DESIGN FOR A NEW URBAN PARK

AT JEROME PARK RESERVOIR
Bronx, New York

The Jerome Park Conservancy • Gail E. Wittwer, ASLA
Key elements of the design for the park are to
preserve its historic essence, to reveal its potential
as a public space, to link the places and events
within the park to the surrounding community
and to frame the beauty of the reservoir with a
new layer of landscape and purpose.

Preserve

- open space
- scenic vistas
- historic brick and stone structures
- water supply infrastructure

Reveal

- its essential park like nature by removing
 all unpark like elements such as the outer
 chain link fence and temporary structures
- its historic character by exposing the architecture,
 topography, stonework and water

Link

park paths, plazas and programs to:
- surrounding communities and adjoining schools
- adjacent public parks and playing fields
- New York City and Bronx Greenways
- the landmarked Old Croton Aqueduct

Frame

- the site with new trees, paths and plazas
- the function of the reservoir with new
 programs and activities designed to
 encourage recreational and educational uses
The New York State Office of Parks, Recreation and Historic Preservation recently found the entire reservoir eligible for inclusion in the National Register of Historic Places. Most of the Croton system has already been landmarked, from the gatehouses at Croton Lake to the Central Park Reservoir.

Jerome Park Reservoir is the missing link in this 30-mile long chain of recognized historic structures. Its stonework, gatehouses, infrastructure, and scenic vistas should be preserved.
Jerome Park Reservoir is one of two distribution reservoirs for the Croton water system. Until recently it shared this function with the Central Park Reservoir. Because state and federal governments have mandated that Croton water be filtered, the use of both these reservoirs has been changing. The Central Park Reservoir is being removed from the water supply system and it is possible that all or part of Jerome Park Reservoir will no longer be needed for supplying water.

The Jerome Park Conservancy is proposing to create a 125-acre park based on the following preliminary design guidelines:

- Remove the outer fence and replace the one by the water with an attractive wrought-iron safety fence.
- Create walking, jogging, skating and/or bicycling trails around the reservoir.
- Develop the dividing wall as a promenade.
- Plant ornamental trees and shrubs, ground-covers and grass. Provide park furnishings, such as benches, lights, and garbage cans.
- Remove any features or structures that don't fit into this new park setting, such as the Lehman parking lot and building and the Department of Environmental Protection's temporary pilot water treatment plant.
- Develop plans for alternative parking.
- Develop areas for community gardens, public gatherings and performance spaces.
- Develop ecologically sound methods of avoiding water eutrophication.
- Draft the rules and regulations for the operation of this new public space.
- Restore the historic features around Jerome Park Reservoir, including the stone walls, the gate houses, the Jerome Avenue Pumping Station and the geological mounds. Preserve and enhance the scenic vistas.
- Develop new uses for the gate houses, such as a water-side cafe and an ecology center.
- Develop a plan for using the reservoir as an educational resource for the 25,000 local students.
- Promote the presence of birds and other wildlife.
- Develop a maintenance and security plan which addresses the complementary needs of the DEP and the community.
- Integrate the reservoir with adjacent parks, the neighborhood and the network of New York City and Bronx Greenways.

The Jerome Park Conservancy has concluded that its plans for a park are fundamentally incompatible with a water treatment plant.
New Yorkers love the Central Park Reservoir because it's beautiful, accessible and in the midst of a park. Half-hidden behind fences on a ridge in the northwest Bronx is New York's other reservoir - Jerome Park. It too is beautiful and the Jerome Park Conservancy has developed a plan to make it equally accessible. Once created, this new urban park would serve tens of thousands of people.

Construction of the Jerome Park Reservoir began one hundred years ago. The 94-acre body of water has a circumference of two miles and is bordered by a series of carefully crafted stone walls.
STATEMENT OF PURPOSE

The Jerome Park Conservancy was formed to preserve the beauty and heritage of Jerome Park Reservoir and its surrounding communities by the creation of a 125-acre park comprised of the water and the land around it. The Conservancy advocates the designation of the Jerome Park Reservoir as a scenic and historic landmark and the use of the reservoir as an educational resource for the 25,000 students who attend schools by the water's edge.

The idea for a new urban park arose out of opposition to the proposal by the New York City Department of Environmental Protection to build a water treatment plant in Jerome Park, and from the possibility of a partial or total abandonment of the reservoir. The Parks Council supported the creation of a park, and from its design guidelines came the idea for the Conservancy.

The Conservancy was initially neutral with regard to the proposed water treatment plant. However, in response to community opposition to the plant, the Conservancy unanimously took the position that such a facility is incompatible with its goals of preserving the reservoir and the surrounding communities, and with its vision for a park. Thus the mission of the Jerome Park Conservancy is to transform an extraordinary body of water into a beautiful park.

THE JEROME PARK CONSERVANCY

BOARD OF DIRECTORS 1997

Executive Committee
Ricardo Ferandez, Chairman
Anne Marie Garti, President
Karen Argenti, Secretary
Ken Solomon, Treasurer
Fred Phelps, Public Relations
Robert Kornfeld, Jr., Preservation
Dari Westphal, Membership
Ed Yaker, Planning

Affiliation
President, Lehman College, CUNY
Resident
Chair, Joint Communities Activities Committee
Lehman College, CUNY
Bronx Landmarks Task Force
Monseifre Medical Center
President, Amalgamated Housing

Board Members
Selden Benardo
Stan Blumenstein
Al Chapman
Sister Mary Catherine Cleary
Nora Feury
Spencer Foreman, M. D.
Felicity Guad
Leona Hockert
Gregory Long
John McKew, Esq.
Mary McLaughlin
Robert Moll
Anthony Ramunno
Sandra Sider
Pete Stan
Len Stoller
Tony Taylor
Norman Wechsler
Harmon Zapakin

Affiliation
Principal, P.S. 86
Principal, Bronx High School of Science
President, Kingsbridge Heights Neighborhood Improvement Association
Our Lady of Angels
Chair, Community Board No. 7
President, Monseifre Medical Center
Chair, Friends of Van Cortlandt Park
Vice Chair, Community Board No. 8
President, New York Botanical Garden
Wildlife Conservation Society
Kingsbridge Heights Community Center
Chair, Community Board No. 8
President, Scott Towers
Resident
Resident
Mutual Housing
Resident, Tracey Towers
Principal, DeWitt Clinton High School
President, Park Reservoir

