed Reducer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3.2a</td>
<td>Raised Speed Reducer: Speed Cushion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3.3</td>
<td>Gateway</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3.4</td>
<td>Raised Crosswalk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3.5</td>
<td>Chicane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3.6</td>
<td>Neighborhood Traffic Circle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3.7</td>
<td>Roundabout</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3.8</td>
<td>Raised Intersection</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Introduction

2.0 Introduction

About this Chapter
The geometric design of streets is integral to their use; for instance, overly wide roadways and corners with large turning radii tend to invite speeding and create an environment that is uncomfortable for pedestrians. Pedestrian ramps improve transitions for users, particularly people with disabilities. Geometry also affects streets’ economic, community, and environmental impacts.

This chapter establishes general guidelines for the geometric design of streets as well as a “toolbox” of geometric treatments that may be used to enhance safety, mobility, and sustainability.

The recommendations of this chapter supplement rather than replace existing sources of detailed engineering guidance and do not supersede any existing federal, state, or city laws, rules, and regulations. All projects remain subject to relevant statutes, such as the Zoning Resolution of the City of New York, City Environmental Quality Review (CEQR) and appropriate reviews and approvals of oversight agencies.

Guidance Sources

Applicability and Exceptions
All new projects that significantly impact public and private streets should follow these guidelines. DOT approval will be based on site-specific conditions and cost-effective engineering standards and judgment, with the safety and accessibility of all street users being of paramount importance.

Usage Categories
Geometric treatments are divided into three categories: Wide, Limited, and Pilot applications.

Wide
Geometric treatments of this type are in wide use throughout New York City. They constitute the basic set of elements that are typically found on city streets. Designs should incorporate them wherever appropriate. These treatments generally require less intensive review than limited or pilot treatments.

Limited
Geometric treatments of this type are currently in limited use in New York City. While the designs are well-established, their application is contingent on site-specific conditions. These treatments will require more in-depth review of appropriateness and feasibility.

Pilot
Geometric treatments of this type are currently in, at most, limited use in New York City, but have been employed successfully in other US and international cites. Appropriate design criteria are still under development for application in New York City. Proposals for pilot usage of these treatments are encouraged and will be evaluated on a case-by-case basis.
The following guidelines expand on the general policies and principles outlined in the Introduction, with more detailed information specific to geometric street design.

Sustainable Street Design

Street reconstruction projects are, as a rule, designed to accommodate motor vehicle traffic that is forecasted for a certain year (the “design year”) in order to meet requirements of the Clean Air Act; and in many jurisdictions in the United States the forecast invariably calls for growth in motor vehicle traffic. For federally funded projects, the design year is 20 years after the project is completed (the “build year”). In New York City, consideration should be given to recent trends in traffic and mode choice — as documented in DOT’s Sustainable Streets Index — and their implication for traffic volumes in future years (e.g., five years after the build year). In most parts of the city, motor vehicle traffic volumes are stable or shrinking, while transit is growing; this is due to New York City’s heavy investments in the last two decades in subway, bus, pedestrian, and bicycle infrastructure. These investments have spurred rapid increases in non-auto travel, suggesting that there is a positive relationship between street design and mode choice: streets that prioritize the safety and movement of pedestrians, bus riders, and cyclists equally with the movement of cars will produce more sustainable outcomes.

As the New York State DOT’s Project Development Manual states, it is understood that, even for a federally funded project, it “…may not always be practicable to…fully accommodate design year traffic, or even to fully address existing traffic congestion.” Further, “…traffic forecasts alone do not dictate project scope. Forecasts are only one of many factors (safety needs, mobility needs, environmental issues, community needs, etc.) to be addressed.” (See p. 5–2 Design Year Traffic Forecasts section of the Project Development Manual for more information: www.dot.ny.gov/divisions/engineering/design/dqab/dqab-repository/pdmapp5.pdf.)

Vehicle Target Speed

Streets should be designed with target speeds (see Glossary) and speed limits appropriate to their surrounding uses and desired role in the vehicular network. The citywide speed limit is 25 mph, except where otherwise noted. New York State Vehicle & Traffic Law (VTL) Section 1642(a)(26)(a) currently allows speed limits below 25 mph, and as low as 15 mph in New York City if used in conjunction with traffic-calming measures. Slower target speeds and speed limits should be considered on local streets, residential streets, and alleys; on streets adjacent to schools; in areas with higher populations of seniors or people with disabilities; and on waterfronts, in parks, or in and around other significant pedestrian destinations.

DOT applies design interventions as necessary to slow down fast and aggressive driving. These interventions, known as “traffic-calming” measures, include LANE NARROWING & LANE REMOVAL (2.3.1), SPEED CUSHIONS (2.3.2a), CURB EXTENSIONS (2.2.2), and RAISED CROSSWALKS (2.3.4), and sometimes are intended also to improve pedestrian comfort. As part of its efforts to enhance safety, DOT deploys traffic-calming devices in neighborhoods around schools and in areas with high numbers of crashes involving elderly pedestrians. Community groups can also request certain traffic-calming interventions at specific locations by requesting them from their DOT Borough Commissioners. Some traffic-calming treatments can be designed in such a way as also to enhance the public realm.

Wide roadways like Queens Boulevard can be mitigated with measures such as pedestrian facilities on medians: Queens
Roadway Width, Corner Radii, and Crossing Distance

The roadway — the portion of a street designed, enhanced, or ordinarily used for vehicular travel, exclusive of the sidewalk — should be designed to be the minimum possible width, with the minimum number of lanes, that safely and cost-effectively allows for the desired operations of motor vehicles, buses, and bicyclists. Narrower roadways minimize pedestrian crossing distances, encourage safe driving behavior, and reduce impermeable, heat-absorbing asphalt coverage.

Roadway reconstructions should be designed for traffic volumes expected in the actual build year. Additional consideration should be given to recent trends in traffic and mode choice — as documented in DOT’s Sustainable Streets Index — and their implication for traffic volumes in future years (e.g., five years after the build year). Excess width should be reallocated to provide walking, transit, and bicycling facilities, public open space, green cover, and/or stormwater source control measures. If financial limitations preclude final implementation of street retrofits (e.g., curbing, streetscaping, etc.), the reallocation of space should still proceed with temporary or least costly approaches such as restriping.

To reduce pedestrian crossing distances further and slow turning vehicles, all roadway corners should be designed with the smallest possible radius that still accommodates the design vehicle and emergency vehicles.

Pedestrian crossing distances should be minimized in all locations utilizing the above methods and other treatments, such as CURB EXTENSIONS (2.2.2) (neckdowns) and RAISED MEDIANS (2.2.3). Sidewalk narrowings and roadway widenings should be avoided.

Design Vehicles and Emergency Access

The design vehicle (see Glossary) used for geometric street designs, typically a 30-foot-long single-unit truck, should be appropriate to the predominant intended uses of the given street and should not include commercial vehicles larger than New York City’s maximum allowable length. In addition, all street designs must consider FDNY, other emergency-vehicle, and sanitation-vehicle-access needs (e.g., for street cleaning and snow clearing).

Universal Design

Projects must meet or exceed all applicable federal, state, and/or local accessibility standards for facilities and public rights-of-way, including minimum clear path widths, inclusion of ADA-compliant pedestrian ramps and detectable warning strips, and provision of accessible transit facilities.

Drainage

All modifications to street geometry should consider and avoid unintended changes in the direction and disposition of stormwater runoff so as not to create ponding or flooding issues. Minimize impervious paved areas and utilize permeable paving wherever possible. Include planted areas and stormwater source controls within the roadway wherever feasible. Stormwater control within the street network may offer opportunities for resiliency benefits in areas that experience frequent flooding.

DOT upgraded the complex intersection of Melrose Avenue, Third Avenue, and East 149th Street — known as the Hub — in 2008. Bronx
Roadways & Lanes
Bike Lane & Path

A dedicated on-street lane or path for bicycles (see Glossary). Bikeways are typically designed as BIKE LANES within the roadway delineated with markings (2.1.1a, also known as Class 2 bike lanes) or as BIKE PATHS physically separated from traffic for most of their length (2.1.1b, also known as Class 1 bike lanes). Another typical design is the shared lane (Class 3 bike lane) described in Table 1. The shared lane is not covered by the Manual. Bikeways in parks, or in other places with heavy pedestrian traffic can also be designated by bike stamps.

Benefits

Provides dedicated space for bicyclists, enhancing safety, comfort, and mobility

Cumulative with other bikeways, provides a comprehensive network of recommended routes for bicyclists, thereby encouraging bicycling

Application

On streets with high current or anticipated bicycle volumes or that offer important linkages to destinations or between routes, or to calm overly-wide roads for cycling circulation

Considerations

Ensure sufficient outreach to people with vision disabilities and facilities serving this population to provide adequate notification of changes during the planning and implementation phases

Design

See Table 1 (following 2.1.1b) for a listing of typical bikeway designs and their respective spatial requirements, ideal applications, and advantages and disadvantages

Create connectivity with adjoining bikeways, bike parking, transit, and commercial or cultural destinations

Utilize permeable paving and/or paving with a high SRI value within BIKE LANE OR BIKE PATH

Utilize recycled content in paving materials

LEFT: Two-way, parking-separated bike path: Prospect Park West, Brooklyn

ABOVE: Buffered bike lane: 9th Street, Brooklyn
2.1.1a Bike Lane

Bike Lane

Usage: Wide

A portion of a roadway that has been designated by striping, signs, and pavement markings for the preferential or exclusive use of bicyclists. Also known as a Class 2 bike lane. Physical separation of bike lanes is desirable, but is not always possible due to physical or operational constraints designated by bike stamps.

Benefits

See benefits of BIKE LANES & PATHS (2.1.1)

On-roadway bike lanes that narrow or replace motor vehicle lanes can calm traffic

Considerations

Without physical separation, vehicles can block bike lanes, making enforcement of violations more critical

Application

See application guidance for BIKE LANES & PATHS

Consider using a BIKE PATH (2.1.1b) rather than, or in addition to, a BIKE LANE where street conditions permit (e.g., street width, traffic volume, etc.)

Design

See design guidance for BIKE LANES & PATHS

BIKE LANES should be buffered when possible, typically with 3 feet of channelization

At intersections with complex traffic patterns — or when bike lanes are located immediately adjacent to the curb — bike lanes can be given visual emphasis through the application of green-colored pavement
A path intended for the use of bicycles that is physically separated from motorized vehicle traffic by an open space or barrier and either within the roadway or within an independent right-of-way. Also known as a Class 1 bike lane. Physical separation of bikeways can sometimes be preferable on wide or busy streets, on major bike routes, or along long, uninterrupted stretches. Separation can take the form of a painted buffer demarcating the bike lane behind a “floating” parking lane, a narrow curb or raised median, or a wider raised median with landscaping. An alternative form of separation is grade-separation, where the bike path is located at sidewalk grade or in between sidewalk and roadway grade.

Benefits

- See benefits of BIKE LANES & PATHS (2.1.1)
- Offers greatest bicyclist separation from motor vehicle traffic on mid-block sections
- Reduces risk of “dooring” (a motor-vehicle occupant opening her door into the path of an oncoming bicyclist)
- Reduces or eliminates blocking of the bike lane by motor vehicles and the swerving of bicyclists into mixed traffic
- Encourages novice and less confident cyclists to opt for cycling

Application

- Where a BIKE LANE is appropriate and the street is an important bicycle network connection, or has high motor vehicle volumes or speeds or multiple moving lanes, or is along a park, waterfront, or other open space where cross streets and driveways are infrequent
- Consider wherever a BIKE LANE is appropriate

Design

- See design guidance for BIKE LANES & PATHS (2.1.1)
- Care must be given to the design of bike paths at intersections and driveways to maintain visibility of the bicyclist to motorists (and vice-versa) and to reduce the risk of turning conflicts with motor vehicles

Considerations

- Design consideration must be given to pedestrians with vision/mobility disabilities, emergency-vehicle and paratransit access to adjacent buildings, snow-clearing and street-sweeping needs, and commercial vehicles loading and unloading

In some circumstances (e.g., long paths along open space or waterfront), paths can be designed for shared use by bicyclists, pedestrians, skaters, wheelchair users, and other non-motorized users (“a shared-use path”) rather than as a separate bike path and SIDEWALK (2.2.1)

If designed as a shared-use path, provide adequate space appropriate to anticipated volumes of low-speed users (pedestrians) and higher-speed users (bicyclists) so as to provide safe and comfortable accommodation of both and minimize conflicts between the two

Design RAISED MEDIANS that separate bike paths according to the RAISED MEDIAN section (2.2.3)

If a separated bike path uses raised medians, see the CURB-HEIGHT MEDIAN section (6.2.1a) or the RAISED MEDIAN section (6.2.1b) for information on plantings
Guide to New York City On-Street Bicycle Facilities

TABLE 1

<table>
<thead>
<tr>
<th>Class 1: Bike Path (2.1.2b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal-Protected Path</td>
</tr>
<tr>
<td>9th Avenue, West 59th to 16th Streets, Manhattan</td>
</tr>
<tr>
<td>Protected Path with Mixing Zones</td>
</tr>
<tr>
<td>Grand Street, Manhattan</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Required</th>
<th>14 feet</th>
<th>8 feet</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Parking Loss</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>5–6 parking spaces/turn bay (usually every other block)</td>
<td>High</td>
</tr>
<tr>
<td>4–5 parking spaces/mixing zone (usually every other block)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ideal Application</th>
<th>Commercial Avenues</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Wide one-way multilane street</td>
</tr>
<tr>
<td></td>
<td>• Excess road space</td>
</tr>
<tr>
<td></td>
<td>• High-speed vehicular traffic</td>
</tr>
<tr>
<td></td>
<td>• High potential for motor vehicle intrusion into standard lane</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commercial Cross-Streets</th>
</tr>
</thead>
<tbody>
<tr>
<td>• One- or two-lane street</td>
</tr>
<tr>
<td>• Excess road space</td>
</tr>
<tr>
<td>• Low-speed vehicular traffic for safe mixing zone</td>
</tr>
<tr>
<td>• High potential for motor vehicle intrusion into standard lane</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Full protection for cyclists</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Major enhancement to pedestrian safety and comfort</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disadvantages</th>
<th>Parking impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cyclist mobility</td>
</tr>
<tr>
<td></td>
<td>Unproven (Pilot)</td>
</tr>
<tr>
<td></td>
<td>Complex review and implementation</td>
</tr>
<tr>
<td></td>
<td>Challenging to regulate floating parking</td>
</tr>
</tbody>
</table>

| Turn restrictions may be needed at complex intersections to maintain acceptable operations | Signal timing unchanged |
Busway

Usage: Limited

Benefits

See benefits of BUS LANE & BUSWAY (2.1.2)

Reduces or eliminates blocking of BUS LANE (2.1.2a)

Considerations

Design consideration must be given to emergency vehicle access, deliveries and pick-up/drop-off to adjacent buildings, and to snow-clearing and street-sweeping needs

Attention should be given to accommodation of and navigation by people with vision disabilities

Application

See application guidance for BUS LANES & BUSWAYS

Consider where a BUS LANE is appropriate and the street is a high-volume bus route and has adequate right-of-way to accommodate a busway

Consider wherever a BUS LANE is appropriate

Design

See design guidance for BUS LANES & BUSWAYS

Busways should be designed to allow emergency vehicles to bypass traffic

On routes with multiple tiers of bus service, passing needs (e.g., express buses) should be accommodated

If a median busway design is not separated with a wide median, then the median must widen to provide boarding platforms for bus passengers at bus stops, which must meet ADA standards

Turns across busways need to be controlled for safety; bus-only signals may be needed

Crosswalks, detectable warning strips and traffic control devices should be used to signal transitions between pedestrian space and busways for people with vision disabilities

RAISED MEDIANS used to separate busway should be designed according to the RAISED MEDIAN section

Utilize paving with a high SRI value within busway, for example concrete

For median-separated busway, see the CURB-HEIGHT MEDIAN section (6.2.1a) for information on plantings

2.1.2b Bus Lane & Busway: Busway

A physically separated lane reserved for bus traffic. Busways are similar to BUS LANES (2.1.2a) in most respects, however full or partial physical separation (typically through a narrow curb or wider RAISED MEDIAN (2.2.3) further improves bus speeds by minimizing blocking of the bus lane by other vehicles.

NOTE: For illustrative purposes only

LEFT: A short section of separated busway through a busy intersection: Willis Avenue, Bronx

ABOVE: Curb-aligned busway: Paris, France
2.1.3 Shared Street

Shared Street

Usage: Pilot

Often referred to as a “pedestrian-priority street,” a shared street is a low-speed, typically curbless roadway designed as a single surface shared among pedestrians, bicyclists, and low-speed motor vehicles.

Typically employed on low-vehicle-volume and/or high-pedestrian-volume streets, vehicles are slowed to very low speeds through a reduced speed limit, traffic calming, signage, and use of distinctive materials, furnishings, and other visual cues in the roadway that encourage drivers to travel with increased caution. Street users generally negotiate right-of-way cooperatively rather than relying on traffic controls, allowing pedestrians to dominate the street. The entire street thus effectively functions as a public space. Different forms of shared streets can be used in different contexts.

Benefits

- Allows freer pedestrian movement within walking-oriented areas and to and from surrounding land uses and destinations
- Reduces sidewalk crowding on narrow streets
- Maintains bicycle, local vehicle, and delivery access while creating an exceptionally pedestrian-oriented street that accommodates recreational and social activities
- Allows active land uses to spread into the surrounding street network, fostering a vibrant public realm

- Comfortable, attractive environment encourages “staying” activities such as relaxing, shopping, eating, and socializing
- Integrated design can incorporate art, street furniture, landscaping, and other innovative and attractive design elements
- Encourages partnerships with the community in beautification, maintenance, and programming of street space

Considerations

- Attention should be given to accommodation of and navigation by people with vision, hearing, and ambulatory disabilities
- May impact street drainage or require catch basin relocation
- May require loss of on-street parking
- Any community facilities integrated into the design, such as street furniture or public art, will typically necessitate the presence of a maintenance partner and a permit or revocable consent from the city
- Coordinate streetscape/utility work to minimize street cuts
Application

Consider on narrower streets (at most two moving lanes) or outer roadways of boulevard-type streets, with little or no through-traffic, and which are not major vehicular or bicyclist through-routes or designated truck routes

Consider on streets adjacent to major pedestrian destinations, where vehicle volumes are low and pedestrian desire lines are diffuse (i.e., pedestrians would like to cross the street in many places)

Consider on local residential streets whose design priority is to allow safe use of street space for recreational activities and green space, in partnership with residents or neighborhood groups

Consider on narrow, alley-type streets

Depending on the specific land uses, width, vehicle and pedestrian volumes, and other access and operational characteristics of the street, a shared street may not be appropriate, in which case consideration should be given to a standard roadway with alternative design options such as traditional traffic calming and/or a mid-block crossing

Consider as an alternative a fully pedestrianized street when pedestrian volumes are high, vehicle volumes are low, and vehicle access is not required during daytime hours

Design

Curbs should not be used, but pedestrian paths of travel alongside vehicle zones with guideways using tactile cues and maximum visual contrast should be included for people with vision disabilities

In the absence of curbs, special attention should be given to providing adequate drainage

Vehicle-free, accessible routes must be provided for the visually impaired

Design should utilize whatever horizontal, vertical, and material treatments are necessary to encourage vehicle speeds that are low (15 mph or lower) throughout, whether or not pedestrians are present

Use GATEWAY (2.3.3) or similar treatments and proper signage at entries to discourage through-traffic, indicate the change in street environment, and slow entering vehicles

Institute a reduced speed limit (New York State VTL Section 1642(a)(26) (a) currently allows as low as 15mph) along with the physical traffic-calming of the shared street

Attractive street materials, furnishings, and other objects within the street can be used to alert drivers and emphasize the pedestrian orientation of the space, subject to permits, maintenance agreements, or revocable consents as required

Include planted areas and stormwater source controls within the roadway wherever possible

Staggered sections of parking or loading zones can be used as a design option to constrict wider streets

To maintain the streetscape elements required for creating a low-speed environment and fostering a vibrant public space, careful attention must be paid to proper programming and management of the space, with the participation of an active maintenance partner where appropriate

Minimize impervious paved areas and utilize permeable paving wherever possible

Maximize trees and other green cover. See TREE BEDS (6.1) and ROADWAY PLANTINGS (6.2)

Utilize stormwater source controls wherever feasible. See STORMWATER MANAGEMENT PRACTICES (6.6)

Increase SRI value of paved surfaces to reduce urban heat island impact

Utilize recycled content in paving materials
2.1.4 Plaza

Plaza

An area located fully within the roadway that is designated by DOT for use by pedestrians. The space may contain benches, tables, or other facilities. DOT builds both interim and permanent plazas. Many plazas are built through DOT’s Plaza Program, which aims to enhance the public realm. See Chapter 1: PROCESS for more information on how DOT projects are planned, designed, and implemented.

Benefits

- Promotes social interaction and builds neighborhood identity
- Encourages pedestrian activity and associated health benefits
- Catalyzes local economic development
- Serves as a venue for a diverse range of community, cultural, and/or commercial events
- Enhances safety by narrowing wide roadways and/or normalizing intersections

Considerations

- The road segment’s relevance to the traffic network
- Open-space needs
- Surrounding land uses and site appropriateness
- Anyone can apply to the Street Activity Permit Office (SAPO) to stage events on DOT plazas. To learn more about the event permitting process, contact SAPO by phone at (212) 788-7567 or visit www.nyc.gov/cecm
- Advertising is not permitted in plazas
- Generally requires a maintenance agreement

Application

- Under-utilized, DOT-owned road segments and other city property
- Locations with high crash rates
- Neighborhoods that support repurposing streets for plazas

Design

- Plaza designs should support year-round events and programs
- See design guidance for PERMANENT PLAZA (2.1.4a) and INTERIM PLAZA (2.1.4b)
- Provide clear paths and tactile cues to accommodate people with disabilities
- Furniture should accommodate people with disabilities; for example, providing space for knee clearance for people using mobility devices
Permanent Plaza

Usage: Limited

Benefits

See benefits of PLAZA (2.1.4)

Considerations

See considerations for PLAZA (2.1.4)

Application

See application guidance for PLAZA (2.1.4)

- Neighborhoods with active not-for-profit organizations that can serve as Partners to maintain and manage plazas
- Areas with appropriate adjacent land uses, sufficient population density, proximity to transit, historic sites, significant view corridors

Design

Each permanent plaza is designed to reflect the character and context of its neighborhood. DOT and the Partner conduct a public process to develop an appropriate design that is responsive to the needs of the community.

- A consultant design team bases its plans on feedback from the public process
- Sites smaller than 2,000 square feet are not encouraged
- Plazas may include movable and/or formal and informal fixed seating; trees and plants (see TREE BEDS [6.1] and PLAZA PLANTINGS [6.4]); lighting; paving; information and wayfinding signage; subconcessions; public art (temporary and permanent); bicycle parking; and drinking-water fountains

- Incorporate public art where feasible
- All permanent public art must be coordinated through the Department of Cultural Affairs (DCA) Percent for Art Program and requires approval by the Public Design Commission (PDC).
- Permanent art may be completely integrated and functional (e.g., benches, tables, etc.), or it may be stand-alone art (e.g., a sculpture)
- Temporary art can be installed as a one-time project or cycled through on a temporary basis at a designated space in the plaza. Temporary art must be coordinated through DOT’s Urban Art Program. For guidelines and to apply to the Urban Art Program, visit www.nyc.gov/urbanart
- Minimize impervious paved areas and utilize permeable paving wherever possible
- Incorporate trees and other green cover. See TREE BEDS (6.1) and PLAZA PLANTINGS (6.4)
- Utilize stormwater source controls wherever feasible
- Increase SRI (solar reflective index) value of paved surfaces to reduce urban heat island impact
- Utilize recycled content in paving materials

Completed in spring 2013, Willoughby Plaza features new trees and a flexible, open space that lends itself well to a wide range of events and programming, including the art displays shown here: Brooklyn.
2.1.4b Interim Plaza

Interim Plaza

Usage: Wide

Benefits

- See benefits of PLAZA (2.1.4)
- Catalyzes community support for the space
- DOT can study the interim plaza and incorporate its observations and feedback into the eventual capital design of the space
- Tests maintenance partner’s capacity to maintain and program the plaza
- Epoxy gravel or paint creates a more reflective surface, making the space feel safer at night
- Cheaper and faster to design and install than a PERMANENT PLAZA

Application

- See application guidance for PLAZA (2.1.4)
- Typically the phase prior to a PERMANENT PLAZA (2.1.4a), delivering community benefits quickly, and generating feedback for permanent design
- As requested by a community and/or where a safety project provides a public-space opportunity

Design

- See design guidance for PLAZA (2.1.4)
- Geometry is engineered by DOT and is typically delineated with roadway markings and flexible reflective bollards
- Detectable warning strips are required at pedestrian access routes or crossings where the transition from pedestrian space to roadway is flush, and should include high color contrast from the plaza surface

Considerations

- See considerations for PLAZA (2.1.4)
- Maintenance partner replaces elements over time as needed
- Attention should be given to accommodation of and navigation by people with vision disabilities

In the absence of a curb, granite blocks are to be placed next to crosswalks when feasible to provide directional guidance for pedestrians with vision disabilities

DOT places edge objects, such as planters, granite blocks and flexible delineators in and around the space to create a consistent boundary and sense of enclosure, and to buffer it from motor vehicle traffic. DOT also applies epoxy gravel or paint to distinguish it visually from the adjacent roadway.

DOT and/or Partners provide publicly accessible furniture, such as moveable chairs and tables.

Incorporate temporary public art where feasible. See guidance for temporary art in PERMANENT PLAZA (2.1.4a).
Sidewalks must conform to ADA requirements for minimum clear path width and provision of spaces where wheelchair users can pass one another or turn around.

Provide an unobstructed clear path of 8 feet or one half the sidewalk width (whichever is greater) in commercial, high-density residential, and transit-adjacent areas.

Sidewalks in low-rise residential areas should be at least 5 feet wide.

Wherever possible, sidewalk cross-slope should not be greater than 2%.

Sidewalks must meet load-bearing, friction, and other requirements per relevant standard specifications and regulations.

ADA-compliant pedestrian ramps must be provided at all pedestrian crossings; separate ramps should be used aligned with each crosswalk and be centered on a continuation of the sidewalk.

Color of detectable warning strip should contrast with surrounding pavement: dark gray in areas of light pavement and white in areas of dark pavement. See DOT Standard Details of Construction drawing H-1011.

The area within 18 inches of the curb should be kept free of all obstructions.

New York City Mayor’s Executive Order No.22 of 1995 (the “Clear Corner Policy”) states that to the maximum extent possible, structures and objects should not be placed in the corner quadrant.

For recommended clearances between obstructions, see Revocable Consent Rules (Rules of the City of New York, Title 34, Chapter 7, Section 7-06(c)(5)), DOT Highway Rules (Rules of the City of New York, Title 34, Chapter 2, Section 2-10), DCA’s rules regarding newsstands (Rules of the City of New York, Title 6, Chapter 2, Subchapter G), and Proposed Accessibility Guidelines for Pedestrian Facilities in the Public Right of Way (US Access Board, 2011).

Include planted areas and stormwater source controls within sidewalks wherever possible when a maintenance partner is identified.

If work includes tree planting, consider the location of utility infrastructure, including DEP sewers and water mains.

Minimize impervious paved areas and utilize permeable paving wherever possible.

Maximize trees and other green cover wherever clearance allows. See TREE BEDS (6.1) and SIDEWALK PLANTINGS (6.3).

Utilize stormwater source controls wherever feasible.

Increase SRI value of sidewalk materials to reduce urban heat island impact.

Utilize recycled content in paving materials.
2.2.1a Sidewalk: Full Sidewalk

Full Sidewalk

Usage: Wide

Benefits

See benefits of SIDEWALK (2.2.1)

Provides increased space for pedestrian movement and improved curbside access as compared to a RIBBON SIDEWALK (2.2.1b)

Application

See application guidance for SIDEWALK (2.2.1)

Design

See design guidance for SIDEWALK (2.2.1)

A full sidewalk accommodates both pedestrian traffic and a range of street furnishings and fixtures. The area of the sidewalk closest to the curb, where light poles, signs, fire hydrants, waste receptacles, telephone booths, newspaper boxes, etc., are typically located, is referred to as the “furnishing zone.”

Full sidewalk: Seventh Avenue, Brooklyn (Credit: DCP)

Sidewalk corner with pedestrian ramps: West 110th Street, Manhattan
Benefits

See benefits of SIDEWALK (2.2.1)

Provides greater space for tree roots than a FULL SIDEWALK (2.2.1a) with INDIVIDUAL TREE BEDS (6.1.1a), improving long-term tree health

Provides a modest improvement in stormwater detention from the sidewalk and/or roadway as compared to a FULL SIDEWALK

Provides a more attractive streetscape in areas of low- to moderate-density residential land use

Application

Areas within zoning districts R1 through R6

Consider wherever pedestrian volumes can be accommodated and curbside activity is low

Design

See geometric design guidance for SIDEWALK (2.2.1) and materials guidance for SIDEWALKS (3.1)

Ribbon sidewalks should be at least 5 feet wide or as required to match the existing ribbon width in the immediate neighborhood; they should be wider along arterials and collector roads

Planting strips adjacent to ribbon sidewalks must be planted with groundcover vegetation for erosion control if a STORMWATER MANAGEMENT PRACTICE (6.6) is not used; herbaceous plant material, preferably native or adapted species, should be used rather than grass wherever possible, as turf absorbs water from tree roots, has little benefit to habitat, and requires the use of pesticides, herbicides, fungicides, and lawnmowers that can potentially damage tree roots

Where there are fire hydrants in the planting strip adjacent to a ribbon sidewalk, a 5-foot-by-5-foot slab of 6-inch-thick concrete on 6-inch, crushed-stone base extending from the curb to the sidewalk is required

Similar considerations apply to other elements, such as lampposts and signal posts

Where feasible, utilize STORMWATER MANAGEMENT PRACTICE (6.6) within planting strip rather than groundcover vegetation alone to better manage stormwater
Curb Extension

An expansion of the curb line into the lane of the roadway adjacent to the curb (typically a parking lane) for a portion of a block either at a corner or mid-block. Also known as neckdowns, curb extensions can enhance pedestrian safety by reducing crossing distances, can relieve sidewalk crowding, and can provide space for functional elements such as seating, plantings, and furniture.

In addition, two curb extensions can be located on either side of a street to create a MID-BLOCK NARROWING (2.2.2 c) or at an intersection to create a GATEWAY (2.3.3).

Benefits

- Calms traffic by physically and visually narrowing the roadway
- At a corner, slows turning vehicles and emphasizes the right-of-way of crossing pedestrians
- Shortens crossing distance, reducing pedestrian exposure and minimum required signal time for crossing
- Improves the ability of crossing pedestrians and drivers to see each other
- Makes the crosswalk more apparent to drivers, encouraging them to stop in advance of the crosswalk, and reduces illegal parking within crosswalk
- Reinforces lane discipline through intersection, preventing vehicle passing maneuvers in parking lane
- Provides additional pedestrian space and reduces crowding, particularly for queuing at crossings and bus stops or when located at a subway entrance or other protrusion
- Creates space that may be used to locate street furniture, bike parking, bus stop, public seating, street vendors, etc., potentially reducing sidewalk clutter
- Keeps fire hydrant zone clear when located in front of a hydrant
- Defines the ends of angle parking
- Can discourage truck turns onto streets with No Truck regulations (See Rules of the City of New York, Title 34, Chapter 4, Section 4-13)

Considerations

- May impact street drainage or require catch basin relocation
- May impact underground utilities
- May require loss of curbside parking
- May complicate delivery access and garbage removal
- May impact snow plows and street sweepers
Application

Only applicable within a curbside parking lane

Corners with marked pedestrian crosswalks in retail districts, directly adjacent to schools, at intersections with demonstrated pedestrian safety issues, on wide streets, or in areas of high foot traffic

At school crosswalks

At mid-block crossings (see MID-BLOCK NARROWING 2.2.2c)

Intersections where a two-way road transitions to oncoming one-way operation so as to block wrong-way traffic from proceeding straight onto the one-way portion (a “blockbuster”)

Next to subway entrances or other sidewalk pinch points so as to increase pedestrian walking or queuing space

Near fire hydrants, to keep clear of parked vehicles

Consider at all corners and pedestrian crossings

Consider elongated curb extensions for some or most of a block (i.e., a widened sidewalk with lay-by areas) in areas where a full sidewalk widening would be desirable but some loading, drop-off, or parking access must be maintained

Cannot be used where curbside travel (including bus, bicycle, or general traffic) lane exists, such as those created through peak-period parking restrictions

Feasibility of curb extensions is evaluated based on engineer review of design-vehicle turning movements

Design

Curb extension width is typically two feet less than the width of the parking lane. Minimum curb extension length is typically equal to the full width of the crosswalk, however it can be longer when appropriate or necessary

A fire truck turning zone with a 50-foot outside radius should be maintained clear of physical obstructions (signs, planters, non-flexible bollards, trees)

When a curb extension conflicts with design vehicle turning movements, the curb extension should be reduced in size rather than eliminated wherever possible

At crossings that may have low pedestrian visibility, curb extension should be long enough to “daylight” the crossing, i.e., provide open sight-lines to the pedestrian crossing for approaching motorists; the additional curb extension space can be used to provide plantings (see CURB EXTENSION [6.3.3]) or community facilities such as bicycle parking as long as visibility is not hindered

The design and placement of street furniture, trees, and plantings on a curb extension must not impede pedestrian flow, obstruct clear path, or interfere with “daylighting” the intersection, emergency operations, or sight lines

Pedestrian ramps should be aligned such that they serve as a continuation of the sidewalk, rather than within the radius of the curb extension, to accommodate direct pedestrian path

Curb extension must be designed so as to maintain drainage of stormwater from the gutter and not cause ponding; depending on site-specific grading conditions, this might include properly locating catch basins or utilizing design treatments that channel water through, around, or in

Curb extensions shorten crossing distances. This is especially important for vulnerable users:
Fifth Avenue, Brooklyn

between curb extension and the curbline

Where space permits, more functional curb extension designs, such as those with PLANTINGS (6.3), or COMMUNITY FACILITIES (2.2.2a), such as seating or bicycle parking, should be used whenever possible

Vertical elements should be used to alert drivers and snow plow operators to the presence of the curb extension

To reduce the cost and implementation time of curb extension, trench drains can be considered instead of catch-basin relocation if a maintenance partner exists to clean the trench drain

When curb extension is used at a fire hydrant, the length of the curb extension should be equal to or greater than the No Parking zone (typically 15 feet in either direction) and the hydrant should be moved onto the curb extension

Paving on curb extension should match that of the surrounding sidewalks

Locate trees and/or plantings within curb extension where appropriate. See TREE BEDS (6.1) and CURB EXTENSION (6.3.3)

Maximize permeable surface of curb extension

Where feasible, design planted areas within curb extension so as to capture stormwater according to current standards. See STORMWATER MANAGEMENT PRACTICES (6.6)
2.2.2a Curb Extension: Community Facilities

CURB EXTENSION

Curb Extension: Community Facilities

Usage: Wide

A curb extension that provides space for community facilities such as bicycle parking, seating, and other street furniture. In areas with inadequate sidewalk width to accommodate needed functional sidewalk elements for the community, the extra space provided by a curb extension can be used for bike parking, seating, public art, gardens, plantings, or trees, alone or in combination. Similarly, all paved curb extensions can also provide space for consolidating basic sidewalk furnishings such as trash cans, newspaper racks, newsstands, and light or signal poles, where foot traffic permits.

Benefits

Provides safety and traffic calming benefits as described in CURB EXTENSION (2.2.2)

Provides space for functional sidewalk elements outside of the sidewalk clear path, freeing sidewalk space for movement

Improves the public realm and creates useful public space, particularly in areas where public open space is in short supply

Allows limited street space to serve multiple functions, thereby increasing the performance of street infrastructure

May encourage mode shift to walking by creating a more comfortable and enjoyable walking environment

Considerations

Permits, revocable consents, and/or maintenance agreements may be required for certain elements

Bike racks must be standard DOT design unless a permit is obtained from DOT

Application

See application guidance for CURB EXTENSION (2.2.2)

Areas without sidewalk crowding where demand exists for the community facilities and a committed partner is willing to maintain any elements that require maintenance, such as seating; a maintenance partner is not needed for a DOT bike rack

Design

See design guidance for CURB EXTENSION (2.2.2)
CURB EXTENSION

Bus Bulb

Usage: Wide

A CURB EXTENSION at a bus stop that avoids the need for buses to pull in and out of the moving lane to pick up and discharge passengers. Bus bulbs may also be designed to better support bus passengers through the inclusion of higher curbs, bus stop shelters, seating, pre-boarding payment equipment, and other bus-supportive facilities.

Benefits

- Provides safety and traffic calming benefits as described in CURB EXTENSION (2.2.2)
- Speeds bus movement on streets with traffic congestion by eliminating the need for buses to maneuver in and out of the moving lane
- Speeds bus movement by reducing the likelihood of bus stops being blocked by stopped vehicles
- Discourages non-bus encroachment into bus-only lanes
- Can allow faster bus passenger boarding
- Can provide comfort and convenience to bus riders through dedicated waiting space and inclusion of bus-related amenities
- When utilized at a bus stop under an elevated train line, where the bus does not pull over to the sidewalk, provides a safer space for passengers to wait, as many currently stand in the roadway
- Allows additional on-street parking as compared to a standard bus stop

Application

See application guidance for CURB EXTENSION (2.2.2)

At bus stops along bus routes where it has been determined by DOT and MTA NYCT that bus bulbs would enhance bus service

Design

For detailed design guidance, see Select Bus Service Station Design Guidelines (DOT & MTA NYCT, 2009)

See additional design guidance for CURB EXTENSION (2.2.2)

Bus bulbs should be long enough to encompass the front and rear doors of the buses that will be using it, and should extend the length of the bus stop whenever possible

Design BUS BULBS with care to accommodate accessibility needs, taking into account the full range of buses that might be using the stop
2.2.2c Curb Extension: Mid-Block Narrowing

Curb Extension

Mid-Block Narrowing

Usage: Wide

Benefits

- Provides safety and traffic calming benefits as described in CURB EXTENSION (2.2.2)
- Calms mid-block traffic speeds, particularly if vertical elements (e.g., bollards, trees, bicycle parking, etc.) are included in CURB EXTENSIONS (2.2.2)
- Improves drivers’ awareness of presence of crosswalk at mid-block crossing
- Provides space for greening, community facilities, bicycle parking, and/or stormwater source control measures

Application

- See application guidance for CURB EXTENSION (2.2.2)
- Local streets with demonstrated speeding issues and/or a mid-block crossing

 At mid-block crossings on two-way streets, it is generally preferable to include a RAISED MEDIAN (2.2.3) or PEDESTRIAN SAFETY ISLAND (2.2.4) rather than or in addition to a mid-block narrowing, when space allows

Design

- See design guidance for CURB EXTENSION (2.2.2)
- Reduce lane width at mid-block narrowing to impact vehicle speeds; on low-traffic residential streets, mid-block narrowing can be combined with other design treatments, including RAISED CROSSWALKS (2.3.4), RAISED SPEED REDUCERS (2.3.2), or vertical elements for maximum effectiveness
- Locate trees and/or plantings within curb extensions of mid-block narrowing where appropriate. See TREE BEDS (6.1) and CURB EXTENSION (6.3.3)
- Maximize permeable surface of curb extension with vegetation, permeable paving, or both
- Where feasible, design planted areas within mid-block curb extensions so as to capture stormwater according to current standards. See STORMWATER MANAGEMENT PRACTICES (6.6)

Two Curb Extensions that create a pinch point. A mid-block narrowing (also referred to as a “choker”) physically or visually constricts the roadway, thereby slowing vehicular traffic or alerting drivers to the presence of a mid-block crossing. The curb extensions themselves can be of any variety, for example with plantings or other functional elements. A mid-block narrowing is equivalent to a GATEWAY (2.3.3) located mid-block.
Raised Median

Usage: Wide

A raised area separating different lanes, traffic directions, or roadways within a street. The raised median can be either curb height (6–7 inches) or, where appropriate, 12–24 inches high. The width as well as design of raised medians can vary widely. They can range from narrow raised concrete islands to tree-lined promenades to intensively landscaped boulevard medians. In contrast to PEDESTRIAN SAFETY ISLAND (2.2.4), raised medians extend for most or all of the street block.

Benefits

- Reduces risk of left-turn and vehicle head-on collisions
- Calms traffic by narrowing roadway
- Enhances pedestrian safety and accessibility by reducing crossing distances and providing refuge for pedestrians to cross road in stages
- If designed for walking access, can provide additional pedestrian capacity
- Greens and beautifies the streetscape if it incorporates trees and/or plantings. See RAISED MEDIAN (6.2.1)
- Improves environmental quality and can incorporate stormwater source controls

Can provide space for a SIDEWALK (2.2.1) and/or SEPARATED BIKE PATH (2.1.1b), particularly as part of a boulevard treatment

Considerations

- May impact underground utilities
- Design must account for impact of raised median on emergency vehicle movement and access
- Landscaping or stormwater source controls require a partner for ongoing maintenance
- Changes in traffic circulation resulting from addition of raised median should be understood so as to not force drivers to travel on inappropriate routes or make U-turns
- If continuous, raised median may prevent left turns into driveways on opposite side of street
2.2.3 Raised Median

Application

Two-way streets with two or more roadway travel lanes in total

Consider on all two-way multilane streets

On streets of limited width, it may be preferable in some situations to include other treatments [e.g., expanded sidewalks or dedicated transit or bicycle facilities] rather than a raised median if there is not adequate room for all treatments and travel lanes

Design

Raised medians should be wide enough to provide refuge to pedestrians at crossings: 5 feet minimum, 6 feet or greater preferred; when planted, 6 feet minimum. See RAISED MEDIAN (6.2.1)

Raised medians should extend beyond the crosswalk at intersections wherever possible, while accommodating vehicle turning movements; the “nose” of the raised median should include bollards to protect pedestrians from wayward vehicles

Provide a walkable path across the raised median at crossings. When the median is less than 17 feet wide, an 8–10-foot-wide cut-through, flush with the roadway, is appropriate. On medians wider than 17 feet, pedestrian ramps (1:12 grade with 5-foot landing areas) can be used to provide access

Provide a large pedestrian storage area at crossings to permit groups of pedestrians to safely wait to cross

Provide tactile cues for pedestrians with vision disabilities to indicate the border between the pedestrian refuge area and the motorized travel lanes

Include street trees, plantings, and unpaved or permeable surfaces wherever safe and feasible, using structural soil where appropriate. See TREE BEDS (6.1), RAISED MEDIAN (6.2.1), and POROUS CONCRETE (3.1.13)

Grade roadways to direct stormwater towards raised medians if the raised medians include stormwater source controls, for example through the use of double or inverted roadway crown

If work includes tree planting, consider the location of utility infrastructure, including DEP sewers and water mains; also consider visibility for motorists, cyclists, and pedestrians

Raised medians must be designed so as to maintain drainage of stormwater and not cause ponding

Locate trees and/or plantings within raised median. See TREE BEDS (6.1) and RAISED MEDIAN (6.2.1)

Maximize permeable surface of raised median

Where feasible, design planted areas within raised median so as to capture stormwater according to current standards. See STORMWATER MANAGEMENT PRACTICES (6.6)
Pedestrian Safety Island

Usage: Wide

A raised area located at crosswalks that serves as pedestrian refuge separating traffic lanes or directions, particularly on wide roadways. Also known as a "median refuge island" and "Green Refuge Island." Used at pedestrian crossings when a full RAISED MEDIAN is not feasible. A pedestrian safety island confers most of the same benefits as full RAISED MEDIANS at pedestrian crossings. Full RAISED MEDIANS should be used rather than pedestrian safety islands wherever possible.

Benefits

Enhances pedestrian safety and accessibility by reducing crossing distances and providing refuge for pedestrians to cross road in stages

Calms traffic, especially left turns and through-movements, by narrowing roadway at intersection

Reduces risk of vehicle left-turn and head-on collisions at intersection

Can green and beautify the streetscape with trees and/or vegetation, potentially including stormwater source controls

Trees increase the visibility of the island, thereby usually improving safety

Considerations

May impact underground utilities

Landscaping or stormwater source controls require a partner for ongoing maintenance

Application

See application guidance for RAISED MEDIAN (2.2.3)

Design

See design guidance for RAISED MEDIAN (2.2.3)

Typical island accommodates two street trees and, where appropriate, bell bollards. See TREE BEDS (6.1) and RAISED MEDIAN (CURB HEIGHT) (6.2.1a)
2.2.5 Median Barrier

Median Barrier

Usage: Limited

Benefits

- Reduces or eliminates short-cut and cut-through traffic
- When applied consistently to an area, reduces traffic speeds
- Can green and beautify the streetscape with trees and/or vegetation, improving environmental quality and potentially incorporating stormwater source controls
- Enhances safety at intersection by reducing potential vehicle movements and conflicts, particularly left turns
- Reduces risk of vehicle head-on collisions
- Reduces risk of motorists running a red light or stop sign when approaching from side street
- Calms traffic on side street by requiring turn and on major street by narrowing roadway
- Enhances pedestrian safety and accessibility by reducing crossing distances and providing refuge for pedestrians to cross the road in stages

Considerations

- May impact street drainage or require catch basin relocation
- May impact underground utilities
- Emergency vehicle access needs must be accommodated
- Landscaping or stormwater source controls require a partner for ongoing maintenance

A RAISED MEDIAN or PEDESTRIAN SAFETY ISLAND extended through an intersection to prevent left turns and through-movements to and from the intersecting street. Pedestrian access can be maintained with pedestrian refuges and bicycle access with gaps in the median. As with typical RAISED MEDIANs, trees or plantings can be included within the median barrier.

If outfitted to capture stormwater, careful consideration must be given to design, overflow control, and plant species.

Application

- Consider on local streets with speeding or cut-through/short-cutting issues
- One-way or two-way local streets at their intersections with two-way collector or arterial roadways

Design

- Design traffic diversion devices to impact motor vehicle movement but not bicycle movement; utilize bike channels or similar design strategies to allow passage by bicyclists
- Include planted areas and stormwater source controls within traffic diverters wherever possible when a maintenance partner is identified
- If work includes tree planting, consider the location of utility infrastructure, including DEP sewers and water mains
- Locate trees and/or plantings within diverter when appropriate. See TREE BEDS (6.1) and RAISED MEDIAN (6.2.1)
- Maximize permeable surface of diverter. See POROUS CONCRETE (3.1.13)
- Design any planted areas within diverter so as to capture stormwater according to current standards
- See additional design guidance for RAISED MEDIAN (2.2.3)
2.3.3 Gateway

Gateway

Usage: Limited

A combination of traffic-calming and visual measures used at the entrance to a low-speed street to slow entering vehicles and discourage through-traffic. Useful at all roadway transitions to slower-speed environments, gateways are especially suited to entrances to residential side streets and SHARED STREETS. The design elements of a gateway can include CURB EXTENSIONS (2.2.2), a RAISED CROSSWALK (2.3.4) or driveway treatment, a RAISED MEDIAN (2.2.3), landscaping or trees, and community facilities such as seating and public art.

Benefits

Decreases vehicular speeds and discourages through-traffic without blocking or prohibiting vehicular access

Demarcates transitions to low-speed, SHARED STREET (2.1.3), or pedestrian-oriented areas

Provides pedestrians with priority movement across the treated leg of the intersection

If gateway includes a RAISED CROSSWALK (2.3.4), snow plows must be given advance warning

Application

Entrances to SHARED STREETS

Consider at entrances to streets with low vehicle volumes or speeds from streets with high vehicle volumes or speeds

Design

Include at a minimum CURB EXTENSIONS (2.2.2) to narrow the roadway; preferably, vertical deflection should also be created using a RAISED CROSSWALK or ramped driveway treatment; if the street is two-way, a RAISED MEDIAN (2.2.3) or PEDESTRIAN SAFETY ISLAND (2.2.4) can be included, space permitting

Other design elements can “narrow” a street visually, including plantings, public art, bicycle parking, and community facilities such as seating

Considerations

May impact street drainage or require catch basin relocation

May impact underground utilities

May require loss of curbside parking in some cases

Community facilities typically necessitate the presence of a maintenance partner

Many community facilities and sidewalk items require a permit or revocable consent from the city

If work includes tree planting, consider the location of utility infrastructure, including DEP sewers and water mains

Where feasible, design planted areas within gateway so as to capture stormwater according to current standards. See STORMWATER MANAGEMENT PRACTICES (6.6)

If gateway includes PLANTED CURB EXTENSIONS, see design guidance for PLANTED CURB EXTENSIONS (6.3.3)
2.3.4 Raised Crosswalk

Raised Crosswalk

Usage: Limited

Benefits

- Compels drivers to travel at speeds no higher than the street’s design speed.
- Improves drivers’ awareness of presence of pedestrian crossing, particularly at mid-block crossing locations.
- Used at street GATEWAYS (2.3.3), can alert drivers that they are entering a slower-speed, pedestrian-oriented street environment.
- Allows convenient pedestrian circulation between high foot traffic destinations on opposite sides of a street.

Considerations

- May impact street drainage or require catch basin relocation.
- Attention should be given to accommodation of and navigation by people with vision disabilities.

Application

- Existing stop-controlled crosswalks or other locations where demand exists for a stop-controlled pedestrian crossing that also meet the criteria for RAISED SPEED REDUCERS (2.3.1).
- Consider at areas of particularly high pedestrian crossing demand on narrower streets (maximum of two moving lanes), such as locations with pedestrian generators (e.g., major commercial or cultural destinations, transit entrances, parks) on opposite sides of the street.

Design

- Appropriate warning signs and roadway markings should accompany raised crosswalk.
- Use signage or other methods to alert snow-clearing vehicle operators to the presence of raised crosswalk.
- Detectable warning strips with high color contrast from sidewalk surface should be provided at crosswalk location.

A marked pedestrian crosswalk at an intersection or a mid-block location constructed at a higher elevation than the adjacent roadway. A raised crosswalk is essentially a speed table, with the full width of the crosswalk contained within the flat portion of the table, usually 10- to 15-feet wide. It combines the benefits of a RAISED SPEED REDUCER (2.3.2) with enhanced visibility for the pedestrian crossing.

Raised crosswalk: Paris, France (Note: for illustrative purposes only)

Consider as a more robust option for mid-block crossings.

Consider on the outer roadways of multi-lane boulevards at crossings.

Avoid on arterial roadways.

Raised crosswalk: London, United Kingdom (Note: for illustrative purposes only)

Use enhanced, high-visibility street materials to further draw attention to raised crosswalk.

See design guidance for RAISED SPEED REDUCERS (2.3.2).

Utilize recycled content in paving materials.
Chicane

Usage: Pilot

Benefits
Forces drivers to drive more slowly and with greater awareness, particularly at mid-block locations.
Can green and beautify the streetscape with trees and/or vegetation, improving environmental quality and potentially incorporating stormwater source controls.

Considerations
May impact street drainage or require catch basin relocation.
May impact underground utilities.
May require loss of curbside parking.
Landscaping or stormwater source controls require a partner for ongoing maintenance.
If outfitted to capture stormwater, careful consideration must be given to design, overflow control, and plant species.
May impact snow plows and street sweepers.

Application
Consider on narrower, low-volume, local streets (maximum of two moving lanes) with demonstrated speeding issues.
Avoid on bus routes, truck routes, and major bicycle routes.

Design
The simplest and most basic approach to create a chicane is to alternate on-street parking (parallel or angled) from one side to the other; in this case, CURB EXTENSIONS (2.2.2) at the beginning and end of each grouping of parking.
If utilizing CURB EXTENSIONS, see CURB EXTENSION section for general design considerations.
Use vertical elements to alert drivers and snow plow operators to presence of chicanes.
Locate trees and/or plantings within chicane curb extensions when appropriate. See TREE BEDS (6.1) and ROADWAY PLANTINGS (6.2).
Maximize permeable surface of chicane curb extensions.
Where feasible, design planted areas within chicane curb extensions to capture stormwater according to current standards. See STORMWATER MANAGEMENT PRACTICES (6.6).

A serpentine roadway alignment or series of staggered CURB EXTENSIONS to encourage lower driving speeds through horizontal deflection. Chicanes discourage or make it impossible for drivers to drive in a straight line. This can reduce vehicular speeds.

ABOVE: Chicane at entry to residential neighborhood: San Francisco, California (Credit: SF MTA) (Note: for illustrative purposes only)
LEFT: Chicane: Vancouver, Canada (Credit: Richard Drdul) (Note: for illustrative purposes only)

Neighborhood Traffic Circle

Usage: Pilot

Benefits
- Reduces speeds and crash rates, particularly when applied consistently to an area
- Eliminates possibility of vehicle head-on collisions
- Can green and beautify the streetscape with trees and/or vegetation, improving environmental quality
- Inclusion of plantings or art within the island creates an attractive focal point for the neighborhood

Considerations
- May impact underground utilities
- Landscaping requires a partner for ongoing maintenance
- Attention should be given to accommodation of and navigation by people with vision and/or ambulatory disabilities

Design
- Design speeds for movement around the circle should be 10 to 15 mph; exit speeds should be limited to 1.5 mph through the circle’s design wherever possible
- Use signs within the center island and reflective paint on the curb to improve center island visibility
- Include street tree(s) wherever possible; include planted areas when a maintenance partner is identified
- A protective apron of concrete or textured pavement may be provided around the circle to accommodate wide-turning vehicles; where extreme geometric constraints exist and truck volumes are low, trucks may be accommodated by use of a fully mountable roundabout island
- Use small curb radii where right turns are made
- Install “Keep Right” or similar signs directing drivers to proceed to the right around the circle through the intersection
- If work includes tree planting, consider the location of utility infrastructure, including DEP sewers and water mains
- Minimize impervious paved areas and utilize permeable paving wherever possible
- Locate trees and/or plantings within neighborhood traffic circle island. See TREE BEDS (6.1) and ROADWAY PLANTINGS (6.2)
- Maximize permeable surface of neighborhood traffic circle island
- Where feasible, design planted areas within neighborhood traffic circle island so as to capture stormwater according to current standards. See STORMWATER MANAGEMENT PRACTICES (6.6)
Roundabout

Usage: Limited

Benefits

Reduces top vehicular speeds at signalized intersections, thereby decreasing the severity of crashes

Eliminates possibility of vehicle head-on collisions

Eliminates left turns, a primary cause of crashes

Enhances pedestrian safety when used at appropriate intersections

 Allows simultaneous movement of crossing vehicular streams, often processing vehicular traffic more efficiently than signalization

When used in place of a stop- or signal-controlled intersection, may reduce vehicle emissions and travel times by reducing start-and-stop driving

Reduces need to widen streets approaching intersection to store vehicles under signalized operation

Can green and beautify the streetscape with trees and/or plantings, improving environmental quality and potentially incorporating stormwater source controls

Inclusion of public open space, vegetation or art within the roundabout island creates an attractive focal point for the neighborhood

An intersection with circular, one-way (counter-clockwise) traffic around a central circle in which entering traffic yields to traffic already in the roundabout. Roundabouts can vary in size (diameter) and number of lanes and can be designed as unsignalized or signalized intersections. Roundabouts are distinguished from "old-style" traffic circles/rotaries by their rules for yielding and key design features such as horizontal deflection at entries.
2.3.7 Roundabout

Considerations

<table>
<thead>
<tr>
<th>Considerations</th>
<th>Application</th>
<th>Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>May require increased spatial footprint for intersection, but not approaches.</td>
<td>Intersections with 1) no more than 80–90% of volume on the main facility and 2) having at least three approaches, high vehicle-turning volumes or percentages, or speeding issues</td>
<td>Deflection should be created for entering vehicles to reinforce yielding behavior; at two-way legs of the intersection, use splitter islands to provide deflection as well as to allow pedestrians to cross in two segments.</td>
</tr>
<tr>
<td>May impact street drainage or require catch basin relocation.</td>
<td>Consider at locations with poor safety records, or where signalization has led or may lead to operational issues for pedestrians or bicyclists.</td>
<td>Detectable warning strips should be provided at all crosswalk locations with high color contrast from the sidewalk surface.</td>
</tr>
<tr>
<td>May impact underground utilities.</td>
<td>May require loss of curbside parking.</td>
<td>Limit entry and exit speeds through deflection and/or raised crosswalks.</td>
</tr>
<tr>
<td>Landscaping or stormwater source controls require a partner for ongoing maintenance.</td>
<td>If outfitted to capture stormwater, careful consideration must be given to design, overflow control, and plant species.</td>
<td>Curves should accommodate the design vehicle; use an apron of textured paving around the central island to slow motor vehicle movements while accommodating larger vehicles such as trucks.</td>
</tr>
<tr>
<td>Attention should be given to accommodation of and navigation by people with vision and/or ambulatory disabilities.</td>
<td></td>
<td>To improve center island visibility, use reflective signs within the center island and reflective paint on the curb.</td>
</tr>
</tbody>
</table>

Application

- Intersections with 1) no more than 80–90% of volume on the main facility and 2) having at least three approaches, high vehicle-turning volumes or percentages, or speeding issues.

Design

- Deflection should be created for entering vehicles to reinforce yielding behavior; at two-way legs of the intersection, use splitter islands to provide deflection as well as to allow pedestrians to cross in two segments.
- Detectable warning strips should be provided at all crosswalk locations with high color contrast from the sidewalk surface.
- Limit entry and exit speeds through deflection and/or raised crosswalks.
- Curves should accommodate the design vehicle; use an apron of textured paving around the central island to slow motor vehicle movements while accommodating larger vehicles such as trucks.
- To improve center island visibility, use reflective signs within the center island and reflective paint on the curb.
- Include street tree(s) wherever possible; include planted areas and stormwater source controls when a maintenance partner is identified.
- If work includes tree planting, consider the location of utility infrastructure, including DEP sewers and water mains.
- Minimize impervious paved areas and utilize permeable paving wherever possible.
- Locate trees and/or plantings within roundabout islands. See TREE BEDS (6.1) and ROADWAY PLANTINGS (6.2).
- Maximize permeable surface of roundabout islands.
- Where feasible, design planted areas within roundabout islands so as to capture stormwater according to current standards. See STORMWATER MANAGEMENT PRACTICES (6.6).
Raised Intersection

An entire intersection raised above the level of the surrounding roadways. The intersection is typically raised to sidewalk height.

Usage: Pilot

Benefits

- Vertical deflection at entry to intersection encourages reduced vehicle speeds
- Improves drivers’ awareness of presence of crossings
- Visually turns intersection into a pedestrian-oriented zone
- Enhances access for people with disabilities

Considerations

- May impact street drainage or require catch basin relocation
- Snow plows must be given advance warning

Application

- Stop-controlled intersections with a high volume of pedestrian crossings and low target vehicle speeds (e.g., 25 mph or below)
- Stop-controlled intersections with a history of pedestrian crashes or speeding issues
- Stop-controlled intersections where enhancing pedestrian movement is a major goal, such as transit stops or commercial areas
- Avoid on truck routes and at other locations where RAISED SPEED REDUCERS (2.3.2) are not appropriate

Design

- Slope of entrance ramps for motorized traffic can be steep or shallow, depending on target speeds
- Use enhanced, high-visibility street materials to further draw attention to raised intersection
- Minimize impervious paved areas and utilize permeable paving wherever possible
- Increase SRI value of paved surfaces to reduce urban heat island impact
- Utilize recycled content in paving materials
- Coordinate streetscape/utility work to minimize street cuts
Materials

3.0 Introduction

3.1 Sidewalks

3.1.1 Unpigmented Concrete

3.1.2 Pigmented Concrete

- a Pigmented Concrete: Dark
- b Pigmented Concrete: Bluestone
- c Pigmented Concrete: Granite
- d Pigmented Concrete with Exposed Light-Colored Aggregate
- e Pigmented Concrete with Silicon Carbide Treatment

3.1.3 Sand-Colored Concrete with Exposed Aggregate

3.1.4 Concrete with Exposed Glass Aggregate

3.1.6 Concrete with London Paver Scoring

3.1.7 Hexagonal Asphalt Paver

3.1.8 Bluestone Flag

3.1.9 Granite Slab

3.1.10 Granite Block

3.1.11 Precast Square Paver

3.1.12 Permeable Interlocking Concrete Paver (PICP)

3.1.13 Porous Concrete

3.1.14 Rubber Paver

3.2 Curbs

3.2.1 Unpigmented Concrete

3.2.2 Pigmented Concrete

3.2.3 Integral Concrete Curb and Gutter

3.2.4 Granite

3.3 Crosswalks

3.3.1 Granite Paver

3.4 Roadways

3.4.1 Asphaltic Concrete

3.4.2 Porous Asphalt

3.4.3 Concrete

3.4.4 Granite Block
Introduction

About this Chapter
This chapter identifies materials for sidewalks, curbs, and roadways that are either approved citywide standards or alternatives for specified locations.

Applicability and Exceptions
All projects that significantly impact public and private streets should follow these guidelines. DOT approval will be based on site-specific conditions and cost-effective engineering standards and judgment based on the policies outlined in the Introduction to this Manual, with the safety of all street users being of paramount importance.

Usage Categories
Materials are divided into four usage categories: Standard, Distinctive, Historic, and Pilot.

Standard
Standard materials are required for use in all contexts outside of historic districts, unless DOT and PDC approve a Distinctive treatment. Projects utilizing the Standard materials in the identified contexts will generally only require a permit from DOT.

DOT is responsible for the maintenance of roadways and crosswalks. As such, materials not listed here as Standard are rarely installed in these contexts.

Distinctive
Any material not deemed Standard by DOT will be considered Distinctive and requires review and approval by DOT and the New York City Public Design Commission (PDC). Distinctive materials identified in this chapter are visually appealing and are proven to be durable, and DOT encourages their use in certain circumstances.

All Distinctive sidewalk and curb materials require a maintenance agreement between DOT and the entity proposing the materials (typically the adjacent property owner(s) or a jurisdictional organization). Per Rules of the City of New York Section 2-09(f)(4)(xvi), all approved Distinctive materials must be replaced in kind; however, any changes to existing Distinctive materials must be approved by DOT and PDC prior to their implementation.

The review process for Distinctive sidewalk and curb materials is as follows:

1. Adjacent property owner or jurisdictional organization submits proposal to DOT’s Urban Design and Art Unit at udau@dot.nyc.gov. The submission usually comprises architectural drawings, site photographs, project descriptions, and other supporting materials as necessary, and must meet at least one of the following criteria:

 - Encompasses an entire block
 - Pertains to a streetscape project
 - Features a design integral to an adjacent open plaza space, or
 - Is compatible with the prevailing material on blocks adjacent to the site for which it is proposed

2. DOT reviews the proposal for consistency with this Manual and for compliance with the criteria listed above. If the proposal does not satisfy these requirements, DOT may require design revisions or reject the proposal. If the proposal is acceptable, DOT submits it to PDC for an initial review

3. PDC reviews the proposal for its aesthetic impact on the streetscape and conformance with the criteria listed above. PDC strongly discourages proposals for piecemeal treatments. For more information on the PDC’s guidelines, visit their website at nyc.gov/designcommission
4. If PDC preliminarily approves the proposal, the applicant submits a Sidewalks, Curbs, and Roadways Application (SCARA) to DOT.

5. DOT reviews the SCARA. Distinctive materials identified in this chapter will receive an expedited review.

6. If the SCARA is approved, DOT and the applicant enter into a maintenance agreement.

7. DOT submits proposal to PDC for Final Approval.

8. If the proposal receives Final Approval from PDC, the applicant applies for the appropriate DOT construction permits and commences installation of the Distinctive sidewalk and/or curb materials.

Historic

Historic materials are standard in historic districts designated by the New York City Landmarks Preservation Commission (LPC) and are subject to its requirements. Historic materials used outside of historic districts are considered Distinctive.

Pilot

Pilot materials exhibit environmentally sustainable properties and are being tested by DOT. It is anticipated that Pilot materials, if successful, will be classified in future editions of this Manual either as Standard or Distinctive.

Specification Sources

The recommendations in this chapter supplement rather than replace existing engineering standards. Readers are directed to the sources noted below, those listed in Appendix B, and any other applicable resources.

Detailed information on the specifications for standard materials is contained in the DOT/DDC Standard Highway Specifications. Typical construction details are provided in the DOT Standard Details of Construction. Information regarding standard procedures and approval requirements is provided in the Instructions for Filing Plans and Guidelines for the Design of Sidewalks, Curbs, Roadways, and Other Infrastructure Components.

Sidewalk and curb materials not included in this chapter may be proposed, but are generally discouraged and require full engineering and design review by DOT, LPC, or PDC, as well as approvals from other governmental entities. Such materials, if approved, require a maintenance agreement.

Sidewalk Permits

Installation of sidewalks associated with new building construction is coordinated by the Department of Buildings through the Builder’s Pavement Plan. For more information on sidewalk permits, reviews, and approvals, see DOT’s Street Works Manual. For the Instructions for Filing Plans and Guidelines for the Design of Sidewalks, Curbs, Roadways, and Other Infrastructure Components, visit nyc.gov/streetdesignmanual. See Section 2-09 of Title 34 of the Rules of the City of New York for requirements related to sidewalk, curb, and roadway work.

Maintenance Agreements

Each treatment in this chapter has a statement indicating whether or not the material requires a maintenance agreement before being installed. This agreement typically requires that the adjacent property owner, installing entity, or some other entity will generally be responsible for maintaining that material and providing appropriate insurance.
Sidewalks are paths for pedestrians alongside a road (see Glossary). The primary function of a sidewalk is to provide pedestrian movement and access to buildings, parks, and other destinations. Sidewalks also function as sites for loading and unloading vehicles, as public meeting and gathering spaces, as places for outdoor dining, and as venues for commerce or expression. Increasingly frequently, sidewalks can also serve as opportunities to beautify streets with vegetation.

Furnishing zones are most appropriate on streets with at least moderate levels of both pedestrian and vehicle traffic — usually commercial shopping streets. Furnishing zones are best used when applied to entire blocks or a series of blocks comprising a corridor, rather than to sidewalks in front of individual small properties which would create a “patchwork” effect. Some materials in this chapter are exclusively for use in furnishing zones; all sidewalk materials may be used in furnishing zones.

Issues with pavement heaving due to tree root growth in limited soil volume are common and expensive to repair. Where feasible, use of suspended pavement systems should be considered. Suspended pavement systems can be used with all of the sidewalk materials featured in this section.

All materials listed in this section may be used in PLAZAS (2.1.4) as well.
Granite Block

Usage: Distinctive

Benefits
- Visually delineates separation of street uses
- Stones convey connection to natural environment
- Cobblestones are relatively easy to remove and reset, especially for utility access
- Reinforces historic character, where applicable

Considerations
- Stones can become loose over time and will require regular maintenance
- Can be slippery when wet
- Uneven surface can hinder the mobility of pedestrians and people with disabilities

Application
- Furnishing zone and around tree beds
- Use of this material generally requires a maintenance agreement. Granite blocks installed by DPR around tree beds are an exception

Design
- Should be sand-set for easier installation and greater permeability wherever impermeable installation generates stormwater runoff
- Can be mortar-set for stronger structural properties
- The area within 1.8 inches of the curb should be kept free of obstructions

Specification source: DOT Standard Specifications Section 2.06, 6.06

Sustainability Opportunity:
- Salvaged cobbles
- Permeable installation

Historic smooth-finish granite block unit pavers often referred to as “cobblestones,” commonly used throughout New York City in the nineteenth century. This treatment is for use exclusively in the furnishing zone.

Granite blocks are for use in furnishing zones only: Little West Street, Battery Park City, Manhattan
Precast Square Paver

Usage: Distinctive

Benefits
This material is widely available and cost-effective
Relatively easy to reset or replace, especially for utility access
Asphalt pavers can be recycled

Considerations
Unit pavers can become loose over time and will require regular maintenance

Application
Furnishing zone
Use of this material generally requires a maintenance agreement

Design
Paver size: 8 inches by 8 inches
Should be sand-set for easier installation and greater permeability wherever impermeable installation generates stormwater runoff
Can be mortar set for stronger structural properties
The area within 18 inches of the curb should be kept free of obstructions

Precast, square asphalt or concrete pavers. This treatment is for use exclusively in the furnishing zone.

Specification source: DOT Standard Specifications Section 6.06, item numbers 6.6 B (asphalt), 6.06 CSA (concrete with sand joints), 6.06 CSB (concrete with grouted joints), and 6.06 CSC (concrete with sand and grouted joints)

Sustainability Opportunity: High recycled asphalt (RAP) content
Sustainability Opportunity: High-SRI coloring
Permeable Interlocking Concrete Paver (PICP)

Usage: Distinctive*

Benefits
- Reduces impermeable surface, thereby increasing water infiltration
- Reduces peak sewer discharge during storm events
- Reduces likelihood of ponding and slick or icy conditions
- Helps reduce urban heat-island effect

Considerations
- Not recommended for use where there is water-sensitive subsurface infrastructure
- Only certain soil types are appropriate as sub-bases for infiltration
- Porosity of the pavers can convey harmful chemicals into the soil
- Requires regular maintenance
- Vegetative growth in joints will occur if there is no regular maintenance
- May require vacuuming of surface to restore permeability when joints become clogged
- Sand should not be applied to surface

Application
- Most effective on slopes less than 5%
- Must have adequate sub-surface conditions to detain stormwater and level bottom to allow for uniform infiltration
- Can be proposed for use in parking lane, gutter strip, sidewalk, or plaza area
- Avoid “stormwater hotspots” — sites where there is potential for soil and groundwater contamination
- Use of this material generally requires a maintenance agreement

Design
- ASTM No. 8, 89, or 9 stone is recommend to fill paver joints. Requires open graded stone infiltration bed
- Bottom of infiltration bed should be at least 2 feet above high water table and 2 feet above bedrock
- Sustainability Opportunity: Coat pavers with photocatalytic treatment or high-SRI surface
- Sustainability Opportunity: Manufacture pavers using color additives to increase the SRI or incorporating recycled materials

Permeable Interlocking Concrete Pavers (PICPs) have voids at the joints to allow water to pass through into an open-graded reservoir below.

PICPs have been approved as standard for use on sidewalks at school locations in lieu of a planting strip. (See: Adopted Zoning Text Amendment 26-421, adopted April 30, 2012.) In addition, PDC has approved this treatment for use in the furnishing zone of city sidewalks. In all cases, PICPs are considered a distinctive material, and require a maintenance partner.

PICPs above a connected tree bed in Hudson Square, Manhattan (Credit: Hudson Square Business Improvement District)
Porous Concrete

Usage: Pilot

Concrete mixture using minimal cementitious paste to coat the aggregate, and using little or no sand or fine aggregate, leaving substantial void content. This allows water to pass through to an open-graded reservoir underneath.

Benefits

See benefits of UNPIGMENTED CONCRETE (3.1.1)

- Reduces impermeable surface, thereby increasing water infiltration
- Reduces peak sewer discharge during storm events
- Reduces likelihood of ponding and slick or icy conditions
- Helps reduce urban heat-island effect

Considerations

See considerations for UNPIGMENTED CONCRETE (3.1.1)

- Pervious concrete has reduced strength compared to conventional concrete applications
- Not appropriate for use where there is water-sensitive sub-surface infrastructure
- Only certain soil types are appropriate as sub-bases for infiltration
- Porosity of the concrete can convey harmful chemicals into the soil
- Requires routine vacuuming of surface to restore permeability
- Sand should not be applied to surface
- Contractors should be certified to install porous concrete
- Slump and air content tests are not applicable to pervious concrete

Application

Most effective on slopes less than 5%

- Must have adequate sub-surface conditions to detain stormwater and level bottom to allow for uniform infiltration
- Can be used to pave an entire sidewalk or just hardscape between CONNECTED TREE BEDS (6.1.1b)
- Avoid “stormwater hotspots”—sites where there is potential for soil and groundwater contamination
- Not recommended for implementation over significant underground utility corridors
- Use of this material generally requires a maintenance agreement

Design

See design guidance for UNPIGMENTED CONCRETE (3.1.1)

- Typically an 8- to 24-inch open graded stone infiltration bed is recommended
- Generally 4 - 8 inches thick
- Pervious concrete should maintain a 15 - 25% void content ratio
- Bottom of infiltration bed should be at least 2 feet above high water table and 2 feet above bedrock

Porous concrete lets water permeate down to the subsurface soil
Integral Concrete Curb and Gutter

Usage: Distinctive

Benefits
Easier to install and maintain than cast-in-place alternatives
Can be removed and replaced as needed

Considerations
See considerations for UNPIGMENTED CONCRETE (3.2.1)
Use of this material may require a maintenance agreement

Application
Appropriate for residential areas with low volumes of heavy vehicles
Flood-prone areas

Design
Specification source: DOT Standard Specifications Section 4.08, item number 4.08 CG
Sustainability Opportunity: Supplementary cementitious materials (SCM)
Sustainability Opportunity: Porous concrete where possible

Concrete curb and gutter precast as single pieces and installed in sections.

Precast concrete curb and gutter sections laid end-to-end. Photo shows extension in background: Miami Beach, FL (Note: for illustrative purposes only)
3.2.4 Granite

Granite

Usage: Distinctive

Benefits

Reinforces historic character (if applicable)

Adds distinction and visual enhancement to sidewalk

Stone conveys connection to natural environment

Extremely durable and low-maintenance, resists cracking and discoloration

Can be removed and replaced as needed

Considerations

Difficult to patch and must therefore be replaced by section if severely damaged

Much higher material cost than concrete

Application

This material is appropriate for all streets, especially commercial districts, including use in combination with concrete sidewalk

Granite curb is usually required in historic districts, adjacent to individual landmarks, or in areas with existing granite curb where the historic fabric remains intact

DOT generally maintains this material

Granite cut to long sections and laid as curbing. Saw-finishing, achieved by cutting the granite with a stone saw and polishing out saw marks, provides a smooth, clean look. Split finishing, typically achieved by hand-chiseling, exposes the natural cleft of the stone, giving a rough-hewn texture.

Design

Size: 5 inches to 8 inches wide on top, 3 inches of minimum width on bottom, 16 inches deep

Must have lip with batter and rounded edge

Slip resistance at top of curb: minimum 0.60 coefficient of friction when wet

Specification source: DOT Standard Specifications Section 2.12, 4.07

Saw-finish curb detail source: DOT Standard Detail drawing # H-1056

Split-finish curb detail source: DOT Standard Detail drawing # H-1056A

Sustainability Opportunity: Salvaged granite curb

Split-finish granite curb shown with concrete sidewalk: Houston Street at LaGuardia Place, Manhattan

Saw-finish granite curb shown with historic bluestone sidewalk: Madison Avenue at East 51st Street, Manhattan
Crosswalks

Crosswalks are areas of roadbed that are delineated to indicate where pedestrians are expected to cross (see Glossary). In certain instances, crosswalks may have patterns or be constructed from materials that further increase their visibility or add character to a neighborhood. This section is intended to include only surface materials approved for creating distinctive crosswalks. It does not include guidance on using standard thermoplastic markings to designate crosswalks for traffic control purposes. For this information, please refer to the most recent version of the federal Manual on Uniform Traffic Control Devices (MUTCD).

In addition to the materials listed in this section, all materials listed in the Roadways section (3.4) may also be used in crosswalks, according to the application guidance provided.
Granite Paver

Usage: Historic

Stone unit pavers are known for durability and associated with high-quality traditional streets.

Benefits
- Visually enhances crosswalk
- Creates accessible, smooth crossing surface

Considerations
- Due to the possibility of pavers cracking or becoming uneven, and asphalt shoving at the borders, application requires attentive maintenance
- Significantly higher cost than a standard asphalt crosswalk

Application
- Crosswalks on historic streets or where distinction is desired and there are low volumes of heavy vehicle traffic
- Should not be used where frequent utility cuts are likely
- Use of this material generally requires a maintenance agreement

Design
- Crosswalks generally should comply with MUTCD standards
- Paver size: minimum 4 inches for shortest dimension, maximum 30 inches for longest dimension, minimum 5-inch thickness for vehicular roadbed
- Pavers that have a ratio of length to width greater than 2:1 should only be used when set in poured concrete because of the likelihood of breakage under heavy-vehicle traffic
- Granite must have a textured surface that provides sufficient slip resistance to meet a minimum 0.60 coefficient of friction when wet

Specification source: DOT Standard Specifications Section 6.04

Sustainability Opportunity: Salvaged pavers
Roadways

Roadways represent the paved central portion of the street that allows access to and movement through an area (see Glossary). Most roadways are primarily designed for motor vehicle use.
Asphaltic Concrete

Usage: Standard

Benefits
- Provides smooth and durable road surface with high friction coefficient
- Material is widely available and cost-effective
- Impervious quality channels water to the curb on crowned roadways
- Dark color hides dirt and stains, creates background for high-contrast markings
- Easy to maintain and patch
- Can be pigmented or imprinted for varied purposes
- Asphalt can be recycled

Considerations
- Prone to rutting and shoving under high volumes of heavy vehicles
- Contributes to heat-island effect
- Sends runoff to catch basins, thereby contributing to combined-sewer overflows (CSOs) during large rainstorms

Design
- Minimum 3-inch-thick wearing course, typically
- Roadway should be crowned to drain stormwater from the road surface
- Typically requires concrete base

Specification source: DOT
Standard Specifications Section 2.05, 3.01, 4.01, 4.02

Detail source: DOT Standard Details drawing H-1034 and related

Sustainability Opportunities
- High recycled asphalt (RAP) content
- High-SRI asphalt
- Porous asphalt in parking lanes

Commonly known as asphalt, this material is a mixture of asphalt binder and stone aggregate, usually laid on a concrete base and compacted by a roller to form a smooth and solid road surface.
Porous Asphalt

Usage: Pilot

Asphaltic concrete in which the amount of fine particles is kept to a minimum and in which the binder content is low, allowing water to pass through into an open-graded reservoir.

Benefits

See benefits of ASPHALTIC CONCRETE (3.4.1)

- Reduces impermeable surface, thereby increasing water infiltration
- Exhibits structural properties similar to conventional asphalt
- Reduces peak sewer discharge during storm events
- Reduces likelihood of ponding and slick or icy road conditions
- Helps reduce urban heat-island effect

Considerations

See considerations for ASPHALTIC CONCRETE (3.4.1)

- Not recommended for use where there is water-sensitive sub-surface infrastructure
- Only certain soil types are appropriate as sub-bases for infiltration
- Porosity of pavement can convey harmful chemicals into the soil
- Requires vacuuming of surface to restore permeability when clogged
- Sand should not be applied to surface

Application

Can be proposed for use in parking lanes, parking lots, and recreational paths

- Most effective on slopes less than 5%
- Must have adequate sub-surface conditions to detain stormwater
- Avoid “stormwater hotspots”— sites where there is high potential for soil and groundwater contamination
- Not recommended for implementation over significant underground utility corridors

Use of this material generally requires a maintenance agreement

Design

Minimum 3-inch-thick wearing course, typically

- Roadway should be crowned to drain stormwater from the road surface
- Aggregate should be no smaller than 600 μm, or the No. 30 sieve
- Asphaltic cement should be 5.75 – 6.75% bituminous asphalt content by weight
- Do not seal coat

Typically, a 12 – 30-inch open graded stone infiltration bed is recommended.

- Bottom of infiltration bed should be at least 2 feet above high water table and 2 feet above bedrock
- Consider use in gutter area near pedestrian ramps to reduce ponding
Concrete

Benefits

Provides durable road surface with high friction coefficient
This material is widely available and cost effective
Resists rutting and shoving that can occur with asphalt
Compared to asphalt, reduces impact of vehicle travel vibrations on sub-surface features and neighboring structures

Considerations

Difficult to replace or patch in sections where utility cuts or defects occur
Noisier than asphalt

Application

Appropriate for roads with high motor vehicle volumes and/or gross weight
Should be used wherever engineering criteria dictates, such as bridges, vaulted roadways, or bus pads
Should not be used where frequent utility cuts are likely
Will be evaluated case-by-case based on engineer review of roadway structure

DOT generally maintains this material

Mixture comprising cement(s), aggregate(s), water, and other chemical admixtures, poured over metal reinforcement bars, smoothed, and then allowed to harden, forming a solid road surface.

Design

Must have joints to allow for expansion no more than 20 feet apart

May require metal reinforcement bars as specified by DOT

Specification source: DOT Standard Specifications Section 3.05, 4.05

Detail source: DOT Standard Details drawing H-1050

Detail source (bus pad): DOT Standard Details drawings H-1005, H-1005 A

Sustainability Opportunity: Supplementary cementitious materials (SCM)
Granite Block

Usage: Historic

Benefits
- Reinforces historic character
- Calms vehicle traffic
- Can visually delineate separation of street uses or modal priorities
- Cobblestones are relatively easy to remove and reset, especially for utility access

Considerations
- Stones can become loose over time and require intensive, regular maintenance
- May generate significant noise from vehicle tires
- Uneven surface can hinder pedestrians, cyclists, and people with disabilities; attention must be given to navigation by people with disabilities at crosswalks

See GRANITE PAVER CROSSING (3.3.1)

- Can be slippery when wet

Application
- Should be used wherever there is existing cobblestone in areas where the historic fabric remains intact
- Use of this material is subject to LPC review when used in historic districts with existing cobblestones
- May be used to provide visual delineation to separate bike lanes from vehicle lanes or vehicle lanes from pedestrian areas
- Can be used to designate areas of the roadbed not intended for regular vehicle travel, such as pedestrian streets or textured gutters, aprons, or medians

Provision must be made for a smooth cycling surface, regardless of whether or not the roadway is part of a designated bike route. DOT and DDC are finalizing a new specification for achieving rideability

Specification source: DOT Standard Highway Specifications Section 2.06, 6.04

Design
- Can be sand-set for easier installation and maintenance and for greater permeability, or mortar-set for stronger structural properties
- May require concrete base
- Provision must be made for a smooth cycling surface, regardless of whether or not the roadway is part of a designated bike route. DOT and DDC are finalizing a new specification for achieving rideability

Specification source: DOT Standard Highway Specifications Section 2.06, 6.04

Sustainability Opportunity:
- Salvaged cobbles

Sustainability Opportunity: Permeable installation
Lighting

<table>
<thead>
<tr>
<th>4.0</th>
<th>Introduction</th>
<th>134</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Poles</td>
<td>138</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Davit, Round, & Octagonal Poles</td>
<td>139</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Flatbush Avenue Pole</td>
<td>141</td>
</tr>
<tr>
<td>4.1.3</td>
<td>TBTA Pole</td>
<td>142</td>
</tr>
<tr>
<td>4.2</td>
<td>Luminaires</td>
<td>144</td>
</tr>
<tr>
<td>4.2.1</td>
<td>HPS Cobra Head Luminaire (discontinued)</td>
<td>145</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Standard LED Luminaire</td>
<td>146</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Helm Luminaire (discontinued)</td>
<td>147</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Stad Luminaire (discontinued)</td>
<td>149</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Teardrop & Shielded Teardrop Luminaire</td>
<td>151</td>
</tr>
<tr>
<td>4.3</td>
<td>Integrated Streetlights</td>
<td>152</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Alliance Luminaire & Pole</td>
<td>153</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Bishops Crook Luminaire & Pole</td>
<td>154</td>
</tr>
<tr>
<td>4.3.3</td>
<td>City Light Luminaire & Pole</td>
<td>155</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Flushing Meadows Luminaire & Pole</td>
<td>156</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Type B Luminaire & Pole</td>
<td>157</td>
</tr>
<tr>
<td>4.3.6</td>
<td>Type F Luminaire & Pole</td>
<td>158</td>
</tr>
<tr>
<td>4.3.7</td>
<td>Type M Luminaire & Pole</td>
<td>159</td>
</tr>
<tr>
<td>4.3.8</td>
<td>World’s Fair Luminaire & Pole</td>
<td>160</td>
</tr>
<tr>
<td>4.4</td>
<td>Signal Poles</td>
<td>161</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Type M-2A Signal Pole</td>
<td>162</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Type S-1A Signal Pole</td>
<td>164</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Alliance Signal Pole</td>
<td>165</td>
</tr>
</tbody>
</table>
4.0 Introduction

Introduction

About this Chapter
This chapter, which constitutes the current DOT Lighting Catalogue, outlines options for both new and replacement street and pedestrian lighting for New York City streets, pedestrian bridges, walkways, bikeways, plazas, and parks. Streetlights currently installed on the street but not included in this chapter are not permitted in new projects. The streetlights herein meet DOT engineering standards and technical requirements for safety and energy efficiency. Most are appropriate for use in a variety of contexts, pending DOT design review; however, with the city’s transition to LED streetlights, some luminaires, such as the Helm and Stad, have been discontinued, and will be reconsidered for use if LED lamps become available.

Selection Criteria
DOT uses guidelines established by the Illuminating Engineering Society of North America (IES) to provide sufficient light intensity and uniformity in the ROW to produce a comfortable and safe street environment. In addition to lighting characteristics, the agency considers the design qualities of poles and luminaires with an eye to maintaining an aesthetically consistent and coherent streetscape within each neighborhood. As part of this effort, the agency does not approve block-by-block variations in types of streetlights.

Streetlight Components
A streetlight comprises three elements: 1) the base (sometimes with a “skirt” that covers the base, for a desired appearance), 2) the pole, and 3) the luminaire, made up of the lamp — i.e., the actual light source — and the fixture, which houses the lamp. The desired aesthetic and engineering outcomes can be achieved by combining poles with a variety of luminaires; acceptable pole-luminaire combinations and options for lamps are described in this chapter.

In some cases, poles, luminaires, and bases are integral to the streetlights. Such streetlights are called “integrated streetlights.”

Energy Standards
In order to reduce the city’s energy use, DOT is phasing in LED lamps for all streetlights and encourages the use of LED fixtures whenever available.

Engineering Review
In all cases, the suitability of the streetlight for particular street and lighting conditions must be approved by DOT engineers.
Usage Categories

Streetlights and components are categorized as Standard, Distinctive, Historic, and Pilot. DOT maintains equipment in all four categories, and replaces damaged streetlights in kind. The installation of new streetlights as part of a streetscape project is included in that project’s budget and implemented by the project contractor. For any such project, an additional 10% of the total number of streetlights in the project must be purchased; DOT stores these extra streetlights and uses them to replace damaged streetlights in the project area.

- **Standard**
 DOT routinely installs and maintains Standard streetlights. The current Standard cobra head luminaires are the 110W maximum Standard LED Luminaires for wider streets and commercial streets; 78W maximum Standard LED Luminaires for residential streets; and 75W maximum park type Standard LED Luminaires for pedestrian lighting. DOT will maintain and replace existing 100W and 150W HPS Cobra Head luminaires for street lighting and 70W and 100W HPS luminaires for pedestrian lighting, but will be replacing them over time with LED luminaires. For street and pedestrian lighting, the Standard light poles are the Davit, the Round, and the Octagonal. The M-2A and the S-1A signal poles are Standard for use at traffic signal locations.

 With DOT approval, modifications and alternate combinations of components are possible. Poles can be painted black, brown, or green; and alternate treatments for bases can be used. While such modifications are considered Standard, they typically require a maintenance agreement.

- **Distinctive**
 Any streetlights other than those that are listed as Standard or Historic are considered Distinctive; they are installed as part of streetscape projects — in which case they require Public Design Commission (PDC) approval — or as in-kind replacements for damaged streetlights. DOT is responsible for submitting Distinctive streetlight proposals to PDC on behalf of neighborhood associations and other groups that request the treatments. In preparation for these submittals, DOT works closely with applicants to develop consistent streetlighting plans that are sensitive to local contexts. DOT maintains Distinctive streetlight components unless otherwise stipulated in a maintenance agreement.

- **Historic**
 Historic poles can only be used in Landmarks Preservation Commission (LPC) designated historic districts or in neighborhoods with substantial, intact historic fabric — i.e., three or more contiguous blocks. They require approval for use in historic districts, and PDC approval for use in non-designated areas with substantial, intact historic fabric. The Historic streetlights are currently used with only the LED Teardrop and Shielded Teardrop luminaires, with a 150W LED lamp.

 The TBTA pole (4.1.3) is considered Historic when combined with the Teardrop or Shielded Teardrop luminaire. Accordingly, it requires LPC approval in historic districts and PDC approval in non-designated areas with substantial and intact historic fabric.

- **Pilot**
 Streetlights in this category are being tested by DOT and are not yet approved for wider use in New York City.

Universal Design

Streetlights and signals at corners must be sited so that they do not obstruct curb ramps, ensuring sufficient access to the sidewalk for all pedestrians, including those using mobility devices. At crossings, the height of Accessible Pedestrian Signals must be reachable by a person using a mobility device, at a preferred height of 42 inches and a maximum height of 48 inches (ADA Accessibility Guides, PROWAG).

Resiliency

Existing foundations at traffic signal locations in certain flood-vulnerable areas will be replaced with coastal storm foundations that incorporate a square concrete pedestal 9 inches in height and 24 inches in width. The 24 inch x 9 inch pedestal will be monolithically poured with the foundation. Raising the base of the traffic signals or street light poles prevents the electrical components of the poles from being submerged in salt water during future flooding events. Additionally, High Density Polyethylene (HDPE) conduit, a more cost-effective material that is not susceptible to corrosion from residual salt water after storm surge events, will replace galvanized steel for all signal and streetlight locations.

DOT has transitioned to IES’s BUG rating system for streetlighting.
Specifications

For design criteria, technical information, finishes, and color specification, refer to DOT’s Bureau of Traffic Division of Streetlighting specifications. The latest edition is available for purchase for $50 from the Office of the Agency Chief Contracting Officer, 55 Water Street, Ground Level, New York NY 10041. For further information, call (212) 839-9435.

BUG Ratings

DOT rates luminaires based on IES’s BUG Ratings. The BUG (Backlight, Uplight, and Glare) rating describes the types of stray light escaping luminaires, based on zonal lumen calculations for secondary solid angles established by IES TM-15-11. The BUG system takes into account uplight shielding, glare shielding, and backlight shielding. This system replaces the previously-used IES cutoff rating classifications. DOT recommends fixtures with a B2-U1-G2 BUG rating.

Lighting Levels & Uniformity

DOT’s lighting-levels and uniformity guidelines are based on those established by the IES Roadway Lighting standard RP-8-14. The current edition of the Illuminating Engineering Society of North America’s IESNA Lighting Handbook should be referenced for applicable values of illuminance, luminance, contrast and glare criteria, and color temperatures.

All lighting designs must be reviewed and approved by DOT engineers.

<table>
<thead>
<tr>
<th>Luminaires</th>
<th>Standard Poles</th>
<th>Distinctive Poles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Davit</td>
<td>Octagonal</td>
<td>Round</td>
</tr>
<tr>
<td>Standard LED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teardrop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shielded Teardrop</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The table above illustrates what pole-luminaire combinations are allowed, though the Helm and Stad luminaires are only eligible for in-kind replacement. Integrated Streetlights are not included.
Notes and Symbols

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMH</td>
<td>Compact Ceramic Metal Halide lamping. CCMH is a full-spectrum light that can be installed as part of a street lighting project, and is maintained by DOT.</td>
</tr>
<tr>
<td>HDG</td>
<td>Hot Dipped Galvanized Steel</td>
</tr>
<tr>
<td>HPS</td>
<td>High-Pressure Sodium</td>
</tr>
<tr>
<td>IES</td>
<td>Illuminating Engineering Society of North America</td>
</tr>
<tr>
<td>IES Type</td>
<td>IES classification of lighting based on its photometric properties. Five types are relevant to the city's streetlights: I, II, III, IV, and V.</td>
</tr>
<tr>
<td>LED</td>
<td>Light-Emitting Diode. DOT is phasing in LEDs that produce white, full-spectrum light.</td>
</tr>
<tr>
<td>SS</td>
<td>Standard Streetlight: Standard pole (Davit, Round, or Octagonal), standard luminaire (Standard LED Luminaire), or standard pole and luminaire (Standard LED Luminaire on Round, Octagonal, or Davit)</td>
</tr>
<tr>
<td>W</td>
<td>Watts</td>
</tr>
<tr>
<td>$</td>
<td>Costs: Shown for each pole or luminaire as a $ symbol, representing relative costs compared to the Standard Streetlight (SS). A scale of one to five $ symbols is used rather than specific monetary amounts because actual costs are subject to change.</td>
</tr>
</tbody>
</table>
4.1 Poles

Poles
4.1.1 Davit, Round, & Octagonal Poles

Usage: Standard

Applications

Streetlight Pole:
- Streets and highways
- Single and twin mounting

Pedestrian Pole:
- Parks, plazas, esplanades, pedestrian bridges, walkways, and bikeways

Luminaires

Standard LED Luminaire (Standard)
HPS Cobra Head (being replaced by Standard LED Luminaire)
Helm (in-kind replacement only)
Stad (in-kind replacement only)

Material/Color

HDG Steel/silver (street) — black, brown, and green are also allowed but require a maintenance agreement
Aluminum/silver (highway)

Cost Compared to SS

The Davit, Octagonal, and Round Poles are Standard poles

Each of the Standard poles, combined with the Standard LED Luminaire, constitutes a Standard Streetlight. The Standard poles can also hold other luminaires. The Davit is DOT’s preferred Standard pole with the Round and Octagonal used for in-kind replacement.
4.1.1 Davit, Round, & Octagonal Poles

Standard Poles with Various Luminaires
The three luminaires shown here are not being employed in new projects. The Helm and Stad luminaires are eligible for in-kind replacement, and may be considered in the future if versions with LED lamps become available.

Standard Pedestrian Poles with Various Luminaires
The three luminaires shown here are not being employed in new projects. The Helm and Stad luminaires are eligible for in-kind replacement, and may be considered in the future if versions with LED lamps become available.
Flatbush Avenue Pole

Usage: Distinctive

Applications
Commercial and residential streets
Single or twin mounting (center medians)
Streets with roadway width of 36 feet or more

Luminaires
Teardrop (LED) and Shielded Teardrop (LED)
Helm (in-kind replacement only)
Stad (in-kind replacement only)

Material/Color
Fabricated steel pole/black, brown, and green

Cost Compared to SS
$$

Flatbush Avenue Pole with Various Luminaires
The Teardrop (LED) and Shielded Teardrop (LED) are acceptable for combination with the Flatbush Avenue Pole. The Helm and Stad luminaires are eligible for in-kind replacement, and may be considered in the future if versions with LED lamps become available.

The Flatbush Avenue pole was first installed in 1988 on Flatbush Avenue in Brooklyn. Its post-modern design is appropriate for areas with historic character.
TBTA Pole

Usage: Distinctive

Applications

Streetlight Pole:
- Commercial and residential streets
- Single or twin mounting
- Streets with roadway width of 36 feet or more

Pedestrian Pole:
- Parks, plazas, esplanades, pedestrian bridges, walkways, and bikeways

Luminaires

Teardrop (LED) and Shielded Teardrop (LED) (historic districts only)
Stad (in-kind replacement only)

Material/Color

Fabricated steel pole/black, brown, and green

Cost Compared to SS

$$$$$$

The TBTA (Triboro Bridge Tunnel Authority) pole was introduced in the 1950s for mid-twentieth-century bridge construction projects such as the Robert F. Kennedy Bridge (formerly the Triboro Bridge). The TBTA replaced wooden lamp posts that lit parkways during the 1920s and ’30s. The Teardrop and Shielded Teardrop luminaires combine with the TBTA pole to produce a historic quality.
The Teardrop (LED) and Shielded Teardrop (LED) are acceptable for combination with the TBTA Pole. The Stad and Helm luminaires are eligible for in-kind replacement, and may be considered for new applications if versions with LED lamps become available.

The Teardrop (LED) and Shielded Teardrop (LED) are acceptable for combination with the TBTA Pedestrian Pole. The Stad and Helm luminaires are eligible for in-kind replacement, and may be considered for new applications if versions with LED lamps become available.
Luminaires
HPS Cobra Head

Usage: Discontinued

Applications

Street light: Streets and highways; single or twin mounting

Pedestrian light: Parks, esplanades, pedestrian bridges, walkways, ramps, under elevated trains, and bikeways; single mounting only

Lamp/Optics

Road:
- 100W HPS, IES Type I
- 150W HPS, IES Type II

Pedestrian:
- 70W and 100W HPS, IES Type I

Cost Compared to SS

$€$

The HPS Cobra Head luminaire is being phased out and replaced by the Standard LED Luminaire, see STANDARD LED LUMINAIRE (4.2.2)

HPS Cobra Head with Standard Poles

Poles shown here are the standard poles provided, tested, and maintained by DOT.

HPS Cobra Head luminaire on twin Davit pole:
West Houston Street, Manhattan
4.2.2 Standard LED Luminaire

Standard LED Luminaire

Usage: Standard

Applications

Street light: Streets and highways; single or twin mounting

Pedestrian light: Parks, esplanades, pedestrian bridges, walkways, ramps, under elevated trains, and bikeways; single mounting only

Lamp/Optics

Wide Roadway/Commercial Area:
- 110W maximum LED
- IES Type I

Residential Street:
- 78W maximum LED
- IES Type I

Pedestrian:
- 75W maximum LED
- IES Type II or III

Cost Compared to SS

The Standard LED Luminaire is the SS

DOT is phasing in the 110W and 78W Standard LED Luminaires for wide roadways and residential streets, respectively. Their full-spectrum, white light substantially improves visibility and clarity. The Standard LED Luminaire is considered to have a Cobra Head fixture.
Helm Luminaire

Usage: In-Kind Replacement

Applications
Commercial districts (in-kind replacement only)

Lamp/Optics
90W and 140W CCMH
Curved sag glass optics
IES Type II or III

Cost Compared to SS
$$$$$$

An LED Helm luminaire is not currently available. The Helm luminaire is no longer permitted for new applications, but may be replaced in kind.

Helm luminaire on Davit pole: Flatbush Avenue, Brooklyn
Helm with Standard Poles
Standard poles are provided and maintained by DOT. Helm luminaires on standard poles are eligible for in-kind replacement, and may be considered for new applications if a version of the luminaire using LED lamps becomes available.

Helm with Distinctive Poles
Distinctive poles require additional funding. Helm luminaires on distinctive poles are eligible for in-kind replacement, and may be considered for new applications if a version of the luminaire using LED lamps becomes available.
Stad Luminaire

Usage: In-Kind Replacement

Applications
Commercial districts (in-kind replacement only)
Pedestrian luminaires: Parks, plazas, esplanades, pedestrian bridges, walkways, and bikeways (in-kind replacement only)
Single or twin mounting

Lamp/Optics
Road: 90W and 140W CCMH
Pedestrian: 60W and 90W CCMH
Sag or flat lens optics
IES Type II or III

Cost Compared to SS
$$$$

Stad with Standard Poles
Standard poles are provided and maintained by DOT.

Stad luminaires on standard poles are eligible for in-kind replacement, are eligible for in-kind replacement, and may be considered for new applications if a version of the luminaire using LED lamps becomes available.

An LED Stad luminaire is not currently available. The Stad luminaire is no longer permitted for new applications, but may be replaced in kind.
4.2.4 Stad Luminaire

Stad with Distinctive Poles
Distinctive poles require additional funding.

Stad luminaires on distinctive poles are eligible for in-kind replacement, and may be considered for new applications if a version of the luminaire using LED lamps becomes available.

Stad with Standard Pedestrian Poles
Stad luminaires on standard pedestrian poles are eligible for in-kind replacement, and may be considered for new applications if a version of the luminaire using LED lamps becomes available.
4.2.5 Teardrop & Shielded Teardrop Luminaires

Teardrop & Shielded Teardrop Luminaires

Usage: Historic

Applications
Selected historic districts

Lamp/Optics
- 150W or 100W LED
- IES Type III or V

Cost Compared to SS
$$$$

The Teardrop and Shielded Teardrop luminaires are intended for use in historic districts and are allowed in areas with substantial, intact historic fabric. DOT is replacing existing 250W HPS Teardrops and Shielded Teardrops with 150W and 100W LED versions of these luminaires.

Historic Luminaires with Various Poles

- Teardrop
- Shielded Teardrop

Applications

- Flatbush Avenue
 - 8'-0" pole
 - 30'-0" pole

- TBTA
 - 8'-0" pole
 - 27'-0" pole

- Bishops Crook
 - 26'-3" pole
Integrated Streetlights
The Alliance streetlight was originally introduced in Lower Manhattan by the Downtown Alliance business improvement district. The streetlight is a contemporary alternative to the standard poles with the Standard LED Luminaire, at an additional cost.

Alliance Luminaire & Pole

Usage: Distinctive

Applications
- Commercial districts
- Roadways with widths of 36 feet or more

Lamp/Optics
- 100W and 150W HPS
- IES Type II or III

Material/Color
- Steel/silver and black

Cost Compared to SS
- $$$$$

Alliance luminaire and pole: Murray Street, Manhattan
The Bishops Crook was the first of a number of decorative street lights to be introduced as early as 1900 on narrow city streets. Bracket versions of the Bishops Crook were also attached to the facades of buildings. The reproduction of the Bishops Crook was introduced in 1980 at Madison Avenue and 50th Street outside the Helmsley Palace Hotel (now the New York Palace Hotel).
An international design competition to develop a new streetlight for New York City was held in 2004. The City Light design was selected as the winning entry. The City Light offers the most contemporary look in DOT’s lighting catalogue.

City Light Luminaire & Pole

Usage: Distinctive

Applications
Commercial or residential districts

Lamp/Optics
100W LED: IES Type II

Material/Color
Aluminum/silver

Cost Compared to SS
$$$$

City Light luminaire and pole: Warren Street, Manhattan
4.3.4 Flushing Meadows Luminaire & Pole

Flushing Meadows Luminaire & Pole

Usage: Distinctive

Applications
Parks, plazas, esplanades, pedestrian bridges, walkways, and bikeways

Lamp/Optics
75W LED
IES Type III or V
Flushing Meadows Head

Material/Color
Steel/black, brown, green, and silver

Cost Compared to SS
$$

The Flushing Meadows integrated pedestrian light was first installed in 2004 by the Department of Parks and Recreation in Canarsie Park in Brooklyn. The pole is now installed in many city parks, plazas, and along walkways and bikeways. DOT is currently testing this pole with other luminaires for pedestrian plazas.
The Type B integrated pedestrian light was originally introduced in 1911 by designer Henry Bacon for the Central Park Mall and later installed in other city parks. This version of the fixture was developed in the late twentieth century. Type B luminaires with HPS lamps are being phased out and replaced with LED luminaires. This pole is a more traditional design for pedestrian areas such as parks and plazas.

Type B Luminaire & Pole

Usage: Distinctive

Applications

- Parks, plazas, esplanades, pedestrian bridges, walkways, and bikeways

Lamp/Optics

- 75W LED
- IES Type V

Material/Color

- Ductile iron pole/black, brown, or green

Cost Compared to SS

- $$

Type B luminaire and pole with LED lamp
Type F Luminaire & Pole

Usage: Historic

Applications
- Selected historic districts
- Streets with roadway width of 36 feet or less
- Single or twin mounting

Lamp/Optics
- 100W LED Teardrop luminaire
- IES Type III or V

Material/Color
- Ductile iron pole/black, brown, and green

Cost Compared to SS
- $$$$$$

The Type F pole, originally known as the Reverse Scroll Bracket, was developed in 1913 and installed on narrow streets downtown on Seventh Avenue. Bracket versions of the Reverse Scroll were also attached to the facades of buildings. The reproduction of the Reverse Scroll was introduced in the late twentieth century as the Type F pole.

Historic Type F luminaire and pole: East 8th Street, Manhattan
Type M Luminaire & Pole

Usage: Historic

Applications
Selected historic districts
Streets with roadway width of 36 feet or more
Single or twin mounting

Lamp/Optics
155W maximum LED Teardrop luminaire
IES Type III or V

Material/Color
Ductile iron pole/black, brown, and green

Cost Compared to SS
$$$$$

The Type M pole, originally known as the Mast-Arm post, was introduced in 1908 for wide streets at corners on Broadway north of Columbus Circle and on Seventh Avenue north of Central Park. Bracket versions of the Mast-Arm were also attached to the facades of buildings. The reproduction of the Mast-Arm was introduced in the late twentieth century as the Type M pole.

Historic Type M Luminaire and Pole:
West 11th Street, Manhattan
The World’s Fair pedestrian light was first installed in 1964 during the World’s Fair held in Flushing Meadows Park in Queens. The pole is now installed in many city parks, in plazas, and along walkways and bikeways.

Usage: Distinctive

Applications

Parks, plazas, esplanades, pedestrian bridges, walkways, and bikeways

Lamp/Optics

Type 2085 fixture
75W LED
100W and 150W HPS
IES Type V

Material/Color

Steel/black, brown, or green

Cost Compared to SS

$
4.4 Signal Poles
4.4.1 Type M-2A Signal Pole

Type M-2A Signal Pole

Usage: Standard

Introduced in 1964 as the M-2, the octagonal M-2A traffic signal pole is standard for use at all traffic signal locations. It can be mounted on a 9-inch concrete cylinder to provide necessary clearance or to avoid moisture in the base. A 5-foot mast-arm extension can be used to bring the signal farther out over the roadway, if necessary.

With a 5-foot 6-inch shaft extension, the M-2A can be used to hold a standard streetlight arm and a luminaire. It can also be made to resemble nearby Bishops Crook, Type F, or Type M poles when paired with the Type M skirt and a matching arm and luminaire.

Applications

- Holds signals and/or signs
- Single or double mounting
- Two M-2A poles per intersection, diagonally opposite from each other
- Sometimes mounted on 9-inch concrete cylinder to provide necessary clearance or avoid moisture in the base

5-foot 6-inch shaft extension provides necessary clearance or holds a luminaire, if necessary

5-foot mast-arm extension to hold signal farther out over the roadway, if necessary

Can be retrofitted to resemble nearby Bishops Crook, Type F, or Type M light poles

Luminaires

- Standard LED Luminaire (Standard)
- Stad (Distinctive, in-kind replacement only)
- Helm (Distinctive, in-kind replacement only)
- Teardrop (Historic)

Material/Color

- H.D.G. Steel/silver, black, brown, or green
4.4.1 Type M-2A Signal Pole

Type M-2A signal pole with Historic Bishops Crook arm: Foley Square, Manhattan

Type M-2A Signal Pole with HPS Cobra Head Luminaire
4.4.2 Type S-1A Signal Pole

Type S-1A Signal Pole

Usage: Standard

Applications
Holds pedestrian and/or traffic signals

Luminaires
This pole does not hold a luminaire

Material/Color
H.D.G. Steel/silver, black, brown, or green

Introduced as the S-1 in 1965, the round S-1A signal pole holds pedestrian signals at corners where an M-2A signal pole or a light pole is not necessary. It also holds traffic signals on medians and traffic islands.

Type S-1A signal pole with a pedestrian signal: Hoyt Street, Brooklyn
Alliance Signal Pole

Usage: Distinctive

Applications
Intersections

Lamp/Optics
100W HPS or 150W CCMH

Material/Color
H.D.G. steel/silver and black

The Alliance streetlights were introduced in the Lower Manhattan financial district by the Alliance for Downtown New York business improvement district. The signal pole can be used as a contemporary alternative to the standard M-2A signal pole in conjunction with nearby Alliance streetlights, but at an additional cost.
General Guidelines

Clear Path
City regulations mandate that objects on sidewalks leave an unobstructed clear path. Revocable consent rules require that the greater of 8 feet or 50 percent of the sidewalk remain clear; DOT sites bus shelters such that they leave 7-foot clear paths, and newsstands must allow 9.5-foot clear paths. A clear path minimum of 5 feet is required to ensure two wheelchair users are able to pass each other or change direction. Most street furniture should be placed 18 inches from the curb to allow for motor vehicle access. To accommodate pedestrians with vision disabilities adequately, the lowest edge of any ground-level protruding object should be a maximum of 2.25 feet above the sidewalk, and the lowest edge of any suspended protruding object should be a minimum height of 6.7 feet.

Clutter
DOT generally discourages the installation of street furniture and other permanent objects on streets where they may restrict pedestrian circulation and degrade the visual quality of the street.

City policy restricts the placement of movable planters on sidewalks. DOT uses movable planters to delineate pedestrian areas within the roadway, such as interim plazas or sidewalk extensions.

Property Lines
The metes and bounds of private properties, although clearly described in deeds and other real property documents, may not be consistent with existing outdoor structures. As such, property owners must determine the exact locations of their property lines before installing any outdoor furniture by consulting the surveys provided to them upon purchase of their properties or by retaining licensed surveyors to prepare such surveys.

Design
Light poles, signs, seating, bike racks, bus shelters, and other fixed elements play a supporting role on New York City streets. Consistent design of those varied elements is an important consideration in their selection and siting.

Revocable Consents
The city grants a revocable consent to construct and use certain structures on, over, or under its inalienable property—in this case, city roadways and sidewalks. The city retains the right to revoke this consent at any time. For more information on revocable consents, visit www.nyc.gov/html/dot/html/permits/revconif.shtml.

Resiliency
Street furniture and other permanent objects should be constructed using resilient materials that can withstand periodic temporary inundation by both fresh and salt water.

Universal Design
Furniture should be designed to accommodate as wide a range of potential users as possible. Relevant considerations include interface height, amount of force that must be applied, color schemes and level of contrast with surrounding materials, and adjacent clear path.

Additionally, the city has begun installing accessible water fountains across the five boroughs, in order to enhance the comfort and health of all pedestrians using the public realm.

Security Structures
Security structures are fixed objects, such as bollards, installed around the perimeter of a building to reduce blast impacts from vehicle-born explosives. A property owner who wishes to install security structures must apply for a revocable consent from DOT. The application is forwarded to the New York City Police Department’s (NYPD) Counterterrorism Division, which reviews security-related information provided by the property owner. If the NYPD determines that security structures are necessary, it works with the property owner’s architect/engineer to develop a conceptual plan of an effective security perimeter.

DOT then works with the owner and architect/engineer to develop plans that will provide the security perimeter required by NYPD and will fit in with all other structures that are already in, under, and above the affected streets. DOT then coordinates an expedited interagency review of the plans. Plans are reviewed on a case-by-case basis to confirm that the structures are necessary and effective, have a minimum impact on pedestrian and vehicular traffic, and are aesthetically appropriate.
5.1 Art Display Case

Dot partners with local institutions to curate rotating, temporary exhibits in plazas and on large sidewalks around the city.

Description
7 feet-6 inches high x 3 feet-10 inches wide
Displays art on both sides

Siting
Public plazas and wide sidewalks with a limited number of street elements
Sites in close proximity to mass transit, retail, and residential corridors with a high density of foot traffic
Minimum clear path: 8 feet
Minimum of 18 inches from the curb

Installation
Suggestions for display sites can be sent to arts@dot.nyc.gov
DOT is responsible for the installation and removal of art display cases

For More Information
To learn more about the art display case, visit www.nyc.gov/urbanart

Art display cases are installed temporarily: Willoughby Plaza, Brooklyn
In response to the lack of public restrooms in New York City, Cemusa, the Coordinated Street Furniture Franchisee, installs automatic public toilets (APTs). These state-of-the-art facilities offer comfort, hygiene, accessibility, and security to the public.

Automatic Public Toilet (APT)

Description

6 feet-7 inches deep x 12 feet wide

Siting

On wide streets, only in commercial, manufacturing, or mixed use districts

On sidewalks or plazas adjacent to property owned or leased by a government agency or public authority, or under the jurisdiction of the Economic Development Corporation (EDC)

On traffic islands or public places bounded on all sides by mapped streets under the jurisdiction of DOT

On or adjacent to parks property or playgrounds, subject to the approval of the Department of Parks and Recreation

Close proximity to water, sewer, and electrical connections

Minimum clear path in front: 8 feet; all other sides: 5 feet

There must be no sub-surface infrastructure in the footprint

Other Clearances:
- 10 feet: fire hydrants, standpipes
- 5 feet: tree trunks, canopies
- 3 feet: streetlights, traffic signal poles
- 2 feet: ventilation, street signs, cellar doors

Installation

DOT determines where to install APTs

Cemusa installs APTs at DOT’s direction

For More Information:

To learn more about the Coordinated Street Furniture Franchise, call 311, visit nyc.gov/dot, or email streetfurniture@dot.nyc.gov
Bike Parking Shelter

Bicycle parking shelters enclose four stainless-steel bike racks. The design closely resembles the BUS STOP SHELTER (5.5), using the same high-quality materials. The side panels display the annual NYC Bike Map and public service campaigns.

Description
5 feet x 14 feet — equivalent to the “regular” size BUS STOP SHELTER (5.5)

NYC Bike Map and public service campaigns on side panel; clear glass on back

Siting
Minimum clear path: 7 feet

All shelters must allow a straight unobstructed path of a minimum of 3 feet between the shelter and the curb

Other Clearances:
- 6 - 8 inches: sub-surface
- 10 feet: fire hydrants, standpipes
- 5 feet: tree trunks, canopies
- 5 feet: tree pits, cellar doors
- 3 feet: streetlights, traffic signal poles
- 2 feet: ventilation, street signs

Installation
DOT determines where to install bike shelters

Cemusa installs bike shelters at DOT’s direction

For More Information
To learn more about the Coordinated Street Furniture Franchise, call 311, visit nyc.gov/dot, or email streetfurniture@dot.nyc.gov
New York City’s bike share system provides access to a network of public bicycles intended for short, one-way trips. By 2017, the system will comprise 700 self-service docking stations for 12,000 bikes, available for use 24 hours a day throughout the year. With a few exceptions, stations hold 15 to 59 bicycle docks. Motivate will own, operate, and maintain the bike share system, with oversight from DOT. The station design complements many of the city’s other street furniture elements.

Description

Includes a pedestrian wayfinding map that indicates locations of nearby bike share stations, transit connections, landmarks, etc.

Composed of 4-15 plates (40–150 feet long) with 15 to 59 docks

Three types of modular plates, all of which are 3 feet deep and 10 feet long without bikes:
- **Standard**: Four docks, approximately 6 feet deep (with bikes)
- **Angled**: Three docks, approximately 4 feet–6 inches deep (with bikes)
- **Double-sided**: Six docks, approximately 9 feet deep (with bikes)

Solar-powered and connected to a central computer via existing wireless networks; stations are not wired, trenched, bolted, or fixed into the ground

Plates can be non-contiguous, bridging obstacles such as tree beds with an 8-inch-wide connecting channel

Can be configured in a number of ways, including:
- Linear
- L-shaped (i.e., turning around a corner)
- Back-to-back

Siting

Located in curb lanes of roadways, on sidewalks, in plazas, or on publicly accessible private property

Different siting guidelines apply for each type of location

For More Information

To learn more about bike share stations, visit nyc.gov/bikeshare
Bus Stop Shelter

Description
Shelters are configured in five sizes:
- Regular: 5 feet x 14 feet
- Narrow: 3.5 feet x 14 feet
- Short: 5 feet x 10 feet
- Little: 3.5 feet x 10 feet
- Double: 5 feet x 26 feet

Advertising panels on sides; clear glass on back

Siting
Minimum clear path: 7 feet

All shelters must allow a straight unobstructed path of a minimum of 3 feet between the shelter and the curb

Other Clearances:
- 6–8 inches: sub-surface
- 10 feet: fire hydrants, standpipes
- 5 feet: tree trunks, canopies
- 5 feet: tree pits, cellar doors
- 3 feet: streetlights, traffic signal poles
- 2 feet: ventilation, street signs

Installation
Cemusa generally installs bus stop shelters at bus stops that meet clearances, upon request and at DOT’s discretion

Bus stop shelters are part of the Coordinated Street Furniture Franchise that was awarded to Cemusa, Inc., in 2006. The award-winning, stainless-steel and glass design provides seating and protection for bus users.

For More Information
To learn more about the Coordinated Street Furniture Franchise, call 311, visit nyc.gov/dot, or email streetfurniture@dot.nyc.gov

York Avenue at East 69th Street, Manhattan (Credit: Jennifer Yao)
CityBench

Through its CityBench program, DOT installs a standard street bench at bus stops without shelters and in commercial areas to support transit use and to encourage walking. In 2014, after analyzing feedback from a wide range of users, DOT updated the design of the arm rests to enhance usability for aging New Yorkers; the seat depth was also slightly decreased to improve comfort. Structural enhancements include more stable footings and a significant reduction in the number of separate pieces, extending the bench’s lifespan and reducing its unit cost.

Description

Approximate dimensions: 7.5 feet long x 20.5 inches deep
Styles: backed and backless
Update:

Siting

Locations that meet DOT’s strategic objectives — e.g., at bus stops without shelters and Access-A-Ride designated stops, near senior centers, in retail shopping corridors, and near cultural institutions

Benches adjacent and parallel to the building shall be installed no more than 6 inches from the building face

Benches adjacent and parallel to the curb must be placed 18 – 24 inches from the curb

A bench that is not anchored to the sidewalk shall be placed against the building face during hours that the benefited property is open to the public and shall be stored inside the building when the building is closed

Minimum clear path: 8 feet

Installation

New Yorkers can request the bench at nyc.gov/Citybench

DOT personnel installs CityBenches

Outside of the CityBench program, a revocable consent is necessary to install a bench on the sidewalk, and a maintenance agreement is required for benches installed in a plaza. For complete regulations regarding revocable consents, including siting requirements, refer to Rules of the City of New York, Title 34, Chapter 7 and on the web at: www.nyc.gov/html/dot/html/permits/revconif.shtml
CityRack

DOT installs CityRacks on sidewalks and, through its Bike Corral program, in clusters in the curbside lane of the roadway. In both cases, installations are driven by requests from the general public and business and property owners. The product of an international design competition held in 2009, the CityRack has been recognized for its combination of function and elegance, and has been added to the permanent collection of the Madisonian Museum of Industrial Design.

Description

- 33.7-inch-diameter, cast-metal circle with a horizontal bar across the center
- Buffering with reflective flexible delineators and either planters or wheel stops
- Generally takes up one car-parking space
- Planters are planted and cared for by maintenance partners

Bike Corral:

- Curb lane of roadway
- Locations where demand for bike parking outstrips the available sidewalk space

Other Clearances:

- 15 feet: fire hydrants, bus stops, taxi stand or hotel loading zones, franchise structures, subway entrances
- 10 feet: corner quadrants, driveways, building entrances (building line installations only)
- 5 feet: standpipes, above-ground structures (e.g., signs, meters, lights, mailboxes, planters, phones), building entrances (curb installations only)
- 3 feet: tree-bed edges, grates, utility covers

Installation

DOT installs CityRacks

Call 311 or visit nyc.gov/dot and fill out the online form to suggest a location for a CityRack

For More Information

For more information visit www.nyc.gov/html/dot/html/bicyclists/bikerack.shtml

Bike corrals include multiple CityRacks: East 9th Street, Manhattan
Newsstand are part of the Coordinated Street Furniture Franchise. They are fabricated from stainless steel and glass. The product displays can be customized by each operator from a standard kit of parts. All existing newsstands that were licensed by the Department of Consumer Affairs (DCA) as of July 13, 2006, will receive a replacement newsstand at no cost to the licensee.

Description

Newsstands are available in nine sizes:
- 4 x 8 feet, 4 x 10 feet, and 4 x 12 feet
- 5 x 8 feet, 5 x 10 feet, and 5 x 12 feet
- 6 x 8 feet, 6 x 10 feet, and 6 x 12 feet

Siting

Minimum clear path: 9.5 feet
Minimum of 18 inches from the curb
Other Clearances:
- 15 feet: subway entrances, curb cuts
- 10 feet: hydrants
- 5 feet: tree beds, canopies
- 3 feet: streetlights, traffic signal poles
- 2 feet: street signs, manholes, cellar doors, parking meters

For complete siting criteria, refer to DCA rules at: www.nyc.gov/html/dca/html/licenses/024.shtml

Installation

Businesses apply to the Department of Consumer Affairs (DCA) for licenses to operate newsstands in specific locations
Cemusa installs new newsstands at locations approved by DCA and PDC

For More Information

To learn more about the Coordinated Street Furniture Franchise, call 311, visit nyc.gov/dot, or email streetfurniture@dot.nyc.gov
Walking accounts for 31% of all trips in the city and is a component of nearly all travel by public transit and many car journeys. DOT’s comprehensive wayfinding system helps visitors and residents alike navigate the city’s streets, further encouraging walking. In addition to the Area, Path and Neighborhood signs, DOT is installing Select Bus Service totems with real-time arrival information along current and future routes.

Two maps on each side of the Area and Path maps:
- Focus map displays destinations and services within a 5-minute walk
- Overview map displays destinations and services within a 15-minute walk and is helpful for planning longer journeys using public transit

Maps are “heads-up” – they are oriented according to the direction the user is facing

Siting
Minimum clear path: 8 feet
Minimum 18 inches from the curb

Other Clearances:
- 15 feet: subway entrances
- 10 feet: hydrants, tree beds, phone booths
- Min 5 feet: canopies, street lights, traffic signals, signs, manholes, parking meters, cellar doors, building entrances

Maps are incorporated into bike share and Select Bus Service stations

Installation
Panels require a 7-inch to 2-foot excavation, depending on sub-surface conditions
DOT is responsible for installation; DDC coordinates installation when it is part of a DDC capital project

For More Information
Visit www.nyc.gov/walknyc or email walknyc@dot.nyc.gov.
Landscape

6.0 Introduction 188
6.0.1 General Guidelines 190

6.1 Tree Beds 198
6.1.1 Tree Bed 199
 a Individual Tree Bed 201
 b Connected Tree Bed 202
 Table 6a 203

6.2 Roadway Plantings 204
6.2.1 Raised Median 205
 a Raised Median (Curb Height) 207
 b Raised Median (12 – 24 Inches) 208
 c Pedestrian Mall 209
6.2.2 Triangle 210
6.2.3 Street End 211
 Table 6b 212

6.3 Sidewalk Plantings 213
6.3.1 Full Sidewalk 214
6.3.2 Ribbon Sidewalk 215
6.3.3 Curb Extension 216
 Table 6c 217

6.4 Plaza Plantings 218
6.4.1 In-Ground Planting Area 219
6.4.2 Raised Planting Area 220
 Table 6d 221

6.5 Limited-Access Arterial Plantings 222
6.5.1 Limited-Access Arterial Plantings 223
 Table 6e 225

6.6 Stormwater Management Practices 226
6.6.1 Stormwater Management Practices 228
 a DEP ROW Bioswale 230
 b Stormwater Greenstreet 232
 Table 6f 234
About this Chapter
This chapter provides general guidelines for the selection, design, installation, and maintenance of plantings in the public right-of-way (ROW). It reflects current practices and initiatives such as PlaNYC, MillionTreesNYC, DOT’s Plaza Program, and DEP’s Green Infrastructure Plan.

The chapter is organized by the location of plantings, except for TREE BEDS (6.1) and STORMWATER MANAGEMENT PRACTICES (6.6) as these should be utilized wherever conditions allow.

Benefits of Plantings in the ROW
Vegetation within the public ROW has been shown to provide significant benefits. Generally, these benefits increase exponentially as the size of the plant increases; this is particularly true for trees.

All plantings:
- capture carbon dioxide and particles from the air
- reduce the urban heat-island effect, decreasing energy costs related to air temperatures
- allow for both passive and active stormwater management
- dampen street noise, providing health and psychological benefits
- provide urban wildlife habitat opportunities
- make streets appear narrower to drivers, thereby causing them to drive slower, and enhancing safety
- create a positive aesthetic that attracts customers to local businesses
- increase the value of adjacent properties
- make streets and neighborhoods more attractive

Guidance Sources
More comprehensive guidance on the planning, design, installation, and maintenance of plantings within New York City is contained in sources such as High Performance Landscape Guidelines: 21st Century Parks for NYC (Design Trust for Public Space and DPR, 2011), High Performance Infrastructure Guidelines (Design Trust for Public Space and DDC, 2005), Tree Planting Standards (DPR, 2012), Standards for Green Infrastructure (DEP, 2016), and the Sustainable Urban Site Design Manual (DDC Office of Sustainable Design, 2008).

Applicability and Exceptions
All new projects that significantly impact public and private streets should follow these guidelines. DOT approval will be based on site-specific conditions and cost-effective engineering standards and judgment, with the safety of all street users being of paramount importance.

Usage Categories
This chapter does not apply usage categories to landscape treatments. Plantings are encouraged wherever site conditions allow and appropriate maintenance can be provided. Plants must always be chosen based on site-specific conditions.

There are certain treatments, noted throughout the chapter, that are considered standard. These treatments will be installed and maintained by the city. Other entities may also pursue these treatments and they will generally require less intensive review. Other treatments may also be pursued, but may require more extensive review depending on the complexity of the project.
Reviews & Approvals
Installation of all plantings within the public ROW must be reviewed and approved by DPR and DOT. A forestry permit from DPR is required to install new trees and for any work being performed within 50 feet of existing trees. Proposed stormwater management landscape treatments within the public ROW must be reviewed and approved by DEP, DPR, and DOT. New plantings may be subject to PDC or LPC review, particularly if they are part of a larger streetscape or open space project within its purview.

Designs for planted areas and green infrastructure within the public ROW are still evolving and being tested. Because these treatments may ultimately be maintained by city agencies, the appropriate agencies must be consulted early in the design process so that all such treatments are technically viable and maintainable.

Maintenance Agreements
DPR is responsible for the maintenance of all trees within the public ROW and of Greenstreets, including select Stormwater Greenstreets. DEP maintains all green infrastructure practices in the ROW (See STORMWATER MANAGEMENT PRACTICES (6.6.1)) with the exception of the DPR Stormwater Greenstreets locations. Other plantings within the public ROW are encouraged but require coordination with appropriate agencies and a maintenance agreement with DOT.

For plantings requiring a maintenance agreement, proposals must be submitted to the appropriate DOT Borough Commissioner. Contact information for DOT Borough Commissioners can be found at nyc.gov/dotcontact or by calling 311.

DPR has shifted the focus of its Greenstreets program towards stormwater capture and has updated its criteria for evaluating Greenstreet requests. DPR still builds traditional Greenstreets in any community but only if they come with full independent funding for construction and maintenance. For more information see “Greenstreet Requests” at www.nycgovparks.org/greening/green-infrastructure.
6.0.1 General Guidelines

General Guidelines

The following guidelines expand on the general policies and principles outlined in the Introduction, with more information pertaining to landscape planting design, installation, and maintenance.

Project Team
It is recommended that all projects have a consulting arborist (CA), horticulturist, soil specialist, and/or landscape architect on the project team. City and/or state agencies should be involved early on.

Plant Selection
A successful planting design will match plants with existing site conditions and anticipated site use to achieve an aesthetically pleasing, functional, and long-lived landscape. Species selection must be guided by a comprehensive site analysis of the natural and built environment as well as the maintenance plantings are anticipated to need and receive. Plant specification should follow DOT and DPR standards, and, whenever possible, plants should be sourced from a nursery within 200 miles of the project site.

Attention should be given to plants’ color, form, foliage, and texture and how those elements can be combined to create year-round interest. Careful consideration should also be given to the forms and heights plants will reach at maturity and how they interact with other design elements, such as seating, signage, signals, and lighting. Avoid species that DPR has determined to be invasive and select plants that are known to compete well with invasive species. Where possible, given site conditions, designers should accommodate the collection of stormwater and select plants that can withstand both periodic inundation and drought. All species selection must be approved by DPR during the review process.

Appropriate plant selection includes a diversity of species with year-round interest: Park Avenue and 97th Street, Manhattan (Credit: Lynden B. Miller)
Spacing/Siting Requirements

In the setting of streets, parkways, and expressways, the placement of trees and other plants has a direct bearing on safety and the cost of maintenance. Plants, excluding tree canopies, in the public ROW should not infringe upon the roadway or sidewalk beyond the planting bed. Ultimately, all plantings must follow MUTCD, AASHTO, NYSDOT, DPR, and DOT design standards and guidelines. (See Clearance Diagram above.)

Careful consideration must be given to above- and below-ground constraints; utilities, vaults, and other obstructions may limit the ability to plant. In particular, avoid planting trees directly over DEP water and sewer mains and near steam lines.

Trees and other plantings must not block sight lines at intersections for drivers, cyclists, and pedestrians. At all intersections, trees and any plants that would naturally grow to greater than 2 feet in height must be placed no closer than 35 feet from the curb of the intersecting street and in a manner that does not block the signal or stop sign. (See Corner Clearance Diagram, right.) Trees on medians must be set back 35 feet from the curb at the end of the median.
6.0.1 General Guidelines

Tree Preservation and Protection
Mature trees should be preserved during construction wherever possible because they provide significantly more benefits than newly planted trees. Such preservation can be complicated and should therefore be guided by a consulting arborist (CA) throughout the project. The following provides general information on how best to approach design with the preservation of existing trees in mind.

Under Section 18-107 of the Administrative Code of the City of New York and Chapter 5 of Title 56 of the Rules and Regulations of the City of New York, all construction work impacting trees within the public ROW must be approved and permitted by DPR. In addition, construction work must follow DPR Tree Preservation Protocols and DPR Forestry Protocol for Planned and Emergency Utility Work. Ultimately, if the removal of a tree is necessary, it must be approved by DPR, and restitution may be required based on a valuation of the trees impacted. This typically involves planting new trees and/or paying a fee to cover the cost of DPR planting the necessary replacement trees.

In order to preserve existing trees, their roots must be protected. Tree roots extend well beyond the visible canopy and are generally within the top three feet of soil. The minimum number of roots a tree needs to survive is called the critical root zone (CRZ) and will be determined by the CA using the International Society of Arboriculture’s Best Management Practices for Managing Trees During Construction (F. Kite, T. Smiley, 2008). The individual CRZ radii should be incorporated into all phases of design and reflected on a CRZ map. The goal is to preserve as many roots as possible beyond the CRZ through sensitive design and the use of best practices during construction.

DPR is expanding existing tree beds throughout the city to promote tree health and reduce potential trip hazards created by heaving: Devoe Street, Brooklyn (Credit: DPR)

Reconfiguration of a sidewalk to promote tree health (before and after): Aberdeen Road, Queens (Credit: DPR)

1. Scope
Include DPR’s Borough Forestry Office in the Scope review to consider potential impacts to trees in siting project scope

2. Inventory and Assess Existing Tree Resources
Certified Arborist (CA) to inventory and assess all trees within and immediately adjacent to project limit lines

3. Design with the Tree in Mind
CA to identify potential tree impacts and necessary tree removals
All tree removals must be approved by DPR’s Borough Forestry Office

4. Develop Tree Protection Plan
CA to advise and review designs for potential tree impacts
CA to advise and develop tree protection plan
50% and 90% construction documents reviewed by DPR’s Borough Forestry Office

5. Enforce Tree Protection Plan in Construction
Tree protection implemented and enforced by DPR’s Borough Forestry Office and/or CA
CA to perform initial inspection and approval of installed tree protection measures
CA to supervise all work within and immediately adjacent to Tree Protection Areas
Individual Tree Bed

Benefits
See benefits of TREE BED (6.1.1)

Considerations
See considerations for TREE BED (6.1.1)

The installation of a tree-bed guard requires a permit from DPR

Application
See application guidance for TREE BED (6.1.1)

Use CONNECTED TREE BEDS (6.1.1b) rather than INDIVIDUAL TREE BEDS (6.1.1a) wherever possible

Design
See design guidance for TREE BED (6.1.1)

Tree-bed sizes may vary depending on site conditions and should be designed to be as large as possible

One of DPR's eleven standard tree-bed guards should be used

Tree-bed guard should be a minimum of 18 inches high, with the lowest horizontal member no more than one inch above the sidewalk, and without any features extending outward beyond the tree bed border

In curbside tree beds, only three-sided tree-bed guards are permitted, with the open side at the curb, 18 inches from the curb face

Tree beds without tree-bed guards must have a flat surface without any tripping hazard and be no more than one inch above or below the adjacent sidewalk surface

Plants
See Tree-Bed Planting Recommendations (Table 6A)
6.1.1b Tree Bed: Connected Tree Bed

Tree Bed

A series of tree beds connected with a continuous trench in order to provide increased root space and stormwater detention. This is a standard treatment that will be installed and maintained by the city.

Benefits

See benefits of **TREE BED (6.1.1)**

- Provides greater space for tree roots than **INDIVIDUAL TREE BED (6.1.1a)**, improving tree health and longevity.

- In areas where a **RIBBON SIDEWALK (2.2.1b)** is inappropriate, connected tree beds provide many of the same benefits.

- Additional soil provides more stormwater detention capacity than **INDIVIDUAL TREE BEDS (6.1.1a)**.

Considerations

See considerations for **TREE BED (6.1.1)**

Application

See application guidance for **TREE BED (6.1.1)**

- Whenever possible in lieu of **INDIVIDUAL TREE BED (6.1.1a)**.

- Consider **RIBBON SIDEWALK (2.2.1b)** as an alternative in areas of low-to-moderate land use density per its application guidance and zoning requirements.

- Consider **DEP ROW BIOSWALES (6.6.1a)** in DEP Priority CSO Tributary Areas where conditions are appropriate.

Design

See design guidance for **TREE BED (6.1.1)**

- The trench of connected tree beds should be left uncovered (and, optionally, landscaped) to improve tree root health.

- Where pedestrian access is necessary (areas of high foot traffic, limited sidewalk space, or frequent curbside access), pavement can be bridged over the tree-bed trench using a suspended pavement system to increase soil volume.

Plants

See Tree-Bed Planting Recommendations (Table 6A)
A median that is raised 6–7 inches above the roadbed and provides adequate width to allow for plantings. RAISED MEDIAN (CURB HEIGHT) are utilized throughout the city. Trees and other ornamental plantings add to the traffic-calming effect provided by medians.

Benefits

See benefits for RAISED MEDIAN (6.2.1)

Considerations

See considerations for RAISED MEDIAN (6.2.1)

Consider underground utility constraints as excavation beneath the roadbed will be necessary to provide adequate soil volume and positive drainage.

If the roadway can be regraded to a double crown, consider using the median to capture and detain stormwater; See STORMWATER MANAGEMENT PRACTICES (6.6.1)

Design

See design guidance for RAISED MEDIANS (6.2.1)

Consider the use of a suspended pavement system and CONNECTED TREE BEDS (6.1.1.b)

Plantings must not protrude into the roadway; select plants that will grow densely within the planting bed.

Plants

See Roadway Planting Recommendations (Table 6B)
6.2.1b Raised Median: 12–24 inches

RAISED MEDIAN

12–24 Inches

A median, typically constructed of concrete or stone, 12–24 inches above the roadbed that provides above-ground soil volume for plantings. Generally employed where underground constraints prevent planting at grade and/or along high-speed roadways.

Benefits

See benefits for RAISED MEDIAN (6.2.1)

Considerations

See GENERAL GUIDELINES (6.0.1)

See considerations for RAISED MEDIAN (6.2.1)

Higher medians can encourage higher motor vehicle speeds; therefore, design the median to the minimum height necessary to accommodate appropriate soil depth

Consider visibility in relation to the overall height of mature plantings and the raised median (12–24 inches)

Existing trees at potential raised-median sites should be preserved if possible; consider installing the median around the trees to prevent excavation and change of soil grade

Design

See design guidance for RAISED MEDIAN (6.2.1)

Planting beds should be sufficiently wide and deep to provide adequate soil volume for plants: 6 feet minimum soil width (wall to wall) and 24 inches minimum soil depth

Always excavate through the entire roadbed so the bottom of the planting bed is open and will allow positive drainage

The roots of plants will be primarily above ground, and are thus more sensitive to freeze-thaw cycles in the winter. Carefully select species which are cold hardy to at least Zone 6A. For added insulation, provide adequate mulch (2–3 inches) at the time of planting and replenish as necessary

For perimeter plantings, choose plants that will not protrude beyond the edge of the raised wall; plants that cascade over the edge of the wall may be acceptable

Plants

See Roadway Planting Recommendations (Table 6B)
RAISED MEDIAN

Pedestrian Mall

A wide median that allows for pedestrian use and circulation in addition to plantings. Pedestrian malls, like the Allen Street Malls or the Park Avenue Mall at East 97th Street in Manhattan, provide a safe area for pedestrian use within the roadway. Typically, these malls are DPR property and are maintained by DPR or by neighborhood groups through a maintenance agreement.

Benefits

See benefits for RAISED MEDIAN (6.2.1)

Considerations

See considerations for RAISED MEDIAN (6.2.1)

Consider pedestrian and bicycle circulation within the mall

Consider how the planting design will function with other elements, such as seating, lighting, and artwork

Consider the collection of stormwater. See STORMWATER MANAGEMENT PRACTICES (6.6.1)

Plantings, excluding trees, not maintained by DPR require a maintenance agreement

Design

See design guidance for RAISED MEDIAN (6.2.1)

Adequate access should be provided throughout the mall; planting areas should be designed to accommodate necessary circulation

A minimum of 8 feet must be provided for a pedestrian-only path, 8 feet for a two-way bicycle path, and 12 – 14 feet, depending on the volume of users, for a shared-use path

Plant densely to discourage weed growth and pedestrian access through the plantings

Consider the use of tree-bed guards around planting areas to discourage trampling of plant material

Plants

See Roadway Planting Recommendations (Table 6B)
A planted area of any size and shape, not just a triangle, within the public ROW that generally separates and/or channelizes traffic. Typically, existing planted triangles are maintained by DPR (through the Greenstreets agreement between DOT and DPR) or another entity, such as a neighborhood group through a maintenance agreement.

Benefits

See **BENEFITS OF PLANTINGS IN THE ROW (6.0)**

Can incorporate community facilities such as seating or other furnishings to encourage social and recreational activities, depending on its size and capacity of the maintenance partner

Considerations

See **GENERAL GUIDELINES (6.0.1)**

May impact street drainage or require catch-basin relocation

Safe access to plantings for maintenance workers must be provided

Landscaping or stormwater source controls not covered under the agreements between DPR, DEP, and DOT require a maintenance agreement

Design

See **GENERAL GUIDELINES (6.0.1)**

Where planting trees, see design guidance for **TREE BED (6.1.1)**

Design details should be determined on a site-specific basis in consultation with DPR, DOT, and DEP

Consider pedestrian access and circulation; paths should be uninterrupted through triangles

Consider height and width of shrubs, grasses, and perennials at maturity, and, if necessary, keep taller plants towards the interior and use shorter plants along the exterior of triangle plantings. Choose dwarf species where visibility is a concern

Plants

See **Roadway Planting Recommendations (Table 6B)**

Plants must not protrude into the roadway; plant densely within the planting bed to discourage weed growth and trampling

Use salt-tolerant, drought-tolerant species for plantings

Consider designing the area to capture stormwater runoff. See **STORMWATER MANAGEMENT PRACTICES (6.6.1)**
The public space at the end of a street abutting a boardwalk or body of water. Pedestrian access to the waterfront or boardwalk must be maintained. In some cases, such as street ends in Greenpoint and Williamsburg in Brooklyn, the area is subject to a Waterfront Access Plan (WAP). This plan is created by DCP and outlines specific concerns regarding design, access, and maintenance.

Benefits
See BENEFITS OF PLANTINGS IN THE ROW (6.0)
Provides an opportunity to actively collect and manage stormwater

Considerations
See GENERAL GUIDELINES (6.0.1)
See considerations for TRIANGLE (6.2.2)
Consider physical and environmental stresses when selecting plants; especially if near the coast or a river
If DPR will not maintain plantings, a maintenance agreement will be required

Design
See GENERAL GUIDELINES (6.0.1)
Consult DCP for Waterfront Public Access requirements for adjacent parcels and to allow for coordination with existing or future public access areas and continuous access along the shoreline where appropriate
A minimum 5-foot path for pedestrian access should be provided through a planted area if there is an accessible area beyond the plantings
If a maintenance partner can be identified, consider the use of community amenities, such as street furniture, in conjunction with plantings
Consider the capture of stormwater runoff. See STORMWATER MANAGEMENT PRACTICES (6.6.1)

Plants
See Roadway Planting Recommendations (Table 6B)
6.2 Planting Recommendations

TABLE 6B

Roadway Planting Recommendations

Trees, shrubs, groundcovers, perennials, and other vegetation located within the roadbed of a street. Generally, plantings are installed within raised medians or triangles that separate or channelize traffic. This list is not comprehensive and there is no guarantee that these plants will survive at a specific site. All plants within the public ROW must be selected based on site-specific conditions and approved by DPR.

<table>
<thead>
<tr>
<th>Trees</th>
<th>Appearance</th>
<th>Tolerances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientific Name</td>
<td>Common Name</td>
<td>Height</td>
</tr>
<tr>
<td>Ulmus 'New Harmony'</td>
<td>New Harmony Elm</td>
<td>>40'</td>
</tr>
<tr>
<td>Ginkgo biloba (Fruitless Cultivar Only)</td>
<td>Ginkgo</td>
<td></td>
</tr>
<tr>
<td>Juniperus chinensis 'Keteleeri'</td>
<td>Keteleer Chinese Juniper</td>
<td>15'-40'</td>
</tr>
<tr>
<td>Koelreuteria paniculata</td>
<td>Goldenrain Tree</td>
<td></td>
</tr>
<tr>
<td>Prunus serrulata 'Okame'</td>
<td>Okame Cherry</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shrubs</th>
<th>Appearance</th>
<th>Tolerances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrangea paniculata 'DV Pinky'</td>
<td>Pinky Winky Hydrangea</td>
<td>6'-8'</td>
</tr>
<tr>
<td>Cornus sericea 'Farrow'</td>
<td>Arctic Fire Red Twig Dogwood</td>
<td>3'-4'</td>
</tr>
<tr>
<td>Rosa 'Radar'</td>
<td>Rainbow Knock Out Rose</td>
<td>4'-5'</td>
</tr>
<tr>
<td>Abelia x grandiflora 'Rose Creek'</td>
<td>Rose Creek Glossy Abelia</td>
<td>3'-4'</td>
</tr>
<tr>
<td>Caryopteris x clandonensis 'Dark Knight'</td>
<td>Dark Knight Blue Mist Shrub</td>
<td>1.5'-2'</td>
</tr>
<tr>
<td>Juniperus chinensis var. sargentii 'Glauca'</td>
<td>Blue Sargent Juniper</td>
<td>6'-9'</td>
</tr>
<tr>
<td>Lagerstroemia indica 'Gamad II'</td>
<td>Razzle Dazzle Crepe Myrtle</td>
<td><3'</td>
</tr>
<tr>
<td>Potentilla fruticosa</td>
<td>Shrubby Cinquefoil</td>
<td>3'-4'</td>
</tr>
<tr>
<td>Rhus aromatica 'Gro Low'</td>
<td>Gro Low Sumac</td>
<td>6'-8'</td>
</tr>
<tr>
<td>Spiraea x bumalda 'Goldmound'</td>
<td>Goldmound Spirea</td>
<td>3'-4'</td>
</tr>
<tr>
<td>Yucca filamentosa 'Color Guard'</td>
<td>Color Guard Adam's Needle</td>
<td>2'-3'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Perennials</th>
<th>Appearance</th>
<th>Tolerances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liriope muscari 'Big Blue'</td>
<td>Big Blue Lilyturf</td>
<td>1'-2'</td>
</tr>
<tr>
<td>Nepeta x 'Walker’s Low’</td>
<td>Walker’s Low Catmint</td>
<td>2'-2.5'</td>
</tr>
<tr>
<td>Perovskia atriplicifolia ‘Little Spire’</td>
<td>Little Spire Russian Sage</td>
<td>1.5'-2'</td>
</tr>
<tr>
<td>Echinacea purpurea</td>
<td>Coneflower</td>
<td>2'-3'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grasses/Grass-like Plants</th>
<th>Appearance</th>
<th>Tolerances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chionodoxa forbesii ‘Pink Giant’</td>
<td>Pink Giant Glory of the Snow</td>
<td>3'-5'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bulbs</th>
<th>Appearance</th>
<th>Tolerances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narcissus ‘Improved King Alfred’</td>
<td>Trumpet Daffodil</td>
<td>1'-2'</td>
</tr>
<tr>
<td>Allium ‘Globemaster’</td>
<td>Globemaster Ornamental Onion</td>
<td>1.5'-2.5'</td>
</tr>
</tbody>
</table>

* Fall Dig Hazard ▲ ALB Host Species ☞ Bloom/Showy Flowers 🍎 Showy Fruit 🔊 Distinct Foliage 🍂 Fall Color 🌳 Distinctive Bark 🌿 Evergreen
RIBBON SIDEWALKS allow for planting along the curb. They typically occur in more residential areas with low-volume pedestrian traffic. The planting strip generally consists of trees and turfgrass, but can also provide an opportunity for enhanced ornamental plantings.

Benefits

See **BENEFITS OF PLANTINGS IN THE ROW** (6.0)

Considerations

See **GENERAL GUIDELINES** (6.0.1)

May impact underground or overhead utilities

Consider environmental and physical stresses plants must withstand, including drought/inundation, sun/shade, heat/cold, wind, compaction, garbage, and animal damage

Planting strips adjacent to ribbon sidewalks must be planted with groundcover vegetation for erosion control if a **STORMWATER MANAGEMENT PRACTICE** (6.6.1) solution is not used

The adjacent property owner or other maintenance partner is responsible for maintenance of any plantings other than trees

Design

See design guidance for **TREE BED** (6.1.1)

Groundcover other than turfgrass is permitted as long as adequate access every 20 feet via walkable vegetation or another accessible surface is provided from the roadway

Consider the capture of stormwater runoff. See **STORMWATER MANAGEMENT PRACTICES** (6.6.1)

Select low-growing plants that will have year-round ornamental interest

Plants

See Sidewalk Planting Recommendations (Table 6C)
6.3.3 Curb Extension

Curb Extension

A CURB EXTENSION that is planted rather than paved.

Benefits
See BENEFITS OF PLANTINGS IN THE ROW (6.0)

Considerations
See GENERAL GUIDELINES (6.0.1)
May impact street drainage and require new catch basins
Landscaping or stormwater source controls other than city-maintained ROW Bioswales, Greenstreets and Stormwater Greenstreets require a maintenance agreement

Design
See design guidance for CURB EXTENSION (6.2.1)
If located at a corner, maintain clear access to the crosswalk and the pedestrian ramp
Where possible, pitch sidewalks to direct water into the planting beds. Additionally, consider the capture of stormwater from the roadway. See STORMWATER MANAGEMENT PRACTICES (6.6.1)
Select low-growing plants that will have year-round ornamental interest and not block sight lines. Consider the use of tree-bed guards around planted areas

Plants
See Sidewalk Planting Recommendations (Table 6C)
In-Ground Planting Area

Benefits
See Benefits of Plantings in the Row (6.0)

Plants add character to a plaza and provide secondary environmental benefits

Plazas provide more room for planting and allow for a greater diversity of plants

Considerations
See General Guidelines (6.0.1)

Account for existing and proposed pedestrian circulation, especially major desire lines to crosswalks, building entrances, and pedestrian generators such as transit connections

Plazas should maintain a feeling of openness; plantings should not block critical sight lines through the plaza

Proximity to vehicular traffic and pedestrian circulation will impact the size and shape of the planting areas

Positive drainage must be established in all planting areas

Consider how maintenance workers will access the plantings to perform regular maintenance activities; access to a water source for irrigation should be provided

Design
Plantings must be considered in context of the overall plaza design. See Permanent Plaza (2.1.4a) for design guidance

Planting areas within plazas that are level with the surrounding grade. The size and shape of the area may vary, and it is typically employed where there are few underground constraints.

The plantings in this plaza were selected based on the microclimate, which is mostly shady and windy: Hanover Square, Lower Manhattan (Credit: Lynden B. Miller)

Maintain a clear path for any major pedestrian desire lines or defined circulation paths; if the plaza is located in front of a building, provide an additional clear path adjacent to the building

Provide adequate soil volume/rooting area for plantings; a minimum 24-inch depth and 5-foot width of organic, well-draining soil

Design plantings in relation to seating areas or other areas of interest to create or define edges, to add visual interest, to provide shade, and/or to provide other protection for plaza users

Select plants that provide year-round interest; utilize combinations of plants that have contrasting textures, colors, and forms

Plant densely to discourage littering, trampling and other improper uses

Direct stormwater runoff into plantings wherever possible. See Stormwater Management Practices (6.6.1)

Plaza plantings should provide year-round interest and be appropriate for a given microclimate: Hanover Square, Lower Manhattan (Credit: Lynden B. Miller)

In heavily trafficked areas, consider the use of suspended paving systems to maximize circulation while preventing soil compaction. Consider the use of a tree-bed guard where feasible

Plants
See Plaza Plantings (6.4): Plaza Planting Recommendations
6.4.2 Raised Planting Area

Raised Planting Area

Any planting area within a plaza that is raised above grade. The size and shape of the area may vary from site to site and is typically employed where there are underground constraints. The majority of the soil volume is contained within the above-ground structure.

Benefits

See **BENEFITS OF PLANTINGS IN THE ROW (6.0)** and **IN-GROUND PLANTING AREA (6.4.1)**

- Above-ground planting structures allow the integration of other design elements such as seating and lighting
- Raising planters creates opportunities for planting where there are underground constraints
- Raised planters create more substantial barriers from vehicles
- Raised planters create protection from winter salt spray

Considerations

See **GENERAL GUIDELINES (6.0.1)**

See considerations for **IN-GROUND PLANTING AREA (6.4.1)**

- Plant selection should be sensitive to the limited amount of soil available for root growth in a raised planter. Due to the limited soil volume, plants should be more drought-tolerant and will need to be watered more often
- Soil is less insulated in raised planting beds; freeze/thaw cycles will be more extreme in winter; select plants that are one to two USDA zones hardier to survive these conditions

Design

See design guidance for **IN-GROUND PLANTING AREA (6.4.1)**

- Consider the type of soil that will be used within the raised bed. Specify a soil with good water and nutrient holding capacity.
- Raised structures allow for greater variation in topography and a larger variety of seating options
- Planting beds, as a general rule, should not exceed 18 inches in height and should maintain visual and physical openness
- Raised planting areas can provide additional seating by utilizing the wall of the raised structure as a seat wall; avoid creating long walls that impede pedestrian circulation

Plants

See **Plaza Planting Recommendations (Table 6D)**
Limited-Access Arterial Plantings

Limited-access arterial highways are high-speed roadways, such as expressways or parkways, with access ramps, no intersections with traffic control, and generally large areas for plantings. The most commonly used ground cover for limited-access arterial highways is turf grass. It has low installation costs, superior ability to control soil erosion, and minimal maintenance requirements. Arterial lawns are mowed about four times during the growing season. No fertilizers or pesticides are used, and there is never supplemental irrigation after establishment.

Benefits

See **BENEFITS OF PLANTINGS IN THE ROW (6.0)**

Limited-access arterial ROWs often contain large contiguous areas suitable for re-forestation, providing some of the benefits of natural woodland, including corridors for wildlife.

Opportunities for greater diversity in trees and other species and preservation of native species where existing conditions are not unduly disturbed.

Reduction in glare and a more pleasant experience for motorists.

Summer cooling, wind reduction, buffering of negative traffic perceptions, and enhanced aesthetics.

Considerations

See **GENERAL GUIDELINES (6.0.1)**

Planting must comply with DOT design standards and guidelines and NYSDOT guidelines if located within NYSDOT jurisdiction.

Limited-access arterial highway landscapes typically receive limited maintenance; there is no weeding or invasive-species removal.

Trees should not be planted closer than 20 feet apart to allow for mowing. Space should be provided for maintenance vehicles and crews.

Plantings should not create hidden areas that facilitate illegal activities such as dumping or vandalism.
Soil can be highly variable in texture, pH, and depth; compaction is typical and can greatly suppress root growth as well as cause drainage problems.

Plants must be able to tolerate various stresses such as reflected heat, salt, drought, wind, and competition from invasive plants.

Plants known to be susceptible to insect or disease problems should not be used.

The Port Authority of New York and New Jersey prohibits plants with fruit that attracts birds near the airports.

Any plantings not maintained by DOT or DPR will require a maintenance agreement; consider DOT’s Adopt-a-Highway program for enhanced maintenance.

Design

Limited-access arterial highways without curbside safety barriers must maintain 30-foot clear zones (recovery zones) on either side. Access ramps must have clear zones measuring at least 15 feet on either side. All clear zones must be approved by DOT.

A minimum of 10 feet behind any safety barrier should be clear of trees and other fixed objects.

Arterial landscapes are usually viewed by highway users at fast speeds. Plant large swatches of fewer types of species.

Large-growing shade trees should be spaced to promote maximum growth, typical form, and sturdy structure; interplant large trees with smaller understory trees and/or shrubs to increase the density of plantings.

A good highway plant palette includes hardy species known to thrive and other plants for diversity and interest.

Asphalt mow strips are required around and under objects that mowers cannot pass over.

Incorporate STORMWATER MANAGEMENT PRACTICES (6.6.1) where appropriate. Generally, restrictions on space do not apply, so such infrastructure can be much larger.

Mulch around trees, without covering the root flare or trunk, to reduce damage from tractor mowers and greatly improve tree health.

Plants

See Limited-Access Planting Recommendations (Table 6E).
The following are plants that have been successfully employed along limited-access arterial roadways. This list is not comprehensive and there is no guarantee that these plants will survive at a specific site. All plants within the public ROW must be selected based on site-specific conditions and approved by DOT and DPR. In cases where NYS DOT has jurisdiction, NYS DOT must also approve the plants and overall design.

TABLE 6E

Limited-Access Arterial Planting Recommendations

<table>
<thead>
<tr>
<th>Scientific Name ‘Cultivar’ Trade Name</th>
<th>Common Name</th>
<th>Appearance</th>
<th>Tolerances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trees</td>
<td></td>
<td>Height</td>
<td>Shape</td>
</tr>
<tr>
<td>Cedrus deodara ‘Shalimar’ *</td>
<td>Shalimar Hardy Deodar Cedar</td>
<td>>40’</td>
<td></td>
</tr>
<tr>
<td>Gymnocladus dioicus</td>
<td>Kentucky Coffee Tree</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquidambar styraciflua *</td>
<td>Sweet Gum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinus strobus *</td>
<td>Eastern White Pine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quercus alba *</td>
<td>White Oak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quercus phellos *</td>
<td>Willow Oak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Styrpholobium (Sophora) japonicum ‘Regent’</td>
<td>Regent Sophora Tree</td>
<td>JUL AUG</td>
<td></td>
</tr>
<tr>
<td>Tilia tomentosa ‘Sterling’ *</td>
<td>Sterling Silver Linden</td>
<td>JUN JUL</td>
<td></td>
</tr>
<tr>
<td>Zelkova serrata ‘Green Vase’ *</td>
<td>Green Vase Japanese Zelkova</td>
<td>15’-40’</td>
<td></td>
</tr>
<tr>
<td>Ilex ‘Nellie R. Stevens’ *</td>
<td>Nellie R. Stevens Holly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juniperus chinensis ‘Kaizuka’</td>
<td>Hollywood Chinese Juniper</td>
<td><15’</td>
<td></td>
</tr>
<tr>
<td>Cercis canadensis *</td>
<td>Eastern Redbud</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cornus mas ‘Golden Glory’</td>
<td>Golden Glory Cornelian Cherry</td>
<td>MAR APR</td>
<td></td>
</tr>
<tr>
<td>Lagerstroemia indica x faurei hybrids *</td>
<td>Hybrid Crape Myrtle</td>
<td>JUL SEP</td>
<td></td>
</tr>
<tr>
<td>Malus ‘Donald Wyman’</td>
<td>Donald Wyman Crabapple</td>
<td>APR MAY</td>
<td></td>
</tr>
<tr>
<td>Syringa reticulata ‘Ivory Silk’</td>
<td>Ivory Silk Japanese Tree Lilac</td>
<td>JUN</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shrubs</th>
<th>Spread</th>
<th>Height</th>
<th></th>
<th>Drought-Flood</th>
<th>Light</th>
<th>Salt</th>
<th>High pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viburnum rhytidophyllum *</td>
<td>6’-10’</td>
<td>6’-10’</td>
<td>APR</td>
<td>✓ ✓ ◆ − − − − −</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forsythia x intermedia cultivars</td>
<td>8’-10’</td>
<td>10’-12’</td>
<td>APR</td>
<td>✓ ✓ − − − − − −</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myrica pensylvanica</td>
<td>5’-10’</td>
<td>5’-10’</td>
<td></td>
<td>✓ ✓ − − − − − −</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cornus racemosa</td>
<td>10’-15’</td>
<td>10’-15’</td>
<td>MAY JUN</td>
<td>✓ ✓ − − − − − −</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lonicera fragrantissima</td>
<td>6’-10’</td>
<td>6’-10’</td>
<td>MAR APR</td>
<td>✓ ✓ − − − − − −</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| **Self-Clinging Vines** | | | | | | | |
| Parthenocissus tricuspidata Boston Ivy| 30’-50’ | 5’-10’ | | ✓ ✓ − − − − − − | | | |

Turf Grass							
Festuca arundinacea cultivars	3’-4’	3’-4’		✓ ✓ − − − − − −			
Lolium perenne cultivars	3’-4’	3’-4’		✓ ✓ − − − − − −			

* Fall Dig Hazard ^ ALB Host Species Bloom/Showy Flowers Showy Fruit Distinct Foliage Fall Color Distinctive Bark Evergreen
Stormwater Management Practices

Stormwater management practices are areas that may be planted with trees, shrubs, groundcovers, grasses, and perennials that are designed to collect and treat stormwater runoff from the city’s streets. These treatments are also known as “green infrastructure.” Plants are selected for their ability to endure periods of wet weather as well as drought, and in many cases to withstand the impacts of salt, sediment, and contaminants typically found in urban runoff. Using plants and soils to mitigate the impacts of stormwater runoff is an ecologically responsible and economical technique to employ within the public ROW.

STORMWATER MANAGEMENT PRACTICES (6.6.1) describe general considerations and design principles typical of a green stormwater solution. These treatments can be employed citywide, where appropriate conditions allow.

DEP ROW BIOSWALE (6.6.1a) and STORMWATER GREENSTREET (6.6.1b), along with other DEP ROW Green Infrastructure treatments, are specific city-led strategies for managing stormwater in targeted areas that have the greatest need. These treatments will be built and maintained by the city within priority areas. See DEP Priority CSO Tributary Map. These treatments can be built by private entities but will require a maintenance agreement.

Important Terms
(NYS Stormwater Design Manual)

- **Detention**: The temporary storage of storm runoff in a stormwater management practice with the goals of controlling peak discharge rates and providing gravity settling of pollutants.
- **Retention**: The amount of precipitation on a drainage area that does not escape as runoff. It is the difference between total precipitation and total runoff.

(Credit DEP)
Stormwater Management Practices

Any area, typically planted, that is specifically designed to capture and treat stormwater runoff from the Right-of-Way (ROW). The primary purpose of these treatments is to reduce stress on the city’s combined sewer infrastructure during rain storms. Practices can range from a single tree bed to a bioswale to a rain garden in a triangle or plaza. ROW green infrastructure practices include ROW Bioswales, ROW Stormwater Greenstreets, ROW Rain Gardens, ROW Greenstrips, ROW Permeable Pavement, and ROW Infiltration Basins.

Benefits

- See [BENEFITS OF PLANTINGS IN THE ROW](#)
- Reduced stormwater entering sewers during storms
- Can reduce the frequency and intensity of Combined Sewer Overflows (CSOs)
- Healthier plants and greater survival rates when appropriate plants are used
Considerations
See GENERAL GUIDELINES (6.0.1)
Designers should consider environmental due diligence to ensure green infrastructure installations will not exacerbate preexisting subsurface contamination, including but not limited to a preliminary review of publicly available local, state, and federal databases.

Designer should reference DEP Office of Green Infrastructure's latest Procedure Governing Limited Geotechnical Investigation for Green Infrastructure Practices and coordinate with DEP on geotechnical results to ensure that stormwater control practices are appropriate for the proposed location.

Retrofitting existing plantings may be feasible if there is limited grade change and in situ soils are appropriate; special care must be given to tree roots; existing species must be able to tolerate higher levels of water.

Plants should tolerate salts, sediment, contamination, and highly variable levels of water availability.

Due to existing grading and/or the crown of the road, stormwater installations along the gutter are ideal for stormwater capture, while installations in the center of the road will not capture significant volumes of water unless the road can be regraded.

Leaves, litter, and other material may clog inlets/outlets and could impact overall performance of the STORMWATER MANAGEMENT PRACTICE.

STORMWATER MANAGEMENT PRACTICES will require a maintenance agreement.

Application
All areas with TREE BEDS (6.1), ROADWAY PLANTINGS (6.2), SIDEWALK PLANTINGS (6.3), PLAZA PLANTINGS (6.4), and LIMITED-ACCESS ARTERIAL PLANTINGS (6.5)

See DEP ROW BIOSWALE (6.6.1a) if in DEP Priority CSO Tributary Areas; see STORMWATER GREENSTREET (6.6.1b)

Installations can be pursued in partnership with DPR, DEP, or another maintenance partner.

Unused or under-utilized roadway areas that can be re-purposed to collect stormwater.

Design
Use canopy trees, low shrubs, and groundcover to maintain visibility.

Maintain an 8-foot clear path in areas with high-volume pedestrian traffic and a 5-foot clear path in areas with low-volume pedestrian traffic.

Installations must be sited at the low point of the street or paved ROW area and receive adequate flow.

Locate treatments at least 7 feet from any below-ground vaults or basements to prevent water damage to these structures.

Stormwater management areas should be sized in relation to the tributary drainage area to handle the volume of water entering into them; consult DEP Office of Green Infrastructure’s latest Standards.

Select soils that allow more rapid infiltration than typical horticultural soils and resist compaction while still supporting plant material.

Plants
See Stormwater Management Practices Planting Recommendations (Table 6F).
The most common type of Stormwater Management Practice, a DEP ROW Bioswale is a planted area located along the curb of a sidewalk, graded to capture stormwater, and planted with an understory of shrubs and herbaceous material. Curb cuts allow for stormwater from the adjacent roadway to enter the planted area and overflow to exit. DEP, together with DOT, DPR, and DDC, developed designs and protocols to site stormwater bioswales within the public ROW. The city will build and maintain DEP ROW BIOSWALES within DEP Priority CSO Tributary Areas, which are areas where CSO volumes are high, combined sewers frequently overflow, and the receiving water bodies need water quality improvements. See DEP Priority CSO Tributary Areas map.

Benefits

- See benefits of STORMWATER MANAGEMENT PRACTICES (6.6.1)
- Reduced stormwater flows and fewer CSO events in DEP Priority CSO Tributary Areas

Considerations

- See considerations for STORMWATER MANAGEMENT PRACTICES (6.6.1)
- See considerations for TREE BEDS (6.1.1)
- Consider parking regulations; curbside access must be preserved
- Consider subsurface conditions
- The underlying soils should have adequate infiltration rates
- Bedrock or groundwater level should be a minimum of 4 feet from the bottom of any DEP ROW Bioswale
- Plants should tolerate salts, sediment, contamination, and highly variable levels of water
- DEP, per the three party agreement, will install DEP ROW BIOSWALES within Priority CSO Tributary Areas
- DEP ROW BIOSWALES may be installed outside of DEP priority areas but will require a maintenance agreement

Application

- DEP Priority CSO Tributary Areas; see DEP Priority CSO Tributary Areas Map
- Outside DEP designated areas with a maintenance agreement

Design

- DEP ROW BIOSWALES should follow all DEP, DPR, and DOT bioswale siting criteria
- Maintain an 8-foot clear path in areas of high-volume pedestrian traffic or heavy curbside activity and a 5-foot clear path in areas of low-volume pedestrian traffic
- Install just upstream from existing catch basins to optimize stormwater capture prior to entering the combined sewer system
- Soil and design specifications must adhere to DEP standards
- Deviations from the latest DEP Standards for Green Infrastructure must be reviewed and approved by DOT, DPR, and DEP on a case-by-case basis
- Use of 12 inches of open-graded stone located along the curb serves as a buffer from the roadway and increases infiltration and sediment capture
Curb cuts at both ends serve as an inlet and outlet for runoff, which slope from flush to the standard 6 - 7-inch reveal; other DEP-approved inlet/outlet structures may be employed based on slopes and runoff velocity.

Concrete aprons outside the inlet and outlet direct runoff into and out of the bioswale.

An approved DPR tree-bed guard is required to discourage foot traffic. The curb side should be open and fencing set back 18 inches from the curb to allow for people exiting from vehicles.

Overflow must be allowed to flow to an existing catch basin; consider the use of graded outlet structures or overflow drains to direct excess water from larger storms into the sewer system.

Plants

See Planting Recommendations (Table 6F)
Another common Stormwater Management Practice, a Stormwater Greenstreet is a planted area within the sidewalk or roadway, which extends beyond the standard street geometry, and collects and treats stormwater runoff. DEP ROW Stormwater Greenstreets and DPR Stormwater Greenstreets are typically larger stormwater management practices installed and maintained by DEP, DPR, or another committed maintenance partner. They can be located anywhere in the city as conditions allow. For examples, visit DEP’s webpage on Green Infrastructure.

Benefits

See benefits for STORMWATER MANAGEMENT PRACTICES (6.6.1)

Permit greater water capture than what is typical for a DEP ROW BIOSWALE (6.6.1a) due to generally larger installations

Non-standard geometry (i.e., curb extension) enables the greenstreet to capture water and reduce runoff bypass by allowing water to enter directly while also providing the safety benefits typical of a CURB EXTENSION (2.2.2)

Considerations

See considerations for STORMWATER MANAGEMENT PRACTICES (6.6.1)

Avoid in areas of high foot traffic or curbside activity, including pedestrian desire lines that may be impacted

Within DEP priority areas, the city will construct and maintain STORMWATER GREENSTREETS. Outside of these areas, a maintenance agreement is required
6.6.1b Stormwater Greenstreet

Application
See application guidance for STORMWATER MANAGEMENT PRACTICES (6.6.1)

Design
See design guidance for STORMWATER MANAGEMENT PRACTICES (6.6.1)

Overall dimension will be determined based on the catchment area, and geometries must be approved by DOT; generally, installations follow striped roadbed area or underused roadway width

Catch basins should be located on the downstream side of the overflow or outlet

Plants
See Planting Recommendations (Table 6F)

DPR has installed treatments of various sizes and shapes throughout the city: Westbourne Avenue at Bay 25th Street, Queens (Credit: DPR)

Water can be collected in a forebay, such as the triangular area shown on the right. This allows sediment and debris to settle before the water continues to the planting area: Westbourne Avenue at Bay 25th Street, Queens (Credit: DPR)
The following plants have been successfully employed in areas that capture and treat stormwater runoff in New York City. In particular, species listed below can tolerate salts and wide fluctuations in soil moisture. This list is not comprehensive, and there is no guarantee that these plants will survive at a specific site. All plants within the public ROW must be selected based on site-specific conditions and approved by DPR.

Trees

<table>
<thead>
<tr>
<th>Scientific Name ‘Cultivar’ Trade Name</th>
<th>Appearance</th>
<th>Tolerances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>Shape</td>
<td>Characteristics</td>
</tr>
<tr>
<td>Taxodium distichum ‘Shawnee Brave’ Shawnee Brave Baldcypress</td>
<td>>40’</td>
<td>✓</td>
</tr>
<tr>
<td>Gleditsia triacanthos var inermis ‘Shademaster’ Shademaster Honeylocust</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Quercus bicolor ‘Swamp White Oak’</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Liquidambar styraciflua ‘American Sweetgum’</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Shrubs

<table>
<thead>
<tr>
<th>Scientific Name ‘Cultivar’ Trade Name</th>
<th>Appearance</th>
<th>Tolerances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>Shape</td>
<td>Characteristics</td>
</tr>
<tr>
<td>Aronia melanocarpa Black Chokeberry</td>
<td>3’-6’</td>
<td>3’-6’</td>
</tr>
<tr>
<td>Ilex glabra ‘Compacta’ Compact Inkberry Holly</td>
<td>3’-6’</td>
<td>3’-6’</td>
</tr>
<tr>
<td>Itea virginica ‘Sprich’ Little Henry™ Little Henry Sweetspire</td>
<td>3’-5’</td>
<td>3’-5’</td>
</tr>
<tr>
<td>Cornus sericea ‘Kelseyi’ Kelsey Red Twig Dogwood</td>
<td>2’-3’</td>
<td>2’-3’</td>
</tr>
</tbody>
</table>

Perennials

<table>
<thead>
<tr>
<th>Scientific Name ‘Cultivar’ Trade Name</th>
<th>Appearance</th>
<th>Tolerances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>Shape</td>
<td>Characteristics</td>
</tr>
<tr>
<td>Aster ‘Wood’s Pink’ Handy Aster</td>
<td>1’-1.5’</td>
<td>1.5’-2.5’</td>
</tr>
<tr>
<td>Echinacea purpurea Coneflower</td>
<td>2’-3’</td>
<td>2’-3’</td>
</tr>
<tr>
<td>Epimedium grandiflorum ‘Lilafee’ Bishop’s Hat</td>
<td>1’</td>
<td>1’-1.5’</td>
</tr>
<tr>
<td>Eupatorium dubium ‘Baby Joe’ Baby Joe Pye Weed</td>
<td>1’-1.5’</td>
<td>1’-1.5’</td>
</tr>
<tr>
<td>Hemerocallis (Dwarf Varieties) Daylily</td>
<td>1’-1.5’</td>
<td>1’-1.5’</td>
</tr>
<tr>
<td>Liriope spicata Creeping Lilyturf</td>
<td>1’-2’</td>
<td>1’-2’</td>
</tr>
<tr>
<td>Rudbeckia fulgida Black Eyed Susan</td>
<td>2’-2.5’</td>
<td>2’-2.5’</td>
</tr>
<tr>
<td>Solidago (Dwarf Varieties) Goldenrod</td>
<td>1.5’-2’</td>
<td>1.5’-2’</td>
</tr>
</tbody>
</table>

Grasses/Grass-like Plants

<table>
<thead>
<tr>
<th>Scientific Name ‘Cultivar’ Trade Name</th>
<th>Appearance</th>
<th>Tolerances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>Shape</td>
<td>Characteristics</td>
</tr>
<tr>
<td>Carex morrowii Sedge</td>
<td>1’-1.5’</td>
<td>1.5’-2’</td>
</tr>
<tr>
<td>Carex pennsylvanica Pennsylvania Sedge</td>
<td>.5’-1’</td>
<td>.5’-1’</td>
</tr>
<tr>
<td>Hakonechloa macra Golden Japanese Forest Grass</td>
<td>2’-2.5’</td>
<td>3’-4’</td>
</tr>
<tr>
<td>Juncus effusus Common Rush</td>
<td>2’-4’</td>
<td>2’-4’</td>
</tr>
<tr>
<td>Panicum virgatum Switchgrass</td>
<td>3’-6’</td>
<td>2’-3’</td>
</tr>
</tbody>
</table>
Common Terms

A

AASHTO
(American Association of State Highway Transportation Officials)
A nonprofit, nonpartisan association representing highway and transportation departments in the fifty states, the District of Columbia, and Puerto Rico, representing all five transportation modes—air, highways, public transportation, rail, and water. AASHTO publishes numerous design guidance publications, including A Policy on Geometric Design of Highways and Streets ("Green Book").
www.transportation.org/?siteid=37&pageid=310

Accessibility
The design of facilities and public Rights-of-Way that is easy, safe, and intuitive to use for people with disabilities. Accessible environments provide for a person’s ability to independently navigate the space.

ADA
(Americans with Disabilities Act)
The Americans with Disabilities Act gives civil rights protections to individuals with disabilities, similar to those rights provided to individuals on the basis of race, color, sex, national origin, age, and religion. It guarantees equal opportunity for individuals with disabilities in public accommodations, employment, transportation, state and local government services, and telecommunications. www.ada.gov

ADT (Average Daily Traffic)
The average number of vehicles to pass a certain point or use a certain roadway per day. Sometimes referred to as VPD (Vehicles Per Day), this is the calculation of the total traffic volume during a given time (in whole days) divided by the number of days in that period. (AASHTO: A Policy on Geometric Design of Highways and Streets)

Albedo (Pavement Albedo)
Albedo is the ability of a surface material to reflect incident solar (short wave) radiation. It is expressed on a scale of 0 to 1, where a value of 0.0 indicates that a surface absorbs all solar radiation and an albedo value of 1.0 represents total reflectivity. Light-colored surfaces generally have higher albedos than dark-colored surfaces. Pavements with lower albedo absorb more sunlight and get hotter. Pavements with higher albedo absorb less sunlight and are therefore cooler, mitigating the urban heat island effect www.epa.gov/heatisland/resources/faq.html#7. Conventional asphalt has an albedo in the range 0.04 to 0.12, while concrete has an albedo of around 0.5. (High Performance Infrastructure Guidelines) Reflectance is also measured using Solar Reflectance Index (SRI) values.

Arterial Street
The part of the roadway system serving as the principal network of through-traffic flow. The routes connect areas of principal traffic generation and important rural highways entering the cities. (Institute of Traffic Engineers Traffic Engineering Handbook)
Bicycle
Every two- or three-wheeled device upon which a person or persons may ride, propelled by human power through a belt, a chain, or gears, with such wheels in a tandem or tricycle, except that it shall not include such a device having solid tires and intended for use only on a sidewalk by pre-teenage children. (New York State Vehicle and Traffic Law, Title 1, Article 1, Section 102 and Rules of the City of New York, Title 34, Chapter 4, Section 4-01(b))

Bicycle Facilities
A general term denoting improvements and provisions made by public agencies to accommodate or encourage bicycling, including parking and storage facilities, and shared roadways not specifically designated for bicycle use. (AASHTO: A Policy on Geometric Design of Highways and Streets)

Bicycle Lane/Bike Lane
A portion of the roadway that has been designated by striping, signing, and pavement markings for the preferential or exclusive use of bicycles. (New York State Vehicle and Traffic Law, Title 1, Article 1, Section 102-a)

Bicycle Path/Bike Path
A path physically separated from motorized vehicle traffic by an open space or barrier and either within the highway right-of-way or within an independent right-of-way and which is intended for the use of bicycles. (New York State Vehicle and Traffic Law, Title 1, Article 1, Section 102-b)

Bicycle Route/Bike Route
A bikeway designated by the jurisdiction having authority with appropriate directional and informational route markers, with or without specific bicycle route numbers. Bike routes should establish a continuous routing, but may be a combination of any and all types of bikeways. (AASHTO: Guide for the Development of Bicycle Facilities)

In New York City, bike routes are set forth in the New York City Cycling Map and come in three main categories: Bicycle Path, Class 1 (bridge, park, or separated on-street path); Bicycle Lane, Class 2 (on-street striped route); and Bicycle Route, Class 3 (on-street signed route).

BID (Business Improvement District)
A not-for-profit corporation made up of property owners and commercial tenants who are dedicated to promoting business development and improving an area's quality of life. BIDs deliver supplemental services such as sanitation and maintenance, public safety and visitor services, marketing and promotional programs, capital improvements, and beautification for the area—all funded by a special assessment paid by property owners within the district. www.ci.nyc.ny.us/html/sbs/html/neighborhood/bid.shtml

Bikeway
A generic term for any road, street, path, or way which in some manner is specifically designated for bicycle travel, regardless of whether such facilities are designated for the exclusive use of bicycles or are to be shared with other transportation modes. (AASHTO: Guide for the Development of Bicycle Facilities)

Bioswale
A depressed, planted area designed to convey, capture, and filter stormwater runoff and increase rainwater infiltration. These systems are linear. The term “street swale” is used throughout this Manual. (Florida Field Guide to Low Impact Development: buildgreen.ufl.edu/Fact_sheet_Bioswales_Vegetated_Swales.pdf)

BMP (Best Management Practices)
Schedules of activities, prohibitions of practices, maintenance procedures, and other management practices to prevent or reduce the discharge of pollutants to waters of the United States. BMPs also include treatment requirements, operating procedures, and practices to control plant site runoff, spillage, or leaks, sludge or waste disposal, or drainage from raw material storage. www.epa.gov/npdes/pubs/cgp_appendixa.pdf

BRT (Bus Rapid Transit)
A flexible, high-performance rapid transit mode that combines a variety of physical, operating, and system elements into a permanently integrated system with a quality image and unique identity. (Levinson et al., Bus Rapid Transit: Implementation Guidelines, TCRP Report 90-Volume II)

BRT (Bus Rapid Transit) Route
A road designed to improve the speed, reliability, and overall attractiveness of bus service, and that carries bus lines designated as “Select Bus Service” by MTA NYCT/MTA Bus and/or other services identified as BRT. This also includes roads that are designated for BRT service in the future, through the BRT Master Plan or other planning documents.
BUG (Backlight, Uplight, Glare) Rating
The BUG rating system, describes the types of stray light escaping from an outdoor lighting luminaire. The BUG system was developed by the Illuminating Engineering Society (IES) to make comparing and evaluating outdoor luminaires fast, easy and more complete than older systems. [Link to BUG rating system]

Bus
Every motor vehicle having a seating capacity of more than fifteen adults, in addition to the operator, and used for the transportation of persons, and every charter bus, interstate bus, intrastate bus, school bus, and sightseeing bus, regardless of seating capacity. (Rules of the City of New York, Title 34, Chapter 4, Section 4-01(b))

Bus Route
A street that carries one or more regularly scheduled local, commuter, or intercity bus lines running on a published schedule.

Busway
A physically separated lane reserved for bus traffic.

Capital Project
A. A project that provides for the construction, reconstruction, acquisition, or installation of a physical public betterment or improvement that would be classified as a capital asset under generally accepted accounting principles for municipalities, or any preliminary studies and surveys relative thereto, or any underwriting or other costs incurred in connection with the financing thereof;
B. The acquisition of property of a permanent nature, including wharf property;
C. The acquisition of any furnishings, machinery, apparatus, or equipment for any public betterment or improvement when such betterment or improvement is first constructed or acquired;
D. Any public betterment involving either a physical improvement or the acquisition of real property for a physical improvement consisting in, including, or affecting (1) streets and parks, (2) bridges and tunnels, (3) receiving basins, inlets, and sewers, including intercepting sewers, plants or structures for the treatment, disposal or filtration of sewage, including grit chambers, sewer tunnels, and all necessary accessories thereof, or (4) the fencing of vacant lots and the filling of sunken lots;
E. Any other project allowed to be financed by the local finance law, with the approval of the mayor and the comptroller;
F. Any combination of the above. (New York City Charter Section 210.1)

CEQR (City Environmental Quality Review)
A process by which agencies of the City of New York review proposed discretionary actions to identify the effects those actions may have on the environment. CEQR is New York City’s process for implementing SEQRA (New York State Environmental Quality Review Act), which requires that state and local governmental agencies assess environmental effects of discretionary actions before undertaking, funding, or approving such actions, unless they fall within certain statutory or regulatory exemptions from the requirements for review. [Link to CEQR information]

Channelization
The separation or regulation of conflicting traffic movements into definite paths of travel by traffic islands or pavement marking to facilitate the orderly movements of both vehicles and pedestrians. (AASHTO: A Policy on Geometric Design of Highways and Streets)

Clear Path
A straight unobstructed path for pedestrian circulation on the sidewalk. (Rules of the City of New York, Title 34, Chapter 7, Section 7-06(c)(3)). (See also definition of clear path in DCA’s rules and in the ADA.)

Coefficient of Friction
A value between 0 and 1 representing the ratio of the force of resistance between the horizontal motion of a body or object and a surface to the force pushing the body or object down on that surface. Surfaces with lower values, such as ice, are more slippery, while surfaces with higher values, such as concrete, are less slippery.
Gateway
A combination of traffic-calming and visual measures used at the entrance to a low speed street to slow entering vehicles and discourage through-traffic.

Green Book
See *A Policy on Geometric Design of Highways and Streets*.

Green Infrastructure
An adaptable term used to describe an array of products, technologies, and practices that use natural systems—or engineered systems that mimic natural processes—to enhance overall environmental quality and provide utility services. As a general principal, green infrastructure techniques use soils and vegetation to infiltrate, evapotranspirate, and/or detain stormwater runoff. When used as components of a stormwater management system, green infrastructure practices such as green roofs, porous pavement, rain gardens, and vegetated swales can produce a variety of environmental benefits. In addition, to effectively retain and infiltrate rainfall, these technologies can simultaneously help filter air pollutants, reduce energy demands, mitigate urban heat islands, and sequester carbon while also providing communities with aesthetic and natural resource benefits. water.epa.gov/infrastructure/greeninfrastructure/gi_what.cfm

Greenstreet
Paved traffic islands and medians converted into green spaces filled with shade trees, flowering trees, shrubs, and/or groundcover, pursuant to a program established in 1996 and as further referred to in a Master Agreement between DOT and DPR. Many of these installations are designed to capture street and sidewalk runoff to allow for stormwater infiltration, and are referred to as Stormwater Greenstreets. Both DPR and DEP currently construct Stormwater Greenstreets.

Highway
The entire width between the boundary lines of every way publicly maintained when any part thereof is open to the use of the public for purposes of vehicular travel. (New York State Vehicle and Traffic Law, Title 1, Article 1, Section 118)

High Water Table
The highest level of the groundwater in a given area, taking into account seasonal and periodic storm event fluctuations. This level can vary throughout the boroughs, and needs to be taken into consideration when designing stormwater management practices/green infrastructure.

Historic District
Any area which (1) contains improvements that have a special character or special historical or aesthetic interest or value; and represent one or more periods or styles of architecture typical of one or more eras in the history of the city; and cause such area, by reason of such factors, to constitute a distinct section of the city; and (2) has been designated as a historic district pursuant to Title 25 of the Administration Code of the City of New York. (Administrative Code of the City of New York, Title 25, Chapter 3, Section 25-302(h))

Horizontal Deflection
The horizontal (sideways) movement of moving vehicles compelled through physical and/or visual changes to the roadway alignment, for example a bend in the road.

HPS
A type of lamp which uses sodium gas to produce light. HPS lamps are being replaced by more-efficient LED lamps throughout the city. It is one of the most efficient sources of light.
IESNA
The Illuminating Engineering Society of North America is a professional organization of lighting engineers with a commitment to sharing their knowledge and expertise. IESNA has established recommended guidelines regarding levels of illumination for street and pedestrian lighting.

Inclusive Design
See Universal Design.

Intersection
The area contained within the grid created by extending the curblines of two or more streets at the point at which they cross each other. (Rules of the City of New York, Title 34, Chapter 2, Section 2-01)

LED
A light-emitting diode converts electricity to light through the movement of electrons. It does not have a filament and is more efficient than incandescent bulbs. It consumes less energy, is more compact, and lasts longer than traditional light sources.

Limited Use Street
A legally mapped street to be temporarily closed to motor vehicles by the Department of Transportation, in accordance with lawfully authorized signs or other traffic control devices. (Rules of the City of New York, Title 34, Chapter 4, Section 4-12[r][4])

Local Street
The local street system comprises all facilities not on one of the higher systems. It serves primarily to provide direct access to abutting land and access to the higher order systems. It offers the lowest level of mobility and usually contains no bus routes. Service to through-traffic movement usually is deliberately discouraged. (FHWA: Functional Classification Guidelines)

Local Traffic
Vehicular traffic whose trip origin and/or destination are in the immediate area of a given street.

LOS (Level of Service)
A methodology for measuring traffic flow based on traveler delay and congestion, defined in the Highway Capacity Manual (HCM). Grades from A to F are used, from free flow to traffic jam conditions. Historically used primarily for motor vehicle traffic, LOS methodologies have also been devised for pedestrian, bicyclist, and transit operations.

Motor Vehicle
Every vehicle operated or driven upon a public highway which is propelled by any power other than muscular power, except as otherwise provided in Section 125 of the Vehicle and Traffic Law. (Rules of the City of New York, Title 34, Chapter 4, Section 4-01[b])

MUTCD (Manual on Uniform Traffic Control Devices)
Defines the standards used by road managers nationwide to install and maintain traffic control devices on all streets and highways. The MUTCD is published by the Federal Highway Administration (FHWA) under 23 Code of Federal Regulations (CFR), Part 655, Subpart F. mutcd.fhwa.dot.gov
N

NACTO
(National Association of City Transportation Officials)
NACTO is a 501(c)(3) non-profit association that represents large cities on transportation issues of local, regional and national significance, and facilitates the exchange of ideas, data, and best practices. NACTO publishes numerous design guidance publications, including Urban Street Design Guide. www.nacto.org/about/

O

Operating Speed
The speed at which drivers are observed operating their vehicles during free-flow conditions. The 85th percentile of the distribution of observed speeds is the most frequently used measure of the operating speed associated with a particular location or geometric feature. (AASHTO: A Policy on Geometric Design of Highways and Streets)

P

Park
Parking
The standing of a vehicle, whether occupied or not, otherwise than temporarily for the purpose of and while actually engaged in loading or unloading property or passengers. (Rules of the City of New York, Title 34, Chapter 4, Section 4-01(b))

Peak Hour(s)
The hour or hours of greatest vehicular traffic volumes on a given street or intersection, usually defined for weekday AM, MD (mid-day) and PM, and Saturday MD peak periods. The peak hours, rather than entire day, are typically analyzed in a traffic analysis.

Pedestrian
Any person afoot or in a wheelchair. (New York State Vehicle and Traffic Law, Title 1, Article 1, Section 130)

Plaza
An area designated for use by pedestrians, which may vary in size and shape; which may abut a sidewalk and is located fully within the bed of a roadway; may be at the same level as the roadway or raised above the level of the roadway; may be physically separated from the roadway by curbing, bollards, or other separators; may be treated with special markings and materials; and may contain benches, tables, or other facilities for pedestrian use.

A Policy on Geometric Design of Highways and Streets
Often referred to as the “Green Book,” this document is published by AASHTO and contains “design practices in universal use as the standard for highway geometric design.” bookstore.transportation.org/item_details.aspx?ID=109

Private Road
Every way or place in private ownership and used for vehicular travel by the owner and those having express or implied permission from the owner, but not by other persons. (New York State Vehicle and Traffic Law, Title 1, Article 1, Section 133)

Public Highway
Any highway, road, street, avenue, alley, public place, public driveway, or any other public way. (New York State Vehicle and Traffic Law, Title 1, Article 1, Section 134)
Rain Garden
A planted depression that captures and absorbs rainwater that would otherwise flow into a storm drain. Infiltration and evapotranspiration are the primary means for water management in these systems. *(Florida Field Guide to Low Impact Development: buildgreen.ufl.edu/Fact_sheet_Bioretention_Basins_Rain_Gardens.pdf)*

Resiliency
The ability of people, the places where they live, and our infrastructure systems — such as transportation and energy — to withstand a stress or shock event, to recover, and emerge even stronger. *(One New York)*

Restricted Use Street
A legally mapped street to be permanently closed to motor vehicles by the Department of Transportation, and open to use by pedestrians. *(Rules of the City of New York, Title 34, Chapter 4, Section 4-12(r)(4))*

Revocable Consent
A grant by the city of a right, revocable at will...to an owner of real property or, with the consent of the owner, to a tenant of real property to use adjacent inalienable property (usually, streets or sidewalks) for such purposes as may be permitted by rules of DOT or DoITT. *(For full definition see NYC Charter, Section 362(c)(2); Rules of the City of New York, Title 34, Chapter 7, Section 7-01)*

Right of Way
The right of one vehicle or pedestrian to proceed in a lawful manner in preference to another vehicle or pedestrian approaching under such circumstances of direction, speed, and proximity as to give rise to danger of collision unless one grants precedence to the other. *(New York State Vehicle and Traffic Law, Title 1, Article 1, Section 139)*

Right-of-Way
A general term denoting land, property, or interest therein, usually in a strip, acquired for or devoted to transportation purposes. *(AASHTO: Guide for the Development of Bicycle Facilities)*

Road
An open way for the passage of vehicles, persons, or animals on land. *(FHWA)*

Roadbed
The graded portion of a highway within top and side slopes, prepared as a foundation for the pavement structure and shoulder. *(FHWA)*

Roadway
That portion of a street designed, improved, or ordinarily used for vehicular travel, exclusive of the shoulder and slope. *(Rules of the City of New York, Title 34, Chapter 2, Section 2-01)*

Scoring (concrete)
Marking the surface of concrete for visual or textural effect. “Tooled joint” scoring refers to concrete sidewalk flag joints finished with a hand-trowelled border. “Simulated saw-cut joint” scoring refers to concrete sidewalk flag joints finished using a spacer to simulate the appearance of joints cut with a masonry saw.

Shared Use Path
A bikeway physically separated from motorized vehicular traffic by an open space or barrier and either within the highway right-of-way or within an independent right-of-way. Shared use paths may also be used by pedestrians, skaters, wheelchair users, joggers, and other non-motorized users. *(AASHTO: Guide for the Development of Bicycle Facilities)*

Sidewalk
That portion of a street, whether paved or unpaved, between the curb lines or the lateral lines of a roadway and the adjacent property lines intended for the use of pedestrians. Where it is not clear which section is intended for the use of pedestrians, the sidewalk will be deemed to be that portion of the street between the building line and the curb. *(Rules of the City of New York, Title 34, Chapter 4, Section 4-01(b)))*
Simulated Saw-Cut Joint
See scoring (concrete)

Solar Reflectance Index (SRI)
SRI is a value that incorporates both solar reflectance and emittance in a single value to represent a material’s temperature in the sun. SRI quantifies how hot a surface would get relative to standard black and standard white surfaces. It is calculated using equations based on previously measured values of solar reflectance and emittance as laid out in the American Society for Testing and Materials Standard E 1980. It is expressed as a fraction (0.0 to 1.0) or percentage (0% to 100%). (United States Environmental Protection Agency: www.epa.gov/heatisld/resources/glossary.htm)

Source Control
Action to prevent pollution where it originates. www.stormwaterauthority.org/glossary.aspx

Source Reduction
The technique of stopping and/or reducing pollutants at their point of generation so that they do not come into contact with stormwater. www.cabmphandbooks.com/Documents/Development/Section_7.pdf

Stand
Standing
The stopping of a vehicle, whether occupied or not, otherwise than temporarily for the purpose of and while actually engaged in receiving or discharging passengers. (New York State Vehicle and Traffic Law, Title 1, Article 1, Section 145 and Rules of the City of New York, Title 34, Chapter 4, Section 4-01(b))

Stop
Stopping
Any halting even momentarily of a vehicle, whether occupied or not. (Rules of the City of New York, Title 34, Chapter 4, Section 4-01(b))

Street
A street, avenue, road, alley, lane, highway, boulevard, concourse, parkway, driveway, culvert, sidewalk, crosswalk, boardwalk, and viaduct, and every class of public road, square and place, except marginal streets. (New York City Charter Section 210.7)

Street Tree
A tree growing in the public right-of-way. These trees provide a range of benefits, from increased property values to stormwater capture and urban heat island mitigation. www.nycgovparks.org/sub_you_park/trees_greenstreets/faq.html

Supplementary Cementitious Materials (SCM)
Industrial by-products such as coal fly ash, granulated blast furnace slag, and silica fume that are used as a partial replacement for portland cement in concrete. (Green In Practice 107 — Supplementary Cementitious Materials, Portland Cement Association). SCM’s are pre-consumer recycled materials that would otherwise have been disposed of in landfills, providing cost savings to concrete manufacturers and reducing environmental impact caused by averting disposal. (High Performance Infrastructure Guidelines).

Swale
See Bioswale

Target Speed
The speed at which vehicles should operate on a thoroughfare in a specific context, consistent with the level of multimodal activity generated by adjacent land uses, to provide both mobility for motor vehicles and a safe environment for pedestrians and bicyclists. The target speed is usually the posted speed limit. (ITE Context Sensitive Solutions in Designing Major Urban Thoroughfares for Walkable Communities)

Through Traffic
Vehicular traffic whose trip origin and destination are not in the immediate area of a given street.

Traffic
Pedestrians, ridden or herded animals, vehicles, bicycles, and other conveyances either singly or together while using any highway for purposes of travel. (New York State Vehicle and Traffic Law, Title 1, Article 1, Section 152)

Tooled Joint
See Scoring (concrete)

Traffic Calming
The combination of mainly physical measures that reduce the negative effects of motor vehicle use, alter driver behavior and improve conditions for non-motorized street users. As opposed to traffic control devices that are regulatory and require enforcement, traffic calming measures are intended to be self-enforcing. (ITE: Traffic Calming: State of the Practice, 1999)
Traffic Control Device
All signs, signals, markings, and devices placed or erected by authority of a public body or official having jurisdiction for the purpose of regulating, warning or guiding traffic. (New York State Vehicle and Traffic Law, Title 1, Article 1, Section 153)

Transitway
Any roadway or series of roadways designated for the exclusive use of buses or taxis or such other designated high occupancy vehicles as may be permitted, during certain hours of the day, with access to such roadway(s) limited to one block thereof to other vehicles for the purpose of delivery of goods or services or the picking up or dropping off of passengers. (Rules of the City of New York, Title 34, Chapter 4, Section 4-01(b))

Truck
Except as otherwise specified in the Rules of the City of New York, Title 34, Chapter 4, Section 4-01(b), a truck is defined as any vehicle or combination of vehicles designed for the transportation of property, which has either of the following characteristics two axles, and six tires; or three or more axles. (Rules of the City of New York, Title 34, Chapter 4, Section 4-1.3(a))

Unit Paver
Paving materials that are precast, such as hexagonal asphalt pavers, or individually hewn, such as granite blocks, such that each paver is a single unit that can be removed or replaced.

Universal Design
The process of creating convenient, safe, and accessible spaces for everyone. Accessibility is a critical component of universal design. Also referred to as "Inclusive Design."

Urban Heat Island
Many urban and suburban areas experience elevated temperatures compared to their outlying rural surroundings; this difference in temperature is what constitutes an urban heat island. The annual mean air temperature of a city with one million or more people can be 1.8 to 5.4 degrees F (1 to 3 degrees C) warmer than its surroundings, and on a clear, calm night, this temperature difference can be as much as 22 degrees F (12 degrees C). Even smaller cities and towns will produce heat islands, though the effect often decreases as city size decreases. (US EPA: Reducing Urban Heat Islands: Compendium of Strategies)

Vehicle
Every device in, upon, or by which any person or property is or may be transported or drawn upon a highway, except devices moved by human power or used exclusively upon stationary rails or tracks. (New York State Vehicle and Traffic Law, Title 1, Article 1, Section 159 and Rules of the City of New York, Title 34, Chapter 4, Section 4-01(b))

Vertical Deflection
The vertical (upward) displacement of moving vehicles by way of a raising of the roadbed surface, for example with a hump, table, or other raised element.
This diagram summarizes the roles and responsibilities of city agencies and other entities related to the most visible aspects of the city’s streets. It does not include all agencies with street-related roles and is not intended to be a literal representation of appropriate street furniture locations.

An expanded listing follows.
The following are agencies, authorities, and other organizations that are frequently involved in the design of streets in New York City. This list is provided as a reference tool, for informational purposes only, and is not an exhaustive list.

Street Planning, Design & Construction

Street Capital Projects

- **DOT**
 - (initiation, scoping, conceptual design) WDEP
 - (initiation, scoping) www.nyc.gov/dep
- **EDC**
 - (initiation, scoping, conceptual design, final design, agency alignment & construction)
 - www.nycedc.com
- **DDC**
 - (conceptual design, final design, agency alignment & construction)
 - www.nyc.gov/ddc
- **DPR**
 - (parks, greenstreets)
 - www.nyc.gov/parks
- **NYS DOT**
 - (state highways within New York City)
 - www.nysdot.gov

Other city, state, and federal agencies and authorities for individual, typically site-specific projects

Comprehensive Street Planning

- **DOT**
 - (for most public streets)
 - www.nyc.gov/dot
- **DCP**
 - (zoning, private streets, transportation studies)
 - www.nyc.gov/dcp
- **NYS DOT**
 - (for state and federal routes)
 - www.nysdot.gov

Design of Stormwater

Best Management Practices/Source Controls

- **DDC** www.nyc.gov/ddc
- **DEP** www.nyc.gov/dep
- **DPR** www.nyc.gov/parks
- **DOT** www.nyc.gov/dot

Greenstreets

- **DPR** www.nyc.gov/parks
- **DOT** www.nyc.gov/dot

Land Acquisition

- **DCAS** www.nyc.gov/dcas
- **DDC** www.nyc.gov/ddc
- **SBS** www.nyc.gov/sbs
- **Law Department**
 - www.nyc.gov/law
- **DCP (ULURP)** www.nyc.gov/dcp

Non-Capital Street Projects

- **DOT** (design and implementation)
 - www.nyc.gov/dot

Universal Design

- **MOPD (Mayor’s Office for People with Disabilities)**
 - www.nyc.gov/html/mopd/

Street Tree & Tree-Bed Design Standards

- **DPR** www.nyc.gov/parks
A. Agency Roles on the City’s Streets

Reviews, Approvals & Permits

<table>
<thead>
<tr>
<th>Role</th>
<th>Agency</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coastal Erosion Permits</td>
<td>NYS DEC</td>
<td>www.dec.ny.gov</td>
</tr>
<tr>
<td>Construction on Sidewalk or in Roadway, Permits</td>
<td>DOT</td>
<td>www.nyc.gov/dot</td>
</tr>
<tr>
<td>Curb Cut, Existing Cellar Door, Marquee & Awning Permits</td>
<td>DOB</td>
<td>www.nyc.gov/html/dob</td>
</tr>
<tr>
<td>Environmental Review (CEQR/SEQRA/NEPA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead agency and involved agencies vary by project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency Vehicle Access Review</td>
<td>FDNY</td>
<td>www.nyc.gov/fdny</td>
</tr>
<tr>
<td>Historic District Review</td>
<td>LPC</td>
<td>www.nyc.gov/landmarks</td>
</tr>
<tr>
<td>Light Pole Banner Permits</td>
<td>DOT</td>
<td>www.nyc.gov/dot</td>
</tr>
<tr>
<td>Newsracks</td>
<td>DOT</td>
<td>www.nyc.gov/dot</td>
</tr>
<tr>
<td>Review of Works of Art and Structures (as defined in Chapter 37, Section 854 of the NYC Charter)</td>
<td>PDC</td>
<td>www.nyc.gov/html/artcom</td>
</tr>
<tr>
<td>Revocable Consents</td>
<td>DOT</td>
<td>www.nyc.gov/dot</td>
</tr>
<tr>
<td>Sewers, Catch Basins & Drainage Approval</td>
<td>DEP</td>
<td>www.nyc.gov/dep</td>
</tr>
<tr>
<td>Sidewalk Work Permits</td>
<td>DOB</td>
<td>www.nyc.gov/html/dob</td>
</tr>
<tr>
<td>Sidewalk Work Permits (Builder’s Pavement Plan)</td>
<td>DOT</td>
<td>www.nyc.gov/dot</td>
</tr>
<tr>
<td>Special Event/Street Fair Permits</td>
<td>CECM</td>
<td>www.nyc.gov/html/cecm/</td>
</tr>
<tr>
<td>Street Tree Permits</td>
<td>NYPD</td>
<td>www.nyc.gov/nypd</td>
</tr>
<tr>
<td>Street Tree Permits (including Tree Guards)</td>
<td>DPR</td>
<td>www.nyc.gov/parks</td>
</tr>
<tr>
<td>Street Vendor Permits</td>
<td>DCA</td>
<td>www.nyc.gov/consumers</td>
</tr>
<tr>
<td>Water Quality Permits/Approvals</td>
<td>DOHMH</td>
<td>www.nyc.gov/health</td>
</tr>
<tr>
<td>Vaults & Canopies: Permits</td>
<td>DOT</td>
<td>www.nyc.gov/dot</td>
</tr>
<tr>
<td>Wetlands Permits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>United States Army Corps of Engineers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands Permits</td>
<td>www.usace.army.mil</td>
<td></td>
</tr>
<tr>
<td>Wetlands Permits</td>
<td>NYS DEC</td>
<td>www.dec.ny.gov</td>
</tr>
<tr>
<td>Wetlands Permits</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A. Agency Roles on the City’s Streets

<table>
<thead>
<tr>
<th>Category</th>
<th>Agency</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation & Maintenance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coordinated Street Furniture Franchise</td>
<td>DOT</td>
<td>www.nyc.gov/dot</td>
</tr>
<tr>
<td>(bus stop shelters, newsstands, automatic</td>
<td>DCA</td>
<td>www.nyc.gov/consumers</td>
</tr>
<tr>
<td>public toilets, bike shelters)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greenstreets Maintenance</td>
<td>DPR</td>
<td>www.nyc.gov/parks</td>
</tr>
<tr>
<td>Roadway Maintenance and Repair</td>
<td>DOT</td>
<td>www.nyc.gov/dot</td>
</tr>
<tr>
<td>Roadway & Retaining Wall Inspection</td>
<td>DOT</td>
<td>www.nyc.gov/dot</td>
</tr>
<tr>
<td>Sidewalk Maintenance and Repair</td>
<td>Property Owners</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DOT</td>
<td>www.nyc.gov/dot</td>
</tr>
<tr>
<td></td>
<td>(in certain zoning districts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or through prior notice)</td>
<td>www.nyc.gov/dot</td>
</tr>
<tr>
<td>Street Cleaning,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Street Operations (Street Lighting,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic Controls, etc.)</td>
<td>DOT</td>
<td>www.nyc.gov/dot</td>
</tr>
<tr>
<td>**Supplementary Maintenance &</td>
<td>SBS</td>
<td>www.nyc.gov/html/sbs</td>
</tr>
<tr>
<td>Services, Street Furniture</td>
<td>BIDs</td>
<td></td>
</tr>
<tr>
<td>Tree-Bed Maintenance</td>
<td>DPR</td>
<td>(first two years from planting)</td>
</tr>
<tr>
<td></td>
<td>www.nyc.gov/parks</td>
<td>Property owners</td>
</tr>
<tr>
<td></td>
<td>(after two years from planting)</td>
<td></td>
</tr>
<tr>
<td>Utilities</td>
<td>DEP</td>
<td>www.nyc.gov/dep</td>
</tr>
<tr>
<td>Enforcement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enforcement of Construction Permits</td>
<td>DOT</td>
<td>www.nyc.gov/dot</td>
</tr>
<tr>
<td>Enforcement of Traffic Rules</td>
<td>NYPD</td>
<td>www.nyc.gov/dep</td>
</tr>
<tr>
<td>(including parking regulations)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stoop Line Enforcement</td>
<td>DCA</td>
<td>www.nyc.gov/consumers</td>
</tr>
</tbody>
</table>
Legal & Design Guidance References

The following are laws, rules, regulations, and design guidance documents that may be relevant to the design of streets. This list is provided as a reference tool, for informational purposes only, and is not an exhaustive list. All public and private actions must comply with all applicable laws, rules, and regulations, not solely those listed below.

Federal Laws and Regulations
- **Code of Federal Regulations (CFR)**
 www.gpoaccess.gov/cfr/
- **Manual on Uniform Traffic Control Devices (MUTCD)**
 www.mutcd.fhwa.dot.gov/
- **United States Code (USC)**
 uscode.house.gov
- **Americans with Disabilities Act (ADA)**
- **Clean Air Act (CAA)**
 www.epa.gov/air/caa/
- **Clean Water Act (CWA)**
 www.epa.gov/oecaagct/lcwa.html
- **National Environmental Policy Act (NEPA)**
 www.epa.gov/Compliance/nepa/

State Laws and Regulations
- **New York State Code of Rules and Regulations**
 www.dos.state.ny.us/info/nycrr.htm
- **New York State Department of Environmental Conservation (Title 6)**
 www.dos.state.ny.us/info/nycrr.htm
- **New York State Environmental Quality Review Act (SEQRA)**
 www.dec.ny.gov/public/357.html
- **New York State Department of Transportation (Title 17)**
 www.dos.state.ny.us/info/nycrr.htm
- **New York State Environmental Conservation Law (ECL)**
 public.leginfo.state.ny.us/
- **New York State Highway Law**
 public.leginfo.state.ny.us/
- **New York State Transportation Law**
 public.leginfo.state.ny.us/
- **New York State Vehicle and Traffic Law (VTL)**
 public.leginfo.state.ny.us/

Local Laws and Regulations
- **New York City Charter (2004)**
 (www.nyc.gov/html/charter/)
- **City Planning (Chapter 8)**
- **Department of Buildings (Chapter 26)**
- **Department of Citywide Administrative Services (Chapter 35)**
- **Department of Consumer Affairs (Chapter 64)**
- **Department of Design and Construction (Chapter 55)**
- **Department of Environmental Protection (Chapter 57)**
- **Department of Health (Chapter 22)**
- **Department of Parks and Recreation (Chapter 21)**
- **Department of Sanitation (Chapter 31)**
- **Department of Small Business Services (Chapter 56)**
- **Department of Transportation (Chapter 71)**
- **Fire Department (Chapter 19)**
- **Franchises, Revocable Consents, and Concessions (Chapter 14)**
- **Landmarks Preservation Commission (Chapter 74)**
- **Police Department (Chapter 18)**
- **Public Design Commission/Art Commission (Chapter 37)**
- **Administrative Code of the City of New York**
 24.97.137.100/nyc/AdCode/entered.htm
- **Budget; Capital Projects (Title 5)**
- **NYC Traffic Rules**
- **Construction and Maintenance (Title 27)**
- **Consumer Affairs (Title 20)**
APPENDICES

Contracts, Purchases and Franchises (Title 6)
Environmental Protection and Utilities (Title 24)

Local Laws and Regulations (cont.)

Fire Prevention and Control (Title 15)
Health (Title 17)
Housing and Buildings (Title 26)
Land Use (Title 25)
Parks (Title 18)
Police (Title 14)
Sanitation (Title 16)
Transportation (Title 19)

Rules of the City of New York
24.97.137.100/nyc/rcny/entered.htm

City Planning (Title 62)
Community Assistance Unit (Tile 50)
Department of Buildings (Title 1)
Department of Citywide Administrative Services (Title 55)
Department of Environmental Protection (Title 15)
Rules Governing the Construction of Private Sewers
Rules Governing the Use of the Water Supply
Department of Consumer Affairs (Title 6)
Department of Health (Title 24)
Department of Parks and Recreation (Title 56)
Department of Sanitation (Title 16)
Department of Small Business Services (Title 66)
Department of Transportation (Title 34)
NYC Traffic Rules (Chapter 4)
NYC Highway Rules (Chapter 2)
Revocable Consents (Chapter 7)

Fire Department (Title 3)
Franchise and Concession Review Committee (Title 12)
Landmarks Preservation Commission (Title 63)
Police Department (Title 38)
Public Design Commission/Art Commission (Title 57)

Zoning Resolution of the City of New York

City Environmental Quality Review

CEQR Technical Manual

New York City Charter (Chapter 8)

Rules of the City of New York (Title 43 and 62)

National Design Guidance Sources

American Association of State Highway and Transportation officials (AASHTO)
www.transportation.org/

(AASHTO: 2011; www.bookstore.transportation.org/)

A Guide for Achieving Flexibility in Highway Design
(AASHTO: 2004; www.transportation.org/)

Guide for the Planning, Design, and Operation of Pedestrian Facilities
(AASHTO: 2004; bookstore.transportation.org/)

(AASHTO: 2012; bookstore.transportation.org/)

American Planning Association (APA)

U.S. Traffic Calming Manual
(American Planning Association & American Society of Civil Engineers: 2009)

Federal Highway Administration (FHWA)
www.fhwa.dot.gov/

BIKESAFE: Bicycle Countermeasure Selection System (FHWA: 2006; www.bicyclinginfo.org/bikesafe/)

Designing Sidewalks and Trails for Access (FHWA: 2001; www.fhwa.dot.gov/environment/sidewalks/)

Flexibility in Highway Design (FHWA: 1997; www.fhwa.dot.gov/environment/flex/)

MUTCD (Manual on Uniform Traffic Control Devices)
mutcd.fhwa.dot.gov/

Institute of Transportation Engineers (ITE) www.ite.org/

National Design Guidance Sources (cont.)

- **Context Sensitive Solutions in Designing Major Urban Thoroughfares for Walkable Communities:** An ITE Proposed Recommended Practice (ITE: 2006; www.ite.org/css/)
- **Traffic Calming: State of the Practice** (ITE & FHWA: 1999; www.ite.org/traffic/tcstate.asp#tcsop)

Local Design Guidance Sources

<table>
<thead>
<tr>
<th>Source</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCP</td>
<td>www.nyc.gov/planning</td>
</tr>
<tr>
<td>DDC</td>
<td>www.nyc.gov/ddc</td>
</tr>
<tr>
<td>Active Design Guidelines: Promoting Physical Activity and Health in Design (DDC, DOHMH, DOT, DCP & OMB: 2010)</td>
<td></td>
</tr>
<tr>
<td>DOT</td>
<td>www.nyc.gov/dot</td>
</tr>
</tbody>
</table>

National Association of City Transportation Officials (NACTO)

United States Access Board

- **ADA and ABA Accessibility Guidelines** (US Access Board: 2004; www.access-board.gov/ada-aba/)

DOT

MOPD

Landscape Design Guidance Resources

- Parks, Plants, and People: Beautifying the Urban Landscape (Lynden B. Miller: 2009)

Stormwater Source Control / Best Management Practices (BMP) Design Guidance Sources

- City of Chicago Stormwater Management Ordinance Manual (Chicago Department of Water Management: 2008)

Street Planning Resources

- San Francisco Better Streets Plan–Draft for Public Review (City and County of San Francisco: June 2008; www.sfbetterstreets.org)
- Smart Transportation Guidebook: Planning and Designing Highways and Streets that Support Sustainable and Livable Communities (New Jersey DOT/Pennsylvania DOT: 2008; www.smart-transportation.com/guidebook.html)
Index

A

- **AASHTO**, see American Association of State Highway and Transportation Officials
- **Access**
 - management and control, 24, 25
 - mobility, 16-17, 20-21, 23, 26, 32, 35, 51, 52-53, 100, 171, 193
- **ADA**, see Americans with Disabilities Act
- **Aggregate**, see Concrete
- **Air Quality**, 32
- **Alliance luminaire and pole, see Luminaires and Poles**
- **American Association of State Highway and Transportation Officials**, 51, 193
- **Applicability**, 22, 51, 98, 188
- **APT**, see Automated Public Toilet
- **Army Corps of Engineers**, 26
- **Art Display Case**, 169, 172
- **Asphalt**
 - applications, 110, 126, 127
 - maintenance, 110, 126, 127
 - pavers, 110, 114
 - Pilot applications, 127
 - porous, 97, 127
- **Asphaltic concrete**, see Concrete
- **Automatic Public Toilet**, 173
- **Automobiles**, see Motor Vehicles

B

- **Bench**, see CityBench
- **BID**, see Business Improvement District
- **Bikes and Bicycling**, 16-17, 20, 21, 26
 - Bike Share and Stations, 172
 - Parking racks and shelter, 76, 178-179
- **Bike lanes and paths**
 - bike route, 24, 59
 - Bikeway, 51, 55, 57, 58-59
 - buffered lane, 59
 - "dooring," 57
 - emergency vehicle access, 20-21
 - geometric treatment, 55-59
 - intersections, 58-59
 - lighting, 134-135
 - marking, 55-59
 - median-separated, 57, 58-59
 - one-way, 24, 58-59
 - parking, 174
 - right-of-way, 23, 32
 - road surface preferred, 126
 - shared use, 55, 56, 58-59
 - signal protected, 58
 - signed route, 59
 - street design, 55-59
 - traffic calming, 84, 91-92
 - visual emphasis, 55, 58-59
- **Bioswale**, 21, 187, 199, 202, 214, 227-232
 - DEP ROW Bioswale, 187, 214, 227-232
- **Bishops Crook pole**, see Poles
- **Bluestone**
 - applications, 103, 111
 - flag, 111
 - maintenance, 103, 111
- **Bollard**, 43, 68, 75, 78, 80, 81, 171, 211
- **BRT**, see Bus Rapid Transit
- **Builder's Pavement Plan**, 99
- **Bulb**, see Curb Extensions
- **Business Improvement District**, 26, 45, 153, 165
Bus Lane and Busway
boarding island, 61
bus bulb, see Curb extensions
curb-aligned, 60-61, 62
geometric treatment and design, 50, 60-63
median, 63
off-board fare collection, 60, 67
bus stop shelters, 176
queue-jump, 61
red-colored, 62
right-of-way, 60-63
separated, 63

Bus Rapid Transit, see Select Bus Service
Bus Routes, 63

C
Capital Budget, 21, 22, 30-31, 34
Capital project, 30
Case Studies, 30, 40-45
Hoyt Avenue at RFK Bridge, 40-41
West Houston Street, 42-43
Willoughby Plaza, 44-45
CEQR, see City Environmental Quality Review
Chicane, see Curb extensions
CityBench, 177
City Environmental Quality Review, 22, 32, 51, 99
City Light luminaire and pole, see Luminaires and Poles
CityRack, 178, 179
Clear Corner Policy, 71
Cobblestone, 113, 129, 178
applications, 113, 129
Cobra Head luminaire, see Luminaires
Combined Sewer Overflow, 199, 202, 214, 227-230
Community Board, 32, 33, 34, 35, 40, 43
Community facilities, see Curb Extensions
Concrete
aggregate, 101, 105, 107, 108, 116, 119, 126, 128
asphaltic, 126
bluestone flag, 111
composition, 128
exposed glass aggregate, 108
exposed light-colored aggregate, 105
integral curb and gutter, see Curbs
London Paver scoring, 109
permeable interlocking concrete pigmented, 102, 103, 104, 105, 106, 107, 120
porous, 116
precast square paver, see Pavers
roadways, 128
sand-colored with exposed aggregate, 107
silicon carbide treatment, 106
simulated saw-cut joint, 101, 102, 105, 108
unpigmented, 101, 116, 119
Context, 19, 20, 26, 51
Coordinated Street Furniture Franchise, 173, 174, 176, 181
Crosswalks
materials, 98, 123, 124, 129
raised, 52, 88
street design, 52, 75, 81, 92, 178, 219
thermoplastic imprinting, 123
CSO, see Combined Sewer Overflow
Curb Extensions, 21, 50, 52-53, 74-75
bulb, 77, 209
bus bulb, 50, 77
chicane, 89
community facilities, 50, 64, 75, 76, 78, 87, 201
mid-block narrowing, 50, 78
neckdown, 53, 74
planting, 216, 232-233
Curbs, 21, 35
bike path, 57
buffered lane, 59
bus lane and busway, 60-61, 63
cement, 119, 120
granite, 122
curb height, see Medians
integral concrete curb and gutter, 121
Curbside
access, 59, 60, 61
conditions, 26
regulation, 24

D
Davit poles, see Poles
Daylighting, 75
DEP ROW Bioswale, see Bioswale
Design and review process, 17, 21, 98-99
Design Vehicle, 53, 75, 92
Disabilities, see People with Disabilities
Drainage, 24, 26, 30, 53

E
Emergency access, 20-21, 53
bus lanes and busways, 63
medians, 79
speed reducers, 85, 86
Enforcement, 20, 24, 56
INDEX

F
Flatbush Avenue pole, see Poles
Flooding, 21, 26, 53, 135, 171, 191, 205, 214
Flushing Meadows luminaire and pole, see Luminaires and Poles
Furnishing zone, see Sidewalks
Furniture, 20, 23, 24, 31, 64, 68, 74-75, 76, 100, 101, 170-183, 211

G
Gateway, 87, 88
Geometric Treatment, 50, 51
accessibility, 53
applicability, 51
design vehicles, 53
emergency access, 53
guidance sources, 51
limited usage, 51
Pilot usage, 51
roadways and lanes, 55-68
sidewalks and raised medians, 70-82
Solar Reflectance Index, 51
sustainable street design, 52
traffic calming, 84-93
usage categories, 51
wide usage, 51

Goals
policy, 15, 18-21, 25, 26, 32
project, 26, 35, 40, 52-53, 98-99, 190, 227

Granite
applications, 43, 51, 68, 102, 103, 104, 120
block, 113, 129
curb, 122
paver, 51, 112, 124, 129
slab, 112

Gravel
applications, 68, 101, 229
epoxy, 68

Green Book, 15
Greening, 26, 31, 78, 189, 226
Greenstreet, 26, 188-189, 205, 210, 214, 216, 232

Guidance Sources, 51, 188

H
Helm luminaire, see Luminaires
Hexagonal asphalt paver, see Pavers
High Pressure Sodium, see Lighting

Historic District, 26, 33, 37, 98-99
crosswalks, 124
lighting, 135, 142, 151, 154, 158, 159
roadways, 124, 129
sidewalks, 70, 103, 104, 111, 112, 122

History and Character, 20, 26
Horizontal deflection, 85, 89, 91
Hoyt Avenue at RFK Bridge Case Study, 40-41
HPS, see High Pressure Sodium
Hump, see Traffic Calming

I
Individual tree bed, see Tree Beds
In-ground planting area, 219, 220
Integral concrete curb and gutter, see Curbs
Integrated streetlights, 136, 153-160
Interlocking permeable pavers, see Pavers

Intersections, 33, 53, 75, 92, 136, 165
complex, 53, 58
multi-leg, 53
raised, 50, 93
signalized, 33, 91
slip lanes, 53
stop-controlled, 88, 90

Inundation, see Flooding
INDEX

Landmarks Preservation Commission, 22, 31, 33, 37, 99, 135

Landscape, see also Plantings
diseases and pests, 192
guidance sources, 188
limited-access arterial plantings, 222-225
maintenance agreements, 189
microclimate, 191
plant installation and maintenance, 197
plant selection, 190
plaza plantings, 218-222
reviews and approvals, 189
roadway plantings, 204-212
sidewalk plantings, 213-217
soils, 191
spreading/siting requirements, 193
stormwater management practices, 226-234
tree beds, 198-203
tree preservation and protection, 194-196
usage categories, 188

Land use, 20, 25, 26, 38
context, 35, 40, 64-65, 66, 67, 73, 202

Lane narrowing, 84

LED, see Lighting

Level of service, 32, 33

Lighting, 20-21, 23, 24-25, 26
components, 134
Distinctive usage, 135
High Pressure Sodium, 135, 137
Historic usage, 135
integrated streetlights, 153-160
LED, 134-137, 146, 155
luminaires, 145-151
Pilot usage, 99, 115, 116, 117, 127
roadways, 125-129
sidewalks, 100-117
Solar Reflectance Index, 108, 114, 117, 126
Standard usage, 98-99
usage categories, 98-99

Medians, 31, 50, 52-53
12-14 inches, 208
acids, 104
access, people with disabilities, 53
access, emergency, 53
barrier, 82
bike lane/path, 56-57
busway, 63
curb-height, 207
pedestrian safety island, 50, 81
raised, 79-80, 204, 205-206, 218
refuge island, 84

Mid-block narrowing, 50, 78

Mini CityRack, 179

Mobility, see Access

Motor vehicle, see Vehicles

Multirack, 180

Neckdown, see Curb Extensions

Neighborhood traffic circle, 90

Network, 25, 32, 52-53, 136
operations, 32
role, 26

Newstand, 71, 76, 171, 181

New York City Administrative Code, 31, 33

Noise, 17, 85, 129, 188

Parking, 19, 26, 31, 32, 35
lane, 31, 57, 60-61, 74-75, 84
regulation, 32, 35
utilization, 32, 35

Pavement, 61-61, 99
materials, 126, 127, 128
porous, 116
Solar Reflectance Index, 108
Pavers
bluestone flag, 111
cement, 115, 129
granite, 112, 113, 124
hexagonal asphalt, 110
permeable interlocking concrete, 115
London, 109
rubber, 117
precast square, 114
unit paver, 108, 110, 114, 117
PDC, see Public Design Commission
Pedestrian, 16-17, 26, 35
lighting, 134-135
mall, 209
safety, 26
street, 129
volume, 44-45, 65
People with Disabilities, 20, 35, 51, 52, 238
Design Considerations, 26, 56, 57, 63-66, 68, 80, 88, 90, 92, 93
Material Considerations, 113, 129
Furniture, 171
Permeable interlocking concrete paver, see Pavers
Permits, 26, 99, 171
revocable consent, 71, 171
wetlands, 26
PICP, see Permeable interlocking concrete paver
Pilot, 51
applications, 63, 64, 86, 89, 90, 91, 93, 155
lighting, 135, 155
materials, 99, 115, 116, 117, 127
usage categories, 50, 51
Planning, see Design and planning process
Planting, see also Landscape
12-14 inches, 208
curb height, 207
curb extension, 216
full sidewalk, 214
in-ground planting area, 219
limited-access arterial, 222-225
pedestrian mall, 209
plaza, 218-221
raised median, 205-206
raised planting area, 220
recommendations, 203, 212, 217, 221, 225, 234
ribbon sidewalk, 215
stormwater management practices, 226-234
street end, 211
triangle, 210
PlaNYC, 19, 188
Plazas, 44-45, 50, 64-64, 66, 67, 68
interim, 44-45, 50, 68
permanent, 50, 67
planting, 188, 210, 218-220
Poles, 134-135
Alliance, 153, 165
Bishops Crook, 151, 154, 162, 163
City Light, 155
Davit, 140
Flatbush Avenue, 141
Flushing Meadows, 156
Octagonal, 139-140
Round, 139, 140
signal poles, 135, 161-165
TBTA, 142-143
Type B, 157
Type F, 158
Type M, 159
Type M-2A, 162-163
Type S-1A, 164
World’s Fair, 160
Policy, see Goals
Pollution, 17, 21
Public art, 24, 172
Public Design Commission, 22, 31, 33, 35, 37, 98-99, 135
Public space, 24, 26, 36
programming, 24
shared street, 64
street design, 64, 66, 67, 68
Rain garden, 228
Resiliency, 10, 19, 21, 24, 26, 32, 36, 53, 99, 135, 171, 198, 246
Revocable consent, 71, 171
Ribbon sidewalk, see Sidewalks
Right-of-way, 23, 32, 188-189
Roadways and Lanes, see also Streets
cobblestone, 129
curbless, see Shared street
grading, 24, 30, 31
limited usage, 51
materials, 125-129
Pilot applications, 63, 64
residential avenues, 59
residential cross street, 59
shared, 64-65, 87
Solar Reflectance Index, 61, 63, 65, 67
usage categories, 51
wide usage, 51
width considerations, 26
Roundabout, see Traffic calming
Round pole, see Poles
ROW, see Right-of-way
Rubber paver, see Pavers
Runoff, see Stormwater Management Practices
Safety, 16-17, 20-21, 26, 30-32, 34, 51, 52-53
vulnerable groups, 20
Sand-colored concrete, see Concrete
SBS, see Select Bus Service
Select Bus Service, 31, 34, 60, 77, 182
Shielded teardrop luminaire, see Luminaires
Sidewalks
- access, 100
- community facilities, 76
- curb extension, 74-75
- DEP ROW bioswale, 230-231
- full, 70, 73, 200, 214
- furnishing zone, 70, 72, 100, 108, 113, 114, 213, 214, 217
- geometry, 70-71
- materials, 98-99, 100-117
- ribbon, 50, 73, 215
- permits, 99
- planting, 193, 213-217
- Solar Reflectance Index, 71
- Stormwater Greenstreet, 232-233
- tree preservation and protection, 194-195

Signal pole, see Poles

Signal-protected path, 58

Signal timing, 35, 58

Sign placement, 59

Silicon carbide treatment, see Concrete

Simulated saw-cut joint, see Concrete

Snow clearing, 53

Speed, 24
- operating, 85
- school zones, 52
- vehicle target, 52

Speed Cushion, see Traffic Calming

Stad luminaire, see Luminaires

Standard LED Luminaire, see Luminaires

Stormwater Management Practices
- bioswales, 21, 187, 199, 202, 214, 227-232
- control, 26, 32
- DEP Priority CSO Tributary Areas, 227
- DEP ROW bioswale, 230-231
- detention and retention, 227
- installation, 226-234
- planting recommendations, 234
- Stormwater greenstreet, 232-233

Streets, see also Roadways and Lanes
- bicycling, 55-59
- context, 19, 20-21, 26, 51
- cost-effectiveness, 19, 20-21, 51, 52-53
- crosswalks, 52, 75, 81, 92, 178, 219
- curbs, 21, 35
- curbside conditions, 26
- cuts, 26
- drainage, 52-53
- furniture, 170-183
- greening, 26, 188-189
- history, 16-17
- network role, 25, 32, 52-53, 136
- operations, 23
- Pilot treatments, 63-64
- plantings, 204-212
- plazas, 66-68
- reconstruction, 30, 32
- resurfacing, 22, 31
- sustainability, 19, 20-21
- width considerations, 26

Streetlights, see Lighting, Luminaires, and Poles

Swale, see Bioswale

Traffic Calming, 50, 84-93
- chicane, 89
- curb extensions, 87, 89
- gateway, 87
- humps, 85, 86
- lane narrowing and lane removal, 84
- medians, 84
- mid-block narrowing, 50, 78
- neighborhood traffic circle, 90
- Pilot applications, 86, 89, 90, 91, 93
- raised crosswalk, 88
- raised intersection, 90
- raised speed reducers, 50, 85, 88, 93
- roundabout, 91-92
- shared street, 87
- Solar Reflectance Index, 93
- speed cushion, 52, 86

Traffic signal poles, see Lighting and Poles

Transit, 26, 31, 32, 60

Trees, 24, 26, 188, 190-195, 212, 217, 221, 225, 234
- canopy, 21
- critical route zone, 194-195

Tree Beds, 199-203
- connected, 116, 199-200, 202
- guard, 200, 201, 219, 231
- individual, 73, 199-200, 201

Triangle, 40, 43, 210

Truck route, 24, 26, 33, 35

ULURP, see Uniform Land Use Review Procedure

Uniform Land Use Review Procedure, 37, 38

Unit paver, see Pavers

Universal Design, 53, 99, 135, 171, 248

Unpigmented concrete, see Concrete

Utilities, 26, 30, 33, 38
INDEX

V

Vehicles
automobile, 16-17
bikes and bicycling, 16-17, 20, 21, 26
emergency, 20, 53, 60, 63, 79, 85, 86
motor vehicle, 16-17, 26, 35, 52-53
separation from pedestrians, 59

W

Walking, 16-17, 20-21, 26, 53, 182
WalkNYC Wayfinding System, 182
Waste receptacles, 72, 183
Waterfront Access Plan, 211
West Houston Street Case Study, 42-43
Wetlands, see Permits
Willoughby Plaza Case Study, 44-45,
 66, 67, 172
World’s Fair luminaire and pole, see
Luminaires and Poles

Z

Zoning, 22, 51, 99
Zoning Resolution of the City of New
York, 22, 51, 99, 102, 115, 200, 214