BQE Atlantic to Sands Project Overview

1. Project Background
2. Current Conditions & Findings
3. Upcoming Activities
THE PROJECT TEAM

Robert Collyer, P.E. Deputy Commissioner for Bridges
Tanvi Pandya, P.E. Senior Program Manager
Keith Bray Brooklyn Borough Commissioner
Joannene Kidder Executive Director of Community Affairs
Madeleine Ehrlich Special Projects - Community Affairs

For questions and concerns:

Email: BQEAAtlantictoSands@dot.nyc.gov
www.facebook.com/BQEAAtlantictoSands
THE 21 BRIDGES

Atlantic Avenue Interchange
ATLANTIC AVENUE INTERCHANGE

Atlantic Avenue Structure:
- New York State rehabilitated - 1998
- Rated in good condition in 2014

Substandard Ramps: Traffic study
- To determine ramp improvements
- Improve pedestrian connectivity
- Van Voorhees Park Configuration
“...community groups developed a Citizen Alternative Plan that proposed a three-decked structure immediately along the Brooklyn Heights waterfront.” *NYC Roads.com*
Brooklyn’s Only Interstate

A vital connector to/from:
- I-495 Nassau/Suffolk
- I-678 RFK/Points North
- I-278 Staten Island/Points West
- I-95/NJ Turnpike/Points South
CURRENT OPERATION

One of the most heavily traveled roads in NYC

Annual Average Daily Traffic 2014 - over 140,000

2010 crash rate on 15 of 18 segments exceeds the statewide average

Heavy Usage by Trucks:

Trucks account for 11% of volume, on average

As high as 17% during peak times

Old Structure with Substandard Conditions:

• Non-standard geometry (tight turns, lack of acceleration lanes)
• Deficient vertical and horizontal clearances
• Deficient connectivity to Manhattan Bridge
WHAT WE HAVE HEARD…

<table>
<thead>
<tr>
<th>Condition</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driving safety issues</td>
<td>Narrow lanes, ramp geometry</td>
</tr>
<tr>
<td>Major delays due to breakdowns</td>
<td>No shoulders</td>
</tr>
<tr>
<td>Noise and vibrations</td>
<td>Poor structural joints and potholes</td>
</tr>
<tr>
<td>Difficult Pedestrian Crossings</td>
<td>Poor intersection plan</td>
</tr>
<tr>
<td>Lane closures</td>
<td>Maintenance and repairs</td>
</tr>
<tr>
<td>Leakage and debris</td>
<td>Deteriorating structures</td>
</tr>
<tr>
<td>Sidewalk obstructions</td>
<td>Temporary supports</td>
</tr>
</tbody>
</table>
CURRENT CONDITIONS: JOINTS & BEARINGS

BQE Cantilever

Old Fulton Street
CURRENT CONDITIONS: UNDERCLEARANCE

Under Columbia Heights
<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 2006</td>
<td>Accelerated construction & innovative design workshop (ACTT)</td>
</tr>
<tr>
<td>May 2009</td>
<td>Identified six potential tunnel alignments</td>
</tr>
<tr>
<td>2010</td>
<td>Study ended without selection of a preferred alternative</td>
</tr>
<tr>
<td>February 2011</td>
<td>Draft scoping report submitted to NYSDOT</td>
</tr>
</tbody>
</table>
CURRENT NYCDOT PROJECT

- DOT has forecast $1.7B for this project in the City’s Ten Year Plan
- NYCDOT is working with Federal and State partners for additional funding
PROJECT CHALLENGES

• Engineering
• Maintaining traffic
• Protecting adjacent structures
• Recent development
• Environmental/SHPO/Landmarks issues
• Transit structures
TRANSIT STRUCTURES

Old Fulton and Cranberry Streets

Old Furman Street and Montague Streets

TA Vent

TA Power

Furman Street
PROJECT BENEFITS

Significant Benefits - Local Residents/Motorists

<table>
<thead>
<tr>
<th>Design Decisions</th>
<th>User Experience</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Geometry Improvements</td>
<td>• Safer Travel</td>
</tr>
<tr>
<td>• Rehabilitated or Fewer Joints</td>
<td>• Quieter Roadway</td>
</tr>
<tr>
<td>• New Deck</td>
<td>• Improved Ridability/No Overhead Debris</td>
</tr>
<tr>
<td>• Improved Intersections</td>
<td>• Improved Pedestrian/Bike Connectivity</td>
</tr>
<tr>
<td>• Improved Ramp Configuration</td>
<td>• Improved Traffic flow</td>
</tr>
<tr>
<td>• New/Improved Drainage</td>
<td>• No Ponding</td>
</tr>
<tr>
<td>• New Lighting</td>
<td>• Safer/More Attractive</td>
</tr>
</tbody>
</table>
NYCDOT RECENT EFFORTS

Key Steps

BQE Project Panel of Experts

• Origin/Destination Study

• Tunnel Feasibility Analysis

• Belt Parkway Alternatives Study
QUEENS BOUND TRAFFIC BREAKDOWN

Queens-Bound AM:
• 58% of cars start in Brooklyn and have a destination within NYC
• 60% of trucks are traveling within NYC
 • 33% of these trucks began their trips in Brooklyn

Queens-Bound PM:
• 65% of cars start in Brooklyn and have a destination within NYC
• 68% of trucks are traveling within NYC
 • 44% of these trucks began their trips in Brooklyn

Over 60% of truck traffic has a destination within NYC, and of that, over 30% serve Brooklyn
Statte Island-Bound AM:
• 40% of cars start in Brooklyn and have a destination within NYC
• 90% of trucks are traveling within NYC
 • 23% of these trucks began their trips in Brooklyn

Statte Island-Bound PM:
• 32% of cars start in Brooklyn and have a destination within NYC
• 95% of trucks are traveling within NYC
 • 28% of these trucks began their trips in Brooklyn

Over 90% of truck traffic has a destination within NYC, and of that, over 20% serve Brooklyn.
Seven Tunnel Options Studied:

- **T1** Henry Street Alignment
- **W-1** Hicks Street Alignment
- **T-2** Exist. BQE Alignment
- **T-3** Outboard tunnel
- **W-2** Straight-line between exits 24 & 30
- **W-3** Outboard tunnel-Sunset Park to exit 33
- **W-4** Fourth Avenue outboard tunnel between exits 24 and 30
TUNNEL STUDY RESULTS

Option T3

Tunnel entrance/exit: Rapelye Street/Exit 26

Tunnel entrance/exit: 20th Street/Exit 24

Option W2

Tunnel entrance/exit: Clinton Avenue/Exit 30
Major Obstacles

- All but 2 configurations conflict with DEP’s water tunnel.
- Feasible cross-section allows only two lanes of traffic in each direction.
- Tunnel requires that we also maintain the existing BQE structure:
 - to accommodate existing volume
 - to provide connectivity to the Brooklyn and Manhattan Bridges (50% of BQE traffic currently uses exits that the tunnel would not serve)
- Tunnel options are prohibitively expensive, costing at least several billion
The Belt Parkway is not a feasible alternative:

• Low vertical clearance, including NYCT active lines
• Narrow lane widths
• Sub-standard geometry at ramps
• Carrying capacity
• Cost $800M - $2B
WHERE WE ARE NOW

• In-depth investigation
• Condition Assessment
• Load Rating
• Inter-agency coordination
PROJECT DESIGN SCHEDULE

Request For Proposal Released: June 2016
Environmental Review/Design Start: Early 2017
Alternative Analysis/Draft EIS: 2018
Preliminary Design Completion: 2019

Decision Point – Design/Build or Design-Bid-Build

DESIGN-BID-BUILD Vs DESIGN-BUILD

Owner/Agency → Designer → Owner/Agency → Contractor

Owner/Agency → Pre-Designer
Design-Build Entity
BQE Project: Design-Bid-Build

- Design-Bid-Build
- Design RFP 2016
- Complete Design 2017-2022
- Const. Bid 2023
- Const. 2024-2029

BQE Project: Design/Build

- Design-Build
- Design RFP 2016
- Pre-Design 2017-2019
- Design-Build RFP 2020
- Design/Const. 2021-2026

Construction Duration - 5 Years
Public Outreach Plan - Design

During Scoping Phase (on-going):
- Informational meetings with community boards
- Public Project Briefing
- Finalize key stakeholder list

During Design Contract (early 2017 through 2022):
- Formal Public Outreach Plan
- Create Notification Network of local businesses, organizations, residents
- Form project Working Group
- Formal public information sessions
During Construction Contract (2021 through Completion):

- On-site information booth for on-going activities
- Continue outreach through Working Group
- Use of social media for up-to-date construction activity related news

For questions and concerns:

Email: BQEAtlantictoSands@dot.nyc.gov
www.facebook.com/BQEAtlantictoSands
Thank You!