Ex-Officio Non-Voting Board Members
David Burg
Elizabeth A. Cooke
Assemblyman Jeffrey Dinowitz
Councilwoman June M. Eisland
Congressman Eliot L. Engel
Borough President Fernando Ferrer
Senator Efrain Gonzalez, Jr.
Assemblyman Jeffrey Klein
Senator Franz S. Leichter
Commissioner Joel A. Miele, Sr. P.E.
Department of Environmental Protection
Assemblyman Roberto Ramirez
Councilman Israel Ruiz, Jr.
Senator Larry Seabrook
Commissioner Henry J. Stern
Senator Guy J. Veolia

Affiliation
President, New York Audubon Society
Executive Director, The Parks Council
Department of Environmental Protection
Department of Parks and Recreation

The Jerome Park Conservancy • c/o Office of the President • Herbert H. Lehman College of the City University of New York • 250 Bedford Park Boulevard West • Bronx, New York 10468
Celebrate on September 22nd

The Jerome Park Conservancy will hold an event at Fort Independence Park (entrances on Sedgwick Avenue at Giles Place and Hillman Avenue) on Saturday, September 22 at 11 a.m. State Parks Commissioner Bernadette Castro will be the guest of honor. A model of a bronze plaque, which commemorates the reservoir’s history, will be unveiled.

A partial view of the 30-foot high, two-mile long stone wall that encircles Jerome Park Reservoir. The Old Croton Aqueduct, a national historic landmark, runs through it.

Jerome Park Honored by State and Nation

Jerome Park won listing on the State and National Registers of Historic Places last year. On September 22nd, the Jerome Park Conservancy will celebrate this honor and thank New York State Parks Commissioner Bernadette Castro for her leadership in obtaining this recognition.

The newly honored district includes the reservoir and all of its structures, Harris Park (west of Goulden), the Lehman College parking lot, Fort Four Park, and Fort Independence Park. The reservoir was built between 1895 and 1906 by Italian stonemasons. It was the culmination of the magnificent Croton waterworks, which has been called the eighth wonder of the world. The Croton water supply system includes more than a dozen dams in Westchester and Putnam Counties, two 40-mile long brick aqueducts, and two distributing reservoirs—one in Jerome Park and the other in Central Park. The Croton system is probably the largest masonry structure ever built by man.

The Jerome Park Reservoir played a critical role in the development of the Bronx and New York City. The streets surrounding it were designed by Frederick Law Olmsted, who also designed Central and Prospect Parks. The Old Croton Aqueduct, which is a National Historic Landmark, runs through two of the gatehouses and along its entire eastern edge.

Outstanding among those who helped us gain this recognition is Robert Kornfeld, Jr., chair of the Conservancy’s Preservation Committee, who spent years researching the reservoir’s history, our local community boards, elected officials, and city-wide preservation organizations. But without the work of Commissioner Bernadette Castro and her staff, Jerome Park would not have achieved this honor.

The Conservancy will soon begin educating the community, schools, and city officials about the significance of Jerome Park, laying the foundation for its full preservation and restoration.
GreenStreets Opens ‘Croton Aqueduct Triangle’

A concrete island in the street at the southern tip of the Jerome Park Reservoir has been transformed. Officially named the “Croton Aqueduct Triangle,” it’s now part of the GreenStreets Program of the New York City Department of Parks. A ribbon-cutting ceremony with Parks Commissioner Henry Stern was held on May 8.

The Jerome Park Conservancy officially requested the new GreenStreet site in 1999. Among those instrumental in its creation were Commissioner Henry Stern, Bronx Parks Commissioner Bill Castro, City Council member Adolfo Carrion, and GreenStreets Program Director Gail Wittwer-Laird, who designed the site as well as the Conservancy’s 1994 plan for Jerome Park. The “Croton Aqueduct Triangle” has been adopted by Mark Stern, an active member of the Conservancy’s Education Committee and a science teacher at Walton High School. Students from Walton High School and the Kingsbridge Heights Neighborhood Improvement Association will provide for its maintenance.

The new GreenStreet is located directly above the Old Croton Aqueduct where it emerges from the reservoir at Goulden Avenue, across from Lehman College and Walton High School. The site includes a brick cross-section of the Aqueduct, filled with blue flowers. Other plantings include river birches, inkberry bushes, Virginia sweet spit, and a ring of ginkgo trees. Conservancy Board member Karen Argenti suggested naming the site.

The beautification project received some press. Photos of the ceremony appeared in Bronx papers and in the Friends of the Old Croton Aqueduct newsletter. Walton teachers Mark Stern and Judith Rock appeared on the cable TV program Bronx Talk (Channel 67, Lehman College) with horticulture student Luz Vasquez. They talked about the GreenStreet site and the unique history of the Old Croton Aqueduct.

Another group of students, from John F. Kennedy High School, got into the neighborhood beautification spirit on Earth Day 2001. They cleaned a portion of the edge of the reservoir and planted flowers near Fort Independence Park.

A Brief History of the Old Croton Aqueduct

New York City had contaminated its fresh water streams and wells by the mid-1830s when it decided to dam the Croton River in Westchester County and build a brick aqueduct from Yorktown to a reservoir at Fifth Avenue and 42nd Street in Manhattan. In the Bronx, the aqueduct passes through what is now Van Cortlandt Park, along the eastern edge of Jerome Park Reservoir, under the Croton Aqueduct GreenStreet, and down Aqueduct Avenue, before crossing into Manhattan over the High Bridge.

The City celebrated completion of the project in 1842 when Croton water started flowing. Because the population was expanding so rapidly, the City almost immediately needed more water and started building more dams and the New Croton Aqueduct. The Old and New Croton Aqueducts intersect at Jerome Park Reservoir, which opened in 1906 as a reservoir park. The Old Croton Aqueduct is a National Historic Landmark.

DEP Cleanup Around Reservoir

Thanks to efforts by the Membership Committee of the Jerome Park Conservancy, Community Boards 7 and 8, City Councilwoman June Eisland, and Bronx Borough President Fernando Ferrer, the New York City Department of Environmental Protection has let a contract for a weekly cleanup around the perimeter of the Jerome Park Reservoir. The Conservancy appreciates the assistance and encourages the DEP to make sure the cleanups are taking place every week.

Kudos to Common Cents Kids

Neighborhood school children have been raising money for the Jerome Park Conservancy through Common Cents, a national organization that encourages philanthropy in children. Students at PS/MS 95 raised $550 and students at PS 340 raised $250. (For more information, visit www.commoncents.org.)

The Jerome Park Conservancy Preservation Report and the National Register nomination are available at www.lehman.cuny.edu/preservationreport.
Jerome Park Conservancy Members and Contributors

Many thanks to the people who joined the Conservancy, and to those who contributed to our cleanup fund:

Ruth K. Abrahams
Alice Adams & William Gordy
Sylvia Anderson
Anonymous (via Sonia Lappin)
Karen Argenti
William & Bella Bader
Susan Bader
John Bagovic
Juliet and Max Baker
Linda Baldwin/Adolfo Carrion, Jr.
Charles F. Baroo
Louis & Mary Bazzicalupo
Darnley & Deborah Beckles
Ellis & Phyllis Bell
Martin & Caryl Bernstein
Sandi & Harv Besofsky
Mr. & Mrs. J. Billington
Ann Black
Hilda Bobson
Jean & Leo Boriss
Zelda & Murray Buder
Christopher & Ellen Butler
Mary & Bill Carroll
Nikola & Lucy Celic
Jerry Coffa
Hyman & Irene Cohen
Selma & Irwin Cohen
Charlotte Cohen
Elaine & Stanley Cohen
Selma & Irwin Cohen
Valerie Colon
Elizabeth Cooke
Carmela Cursi
Silvia Davidson
George & Barbara Dodsworth
Margaret Drago
Friends of June Eisland
Sylvia & Louis Ellman
Charlotte & Stanley Fahn
Ethel & Alexander Farkas
Shirley Feinstein
Ronald & Nelva Ferguson
Ricardo Fernandez
Solomon & Sadie Feuer
Leo Finkel
Glenn Fleischman
Cynthia & David Florman
Isadore Forman
Pearl Sidransky Friedmann
Ann Garti
Anne Marie Garti
Vanda Garti
Lester & Martha Getzoff
Anita & Milton Gill
Jim & Connie Gilmore
Fred & Barbara Glickenste
Etta & Al Goldbaum
Susan & Stan Goldman
Martin Goldray
Lowell & Max Green
Kelly Griffin
Robert & Lilian Gumerove
Siridator Khalsa &
Kevin Harrington
Emitted B. Hill
Bernice Hoffmann
Jerome & Vera Holzman
Ina Juretschke
Josh & Norma Justin
Andrea Kahn & David Hess
Stephen & Suzanne Kaplan
Jeanette L. Kaplan
Philip Kaplan
Patricia & Monroe Karetsky
Abraham & Evelyn Katz
Martin & Renee Katz
Rose & Bill Kerr
Esther Kimminger
Andy & Leslie Kimminger
Kingsbridge Heights
Community Center
Donna Kirchheimer
Beatrice & Arnold Klein
Celia & Robert Kornfeld, Sr.
Vida Kosoff
Dominick LaPorta
Sonia Lappin
Alice Levin
Miriam Leal
I. Charles Levensberg
Lewis Levin
Lee & Robert Levine
Ben & Aleine Levine
Lillian Levine
Diana & David Levy
Violet Lewit
Leonard Lipshitz
Mary Lukomnik
Marion Marcus
Melvin & Annabel Marden
Mary & John McLaughlin
Alex & Dorothy Miller
Gertrude Miller
Eva Miot
Mosholu Preservation Corporation
Lois-Ann Myers
Richard & Susan O'Brien
Lyla & Bernard Olshan
Louis & Roseann Pappas
Jack & Berta Parker
Rebecca Par & Joseph Cohen
Annie Perryman
Fred & Jane Phelps
Rita & Michael Pietragolare

Marjory & Joseph Piscitello
Alvin & Elise Plotkin
Aaron & Rhoda Plum
Galina Polyakova
Ruth & Jerry Rheiner
Majorie Ritzer
Daisy & Geraldo Rivera
Bess Rosenfeld
May Rotheide
Alan & Irene Saks
Josephine Sapienza
Bernice & Steven Schecter
Mina Schienberg
Phyllis Schnur
Howard & Anna Schoffel
Frank & Jean Schonfeld
Barnic Schwartz
Scott Tower Senior Citizens Club
Maureen Scully
Miriam Siegel
Rose Slotkin
Evelyn Smalls
Leonard & Helen Smith
Esther & Leon Sokolsky
Vicki & Ken Solomon
Helen Sorlingas
Laura & Robert Spalter
Albert & Alice Spekman
Mark Stern & Hu-Y Chi Shiu-Stern
Anafay Tavana
Lillian Tenrosen
Patricia J. Thompson
Onela & Vicente Vaca
Harriet Wasser
Sally Webster
Dart Westphal
Deborah Wolfe
Charles Worrell
Ed Yaker

Please be as generous as you can be. Your contribution is tax deductible.

MEMBERSHIP DUES: $10 minimum per household $25 minimum per small business or association

ADDITIONAL CONTRIBUTION $______

☐ I/we would like to join the Jerome Park Conservancy. My check for $______ is enclosed.

Name ____________________________
Address ____________________________
City ____________________________ State ___________ Zip ___________
Phone ____________________________ E-mail ___________________________

Jerome Park Conservancy
3965 Sedgwick Avenue, #1C
Bronx, NY 10463
Phone/Fax 718-884-7864

Help us achieve our goals

Please complete the membership form and return it with your check to:

Jerome Park Conservancy
3965 Sedgwick Avenue, #1C
Bronx, NY 10463
Phone/Fax 718-884-7864
OUR PURPOSE

The Jerome Park Conservancy was formed to preserve the beauty and heritage of Jerome Park Reservoir and its surrounding communities by the creation of a 125-acre park comprised of the water and the land around it.

The Conservancy advocates the designation of the Jerome Park Reservoir as a scenic and historic landmark and the use of the reservoir as an educational resource for the more than 25,000 students who attend schools by the water's edge.

Officers
Ricardo R. Fernández, Chairman .. President, Lehman College, CUNY
Anne Marie Garri, President ... Community Resident
Karen Argenti, Secretary ... Community Resident
Ken Solomon, Treasurer ... Chair, Joint Communities Activities Committee

Committee Chairs
Stanley Blumenstein, Education ... Principal (retired), Bronx High School of Science
Spencer Foreman, M.D., Membership (Dari Westphal) President, Montefiore Medical Center
Ed Vokes, Planning ... President, Amalgamated Housing
Robert Kornfeld, Jr., Preservation .. Bronx Landmarks Task Force
Anne Perryman, Public Relations .. Director of Media Relations, Lehman College, CUNY

Other Board Members
Geraldine Ambrosio ... Principal, DeWitt Clinton High School
Seydou Benardo .. Principal, P.S. 86
John Calvello ... Vice President, Wildlife Conservation Society
Al Chapman ... President, Kingsbridge Heights Neighborhood Improvement Association
Sister Mary Catherine Cleary .. Principal, Our Lady of Angels
Nora Feury .. Chair, Community Board No. 8
Lorance Hockeri .. Chair, Community Board No. 8
Sonia Lappin .. Board Member, Scott Towers
Gregory Long ... President, The New York Botanical Garden
Mary McLaughlin .. Kingsbridge Heights Community Center
Robert Moll .. Parks Committee Chair, Community Board No. 8
Paul Sawyer .. Executive Director, Friends of Van Cortlandt Park
Pete Stand .. President, Kingsbridge-Riverdale-Van Cortlandt Development Corporation
Len Stoller ... Mutual Housing
Tony Taylor .. President, Tracey Towers
Norman Wechsler ... Superintendent of Bronx High Schools

Ex-Officio Non-Voting Board Members
David Burg .. New York Audubon Society
Elizabeth A. Cooke ... Executive Director, The Parks Council
Adolfo Carrión, Jr. .. City Councilman
Jeffrey Dinowitz .. State Assemblyman, 81
June M. Eisland .. City Councilwoman
Elliot L. Engel .. Congresswoman
Fernando Ferrer .. Bronx Borough President
Efrain González, Jr. .. State Senator
Jeffrey Klein .. State Assemblyman, 80
Joel A. Miele, Sr., P.E. .. Commissioner, Department of Environmental Protection
Jose Rivera ... State Assemblyman, 78
Eric Schneiderman ... State Senator
Henry Stern ... Commissioner, Department of Parks and Recreation
Guy J. Velilla .. State Senator

Jerome Park Conservancy
c/o Office of the President
Lehman College, CUNY
250 Bedford Park Boulevard West
Bronx, New York 10468
Public Access at the Jerome Park Reservoir
Anne Marie Garti, President
Jerome Park Conservancy
Croton Filtration Monitoring Committee Meeting
June 19, 2008

I. History of Jerome Park Reservoir
 A. Designed as a reservoir park in the late 19th century
 Surrounding streets were designed by Frederick Law Olmsted
 Original design for reservoir may have also been by Olmsted
 B. Integrated with community until WWII
 C. Aesthetics: water, hand crafted stone walls, and elegant wrought iron fences
 D. 125-acres of reservoir and surrounding land listed on the State and National
 Registers of Historic Places in 2000
 E. Would cost billions of dollars to build now

II. Jerome Park Conservancy
 A. Formed in 1994
 B. Mission - to preserve and enhance the Jerome Park Reservoir
 C. Raised over $100,000 to create consensus on park plan
 D. Unifying design guideline is the waterside path
 E. Prior DEP Commissioners were committed to public access

III. Operational and Security Issues and Solutions
 A. Use of reservoir is changing
 Only unfiltered (raw) water will be stored at Jerome Park.
 It will mainly be used as a back-up supply and to relieve water pressure.
 B. If the water stored in the Jerome Park Reservoir is used at all, it will have to go
 through the filtration plant first. This will take many hours, not minutes.
 The DEP allows people to walk and fish at the Kensico Reservoir, which is closer
 to people’s faucets than Jerome Park.
 C. To ensure security with public access:
 * Keep the outer security fence with guard(s)
 * Require DEP permits and photo ID
 * Check bags
 * Test for poisons at the filtration plant
 D. For operational concerns:
 * No hazardous chemicals will be used or stored at the reservoir, so the DEP
 should be able to perform any required operations with public access.
 * For over 100 years the DEP maintained the Central Park Reservoir while
 1000s of people ran around it every day.
 * Temporarily deny public access if major repairs are needed.
Flow of Water to Jerome Park Reservoir
With the Croton Water Treatment Plant

New Croton Aqueduct

Filtration Plant

Key to symbols

↓ Unfiltered Water
↓ Filtered Water
↑ Water flow to JPR for pressure release, or to plant to filter water in the reservoir

Filtered water never enters Jerome Park Reservoir

Filtered water to distribution system
New York City Water Supply System

Figure 1-1
NEW YORK STATE
OFFICE OF PARKS, RECREATION
AND HISTORIC PRESERVATION

This is to certify that

Jerome Park Reservoir
Bronx, Bronx County, New York

in recognition of its significance in American history
and culture was listed on the

STATE REGISTER OF HISTORIC PLACES

on

July 11, 2000

under provisions of the

S.C. Historic Preservation Act of 1980

and on the

NATIONAL REGISTER OF HISTORIC PLACES

on

September 7, 2000

under the provisions of the

National Historic Preservation Act of 1966
JEROME PARK CONSERVANCY
PRESERVATION REPORT

HISTORY AND EVALUATION OF THE JEROME PARK RESERVOIR

DRAFT REPORT - AUGUST 1998
JEROME PARK CONSERVANCY

PRESERVATION REPORT

HISTORY AND EVALUATION OF THE JEROME PARK RESERVOIR

Prepared for:

Board of Directors
Jerome Park Conservancy
Ricardo Fernandez, Chairman
Anne Marie Garti, President

Prepared by:

Robert J. Kornfeld, Jr. AIA
Chairman, Preservation Committee

DRAFT REPORT - AUGUST, 1998
ABOUT THE AUTHOR

Robert J. Kornfeld, Jr. AIA, an architect, is a Senior Project Director with LZA Technology. In addition to serving as Chairman of the Preservation Committee of the Jerome Park Conservancy, he is a member of the AIA Historic Buildings Committee, the National Trust for Historic Preservation, and the Friends of the Old Croton Aqueduct. He is Acting Chairman of the Bronx Landmarks Task Force, Office of the Bronx Borough President. Mr. Kornfeld is a resident of Hastings-on-Hudson, New York.
Table of Contents

Acknowledgments

Preface

Executive Summary

Illustrations 1 - 6

I. Jerome Park Reservoir and the History of the Croton Waterworks

A. The Early Water Supply of New York City
B. The Old Croton Aqueduct
C. The Croton Waterworks Extension
D. Works of the Aqueduct Commissioners
E. The Jerome Park Reservoir

Illustrations 7 - 34

II. History of the Jerome Park Community

A. Early History
B. The American Revolution
C. Nineteenth Century

III. Landscape Features and Historic Structures at Jerome Park Reservoir

A. Siting and Landscape Features
B. Historic Stone Walls
C. Structures
D. Summary of Condition Report

Illustrations 35 - 58

IV. Historic Status of Jerome Park Reservoir

A. Landmark Status
B. Impact of the Proposed Water Treatment Plant

Select Bibliography
ACKNOWLEDGMENTS

This report would not have been possible without the leadership and the tireless editorial assistance of Jerome Park Conservancy President Anne Marie Garti. Grants from the New York State Office of Parks, Recreation and Historic Preservation (provided through Senator Franz S. Leichter and Assemblyman Jeffrey Dinowitz), The New York Times Foundation, and the NYC Environmental Fund made possible the publication of the report. The current historical interest in the Jerome Park Reservoir and the Old Croton Aqueduct in the Bronx owes much to the inspiration and vision of landscape architect Gail Wittwer. Valuable contributions in research and documentation were performed by Karen Argenti, John Bartelstone, Sandra Sider and Heather McDaniel.

Thanks to Daniel J. Donovan of Bronx Borough President Fernando Ferrer’s Office for reawakening interest in Frederick Law Olmsted’s design of the Bronx, and for his assistance in comparing it with the as-built condition.

Thanks also to Department of Environmental Protection Commissioner Joel Miele for his cooperation, and to Douglas Greeley, Eric Axelson, Joe Hadden, Joe McGuire and Rocco Mastronardi for their assistance in accessing the reservoir.

An immense debt of gratitude is owed to Charles E. Beveridge, Editor of the Frederick Law Olmsted Papers, for his seminal research on Olmsted’s design of the Bronx, and his discovery of the drawings fourteen years ago.
PREFACE

This draft report is intended to raise awareness of the beauty, significance and history of the Jerome Park Reservoir, and to support the Jerome Park Conservancy's call for the reservoir to be landmarked and preserved. While the reservoir is well known and has received much publicity in recent years, its history is relatively obscure. A considerable amount of primary research was necessary. Documentation included a survey of the basin, when the reservoir was drained for maintenance, in order to photograph the magnificent stone structures that are normally submerged, and whose images have never been published. While much additional research remains to be performed, I believe that this report provides a new perspective on the history of the Croton system and its relation to the development of New York City.

When I was selected to be the Chairman of the Preservation Committee of the Jerome Park Conservancy, I was generally familiar with the Croton Aqueduct System, but knew little about the Jerome Park Reservoir. I thought of the reservoir as somewhat historic, not terribly significant, and not that old -- probably a common view. What sparked my interest was a bus tour, on a rainy day in 1995, led by Gail Wittwer and Anne Marie Garti. The world that I saw from the bus window looked like a forgotten Frederick Law Olmsted landscape, and I vowed to myself that I would discover what I was looking at, why it was there, and who designed it.

What I subsequently learned, in my search for the history of the Jerome Park Reservoir, was nothing short of a revelation about the reservoir, the Croton Waterworks, and the history of New York City itself. The historic and architectural significance of the Jerome Park Reservoir has been grossly underestimated, and its prominence in the history of the Croton Aqueduct system has not been acknowledged. Originally planned in 1875, and designed and constructed over the following thirty years, it was one of the major works of the Croton Aqueduct system, located at the confluence of the Old and New Croton Aqueducts. It is the largest and most significant body of water in the Borough of the Bronx.

There was a longstanding reluctance on the part of the city to build the Jerome Park Reservoir, and a residual hostility whose vestiges are still reflected in the proposal for converting the reservoir into an industrial water treatment plant. Remarkably, this hostility appears to have had its roots in the friction between the engineers of the Croton Aqueduct Department and the Tweed Ring that took it over in 1870. In fact, the Aqueduct Commissioners, who designed the reservoir, were formed in the 1880's largely to take control of the design and construction of the New Croton Aqueduct away from the corrupt Department of Public Works.

I also learned that Frederick Law Olmsted designed a comprehensive city plan for the west Bronx, that most of the streets surrounding the Jerome Park Reservoir were constructed exactly as designed by Olmsted, and that he may well have had a role in the design of the reservoir itself. Olmsted fought with corrupt city officials who he felt were undermining his plan for the annexed territory that was to become the Bronx. He was dismissed in 1878.

The title for a local history might be *The Bronx at 100: a Century of Broken Dreams*. The
west Bronx, with the finest natural landscape in the city, and a street plan and park system founded by Olmsted, remains beautiful despite its legacy of misrule and misuse. An alternate title might be Olmsted's Bronx: Forgotten but not Gone.

The plan to convert Jerome Park Reservoir into a water treatment plant is a direct product of the mid-twentieth century planning mentality that led to the Cross Bronx Expressway and other destructive mega-projects. In the mid-1980's, the low point of Bronx history, the Department of Environmental Protection began construction of a new dividing wall for the now-defunct filtration plant scheme in the north basin. Part of this project was the needless demolition of an 1890's-vintage arched stone bridge in the reservoir. Plans also called for demolishing all of the stone gate houses and portions of the Old Croton Aqueduct, a National Historic Landmark. It is ironic in an era when we are witnessing a masterful restoration of Grand Central Station and the rebirth of Central Park, that attitudes towards Jerome Park remain in the mind-set that led to the destruction of Penn Station.

The historical, architectural and cultural significance of the Jerome Park Reservoir and the surrounding parks and communities is indisputable. No form of mitigation could offset the devastating impact of the proposed water treatment plant on the historic resources of the reservoir and the surrounding community. In this centennial of the city's consolidation, New Yorkers should finally recognize this neglected masterpiece: designate the Jerome Park Reservoir a landmark, and drop it from consideration as the site for a water treatment plant. I hope that future generations will be able to enjoy the Jerome Park Reservoir along with the High Bridge and the New Croton Dam, the other great landmarks of the Croton Waterworks system along Old Croton Aqueduct Trailway.

Robert J. Kornfeld, Jr. AIA
Chairman, Preservation Committee
Jerome Park Conservancy
EXECUTIVE SUMMARY

This report from the Preservation Committee of the Jerome Park Conservancy describes the role of the Jerome Park Reservoir in the Croton water supply and its place in the history of New York City. The City’s expanding need for water and the endless controversies over how to supply it are covered in the report, as is the dedication of the men who designed the Croton system.

The Old Croton Aqueduct was built between 1837 and 1842. It was a unique stone and brick structure that stretched 40 miles, from a dam on the Croton River to a reservoir on 42nd Street. But within a few years of its completion, it could not adequately supply water to the exploding population of the City.

The City’s campaign to increase the water supply included the construction of the Central Park Reservoir, the High Bridge Tower and Reservoir, and many storage reservoirs and dams in Westchester and Putnam Counties. It was called the Croton Waterworks Extension.

In 1874 New York City annexed a large portion of southern Westchester, from the Bronx River west to the Hudson. (It became part of the Borough of the Bronx in 1898.) The NYC Department of Public Parks selected Frederick Law Olmsted, landscape architect, and J.F.R. Croes, civil and topographical engineer, to prepare a comprehensive design for the new area. Their plan, completed in 1878, was adopted by the city and was largely constructed as designed.

In 1875, in response to the renewed threat of water shortages, plus the need for a water supply system for the new district, the Croton Waterworks Extension was expanded to include plans for an additional aqueduct and a new distributing reservoir: the New Croton Aqueduct and Jerome Park Reservoir. They were to be interconnected with the Old Croton Aqueduct in the newly acquired territory, for which Olmsted was developing a master plan.

In 1895 Italian immigrant stonemasons began building the Jerome Park Reservoir. They positioned the two aqueducts within the thirty-foot thick stone retaining wall that runs down the eastern edge of the reservoir, and constructed a number of thirty-foot-high stone gatehouses that are reminiscent of ancient Roman structures. Their work was completed in 1906.

In its original design, Jerome Park Reservoir was to be over twice as large as it is today and was to include two islands and a peninsula. It was to serve as a final settling-basin for Croton water, and, according to the Chief Engineer, “will add greatly to the attractiveness of the surrounding grounds.” There is even reason to believe that Olmsted had a hand in Jerome Park’s design.

However, the reservoir’s construction was beset by friction between the Aqueduct Commissioners and the Bureau of Water Supply, Gas and Electricity. While the Commissioners were gearing up to complete Jerome Park Reservoir as the final masterpiece of
the Croton system, the Bureau, in 1907, requested permission to install slow sand filters in the east basin. In the end, plans for the east basin, the sand filters, and the magnificent gatehouse superstructures were set aside.

When the Jerome Park Reservoir opened, it was a reservoir-park and, to complete the overall landscaping, city parks were established around it. Old Fort Four Park and Fort Independence Park were created on the sites of Revolutionary War forts and have retained their picturesque natural topography and spectacular views across the water. Harris Park and Harris Park Annex provided a green border for the eastern edge of the water.

Jerome Park Reservoir was designed and built amidst controversy and is the focus of a bitter one today. The Department of Environmental Protection (DEP), like the Bureau of Water Supply, Gas and Electricity that preceded it, is proposing to build a filtration plant in the reservoir. However, unlike the natural sand filters that were under consideration earlier in this century, the current filtration plant would be filled with gigantic machines and hazardous chemicals.

The surrounding community unanimously opposes the DEP’s plan. And the Conservancy not only joins in this opposition but also advocates the designation of Jerome Park Reservoir, with all of its architectural and landscape features, as a New York City Landmark. The reservoir should also be listed on the State and National Register of Historic Places. The entire Croton system has been deemed eligible for landmarking, and Jerome Park Reservoir is the only major element of the system, within the City’s boundaries, that has not yet been designated a city landmark.

The Jerome Park Reservoir is a century-old component of the Croton Aqueduct system, one of America’s oldest and greatest engineering masterpieces. The reservoir is remarkable for its stone structures, its Olmsted-inspired landscaping, its place in the history of the Croton System, and its role in the development of the Bronx. It should not be desecrated by a filtration plant, but preserved as an historic treasure.

Anne Marie Garti
President
Jerome Park Conservancy
Illustration 1: Jerome Park Reservoir viewed from a neighboring apartment building. (Photo by Sandra Sider)

Illustration 2: Pipe Vault Portal, an arched stone structure at the northwest corner of the Jerome Park Reservoir, leads to a passage through the reservoir embankment to Gate House No. 2
Illustration 3: Gate House No. 5, Jerome Park Reservoir, main entry portal.

Illustration 4: Gate House No. 2, Jerome Park Reservoir, inlet with voussoir arch.
Illustration 5: Sholem Aleschem Houses, an historic apartment building overlooking the Jerome Park Reservoir.

Illustration 6: Sedgwick Avenue, designed by Frederick Law Olmsted, landscape architect, borders the western edge of the Jerome Park Reservoir.
1. JEROME PARK RESERVOIR AND THE HISTORY OF THE CROTON WATERWORKS

A. The Early Water Supply of New York City

Because the lower Hudson River is an estuary, the water is salty all around Manhattan Island and for many miles upstream, and is not suitable for drinking. The early European settlers found adequate supplies of potable water from other sources. Public wells and pumps existed in New York City from the 17th century, and a major source of water was a pond called the Collect, where Foley Square is today. The Collect, along with many of the wells, was hopelessly polluted by the end of the 18th century.¹ The accelerating growth of the city’s population combined with the failing water supply and the engineering difficulty of providing an adequate public water supply system, caused decades of debate. The profession of civil engineering was in its infancy in the United States, and there were no precedents in North America for the type or scale of construction that would be required to divert a river of pure water to the city.

In 1798 the city adopted a plan for a municipal water supply system, an ingenious scheme by Dr. Joseph Browne to divert the water of the Bronx River from a dam, near where the Bronx Zoo is today, through a canal to the Harlem River, where a water wheel would pump the water through a cast iron pipe to a reservoir on Manhattan Island.² (This plan was never executed.)

The enabling legislation of 1799 created the Manhattan Water Company, which was led by Aaron Burr. Using this as a maneuver to obtain a bank charter, Burr spent as little effort as possible providing water. The company (which eventually became the Chase Manhattan Bank) abandoned the Bronx River plan in favor of creating a well and small reservoir, holding only a fraction of the city’s daily need. The system was deficient in many ways: it used hollow logs rather than iron pipes, served only the areas where service was profitable, and did not provide water for street cleaning or fire fighting.³

¹ T. Schramke, *Description of the New York Croton Aqueduct*, 1846, p.8
The city continued to be plagued by fires that consumed whole blocks, and epidemics of yellow fever and other diseases that fed on poor sanitation. A terrible cholera epidemic in 1832 spurred the city to take immediate steps to create a true municipal water system. There was disagreement on whether to use the Croton River, the Bronx River, or another source for the city’s water. At the urging of Alderman Myndert Van Shaick, a proponent of the Croton River, the Common Council commissioned a study by civil engineer Colonel DeWitt Clinton, Jr., the son of Governor Clinton, who concluded that the Croton would be the best source, and developed a comprehensive plan.

B. The Old Croton Aqueduct

In 1833, a Board of Water Commissioners was appointed to plan a water supply system. One of their engineers, Major David Bates Douglass, a hero of the War of 1812 and a West Point engineering professor, sided with Colonel Clinton in favor of using the Croton River. Douglass became the chief engineer of the project, overseeing the planning and design of the Old Croton Aqueduct. The Commissioners replaced Douglass in 1836 with John B. Jervis, an engineer with experience in canal and railroad construction. Jervis revised and completed the design, and oversaw the construction of the aqueduct. He, more than anyone else, is credited with the final design of the Croton Aqueduct. Also involved as “...an engineer and supervising architect,” in design and production of drawings was the young James Renwick, Jr., later the architect of St. Patrick’s Cathedral in Manhattan, and the Riverdale Presbyterian Church and the Greyston villa in the Bronx.

The great fire of 1835 created pressure to complete the work. Construction of the Old Croton Aqueduct began in 1837, and it was ready to go into service within five years, an unprecedented feat of organization. When it was complete, the masonry

5 Charles H. Weidner, Water for a City, Rutgers University Press, 1974, p. 28 - 31

6 D. B. Douglass, Engineer’s Report, Report of the Commissioners... Relative to Supplying the City of New York with Pure and Wholesome Water, 1833, pp. 381-408

7 Larkin, pp. 18-20.

aqueduct wound its way for more than 40 miles through forests, villages and cities from a dam on the Croton River to two high-walled, rectangular reservoirs in Manhattan, the Receiving Reservoir at Yorkhill (where the Great Lawn now is in Central Park) and the Distributing Reservoir on Murray Hill (where the 42nd Street Public Library is today).

Like the aqueducts of ancient Rome, the Old Croton Aqueduct was designed to rely on gravity, and was built with a constant slope, which it maintains while the terrain around it undulates. Because it was designed to be constructed by the cut and cover method wherever possible, the aqueduct follows a course where the natural contours are the closest to its gradient. Typically, the aqueduct is partially buried, borne on a stone foundation, with a telltale mound running over it. With an earthen top and banked stone-faced or sod-covered walls, this mound is the characteristic aqueduct berm (Illustrations 7 and 8). The conduit itself is a horseshoe-arch-shaped stone and brick tunnel. The aqueduct was built mostly by Irish immigrant laborers. The Croton Aqueduct Trailway runs on top of the tunnel for most of its length, and is used today for recreation and as a pedestrian facility.

Where the aqueduct crosses valleys it is carried on massive stone and earth embankments. Streams and roads penetrate the embankment through vaulted culverts (Illustration 9); larger rivers were spanned by dramatic arched bridges. The most famous, the High Bridge over the Harlem River was completed in 1848, six years after the aqueduct itself (Illustration 10). Other above-ground stone structures include picturesque tapered ventilator shafts (Illustration 11), intended to keep the water fresh, and weir buildings (Illustration 12), structures that allowed water to waste and enabled the aqueduct to be drained.

Although a triumph of engineering and architecture, and a blessing for the city, the construction of the new water system had a human toll as well. On January 8, 1841, a heavy snow storm followed by days of torrential rain made the waters of the Croton swell, setting off a collapse of the incomplete Croton Dam and sending a wall of water and masses of ice crashing through the Croton Valley for three miles to the Hudson River. The disaster took three lives, and destroyed numerous houses, mills, factories, roads and bridges. The engineers reconstructed the dam with a larger spillway, but did not restore the economic life of the Croton River below the

9 John B. Jervis, Chief Engineer, *Description of the Croton Aqueduct*, Slamm and Guion, 1842, pp. 12 - 14

11 F. B. Tower, *Illustrations of the Croton Aqueduct*, 1843
dam. which, due to flood damage, was no longer deep enough to be navigable by commercial vessels.12, 13

The pure, abundant water from the Croton Reservoir finally flowed into the mains of New York City on the Fourth of July, 1842. A great celebration was mounted, with jubilant throngs, the ringing of church bells, firing of cannon, and a five-mile-long parade. "Standing in front of the City Hall, with the fountain sending plumes of Croton water fifty feet into the air, Governor Seward and Mayor Morris addressed the crowd. Members of the New York Sacred Music Society stood by the fountain and sang an ode written for the occasion."14 The Croton system was hailed around the world as an engineering masterpiece and the promenade along the parapet of the Murray Hill Distributing Reservoir became a major tourist attraction, especially when the Crystal Palace was located next door on the site of the present Bryant Park. With a world-class water system at last in place, the city was equipped to become a modern metropolis.

C. \textbf{Croton Waterworks Extension}

New York's population grew persistently faster than expected in the second half of the 19th century, and the flow of Croton water that seemed so abundant in 1842 appeared insufficient only a few years later. The problem was twofold: one issue was the capacity of the aqueduct conduit; the other issue was the quantity and quality of water available from the Croton River itself, particularly in years of drought.

In 1849, the year after the High Bridge went into service, the Croton Aqueduct Department was created. Its broad responsibilities extended to the building of sewers and paving of streets, but its central purpose was to operate and maintain the waterworks. To solve the first part of the water supply problem, they could accommodate increased demand for quite a few years simply by increasing the flow of water in the aqueduct, which had been designed with substantial overcapacity. The other part of the problem, controlling the volume and quality of the river water itself, required a strategy to increase storage capacity throughout the system. All of the changes required to improve the system, and to allow it to evolve to meet new demands and to incorporate improvements and new components, came to be categorized as the Croton Waterworks Extension.

12 Jervis, pp. 15, 16

14 Weidner, p. 47
In 1857 and 1858 a topographical survey of Croton Valley in northern Westchester and Putnam Counties was performed to identify suitable points for storage reservoirs along the three branches of the Croton River. This watershed covered an area ranging nearly from the Hudson River to the Connecticut border, and upstream from the Old Croton Dam for close to fifty miles15.

The storage reservoirs were to be artificial lakes formed by damming the Croton River and its tributaries at strategic locations. This technique had been used to create the Old Croton Reservoir. The 1850's plan, which envisioned fourteen storage reservoirs, designated A through O, was carried out nearly as planned between 1866 and 1911. This system, with its picturesque highland lake landscapes, and majestic stone and earth dams, is still operating today.

This plan was a marriage of engineering and ecology. It eventually created a controlled water chain along the Croton's three main branches and principal tributaries, with storage reservoirs controlling the flow of water through spillways in the dams back into the river to maximize storage capacity and supplement the volume in drought conditions. There were also several natural lakes whose water could be drawn if needed. At the Croton Reservoir, the final lake in the upstate system, water would enter the aqueduct to the city. The Croton Aqueduct Department and successor agencies took great pride in maintaining the cleanliness and ecological health of the Croton Watershed, and were roundly criticized when critics felt that they were neglecting this task.

The New Central Park Receiving Reservoir at Yorkhill, built from 1858 to 1863, was the first major project of the Croton Waterworks Extension. Unlike the original Receiving Reservoir, it was planned with the knowledge that the park was being developed:

"Its curvilinear shape is largely due to the persuasiveness of the man who was then the engineer of the new Park, Anton Viele. Viele argued that the new reservoir should not be rectangular like the old one but should have a more graceful and natural form. In spite of this aesthetic gesture, the Reservoir posed problems for the designers Olmsted and Vaux. It filled so much of the Park from side to side that it was a virtual barrier to north-south traffic."

15 Annual Report of the Croton Aqueduct Department Made to the Common Council of the City of New York for the Year 1858, January 3, 1859

16 Elizabeth Barlow Rogers, Rebuilding Central Park, the Central Park Conservancy, MIT Press, 1987, p. 106
The naturalistic form of the New Central Park Reservoir is reminiscent of artificial lakes such as the original Croton Reservoir and the new storage reservoirs that were being planned in the Croton Valley. Begun only fifteen years after the completion of the earlier reservoirs, it represented a change in design philosophy. Unlike the earlier rectangular reservoirs that had been intended to fill city blocks, new urban reservoirs could be integrated into park landscaping, and be enjoyed for scenic views and recreation:

"According to the contemporary historian Clarence Cook, the pedestrian walkway around the Reservoir provided an 'admirable constitutional' in the early days of the Park. It afforded a fine breeze, dancing waves and a setting for beautiful sunsets. Three cast iron bridges...were built to carry pedestrians over the Bridle Trail to the walkway."

The second major project of the Croton Waterworks Extension, starting in 1861, was the addition of a large wrought iron main to the High Bridge to upgrade its capacity. The height of the walls and cornice was increased, and the bridge was roofed with a brick vault for its entire length. This work was completed in 1863.

The following year iron railings were installed on the bridge and Bronx High Bridge park was terraced and landscaped. From the start the system had been viewed as a scenic attraction by the public, and the High Bridge continued to rank among the city’s top tourist attractions.

Plans for commencing other major new projects were delayed by the Civil War. The High Bridge Reservoir and Tower (Illustration 13) were constructed from 1866 to 1873 to serve the growing population of upper Manhattan’s heights, known as Carmansville, and nearby areas that were above the head of the existing aqueduct and reservoirs. The steam-powered pumping engines of that day were not reliable and the reservoir and tower were required to make service continuous. The tower had essentially the same function as the reservoir, but served a higher elevation. The High Bridge Reservoir was the last of the rectangular reservoirs of the Croton System.

17 Rogers, pp. 106, 107
18 Wegmann, pp. 71 - 73
19 F.S. Cook, and George Taber, "The Water Supply of the City of New York, Exhibits at the Louisiana Purchase Exposition ", 1904, p.11
20 Annual Report of the Croton Aqueduct Department Made to the Common Council of the City of New York for the Year 1866, January 7, 1867, pp. 15, 16
The Croton Aqueduct Department was taken over by the Department of Public Works in 1870. The significance of the water supply system, along with the road-paving and sewer operations, was immediately recognized by the first Commissioner of Public Works, William Marcy Tweed, who harnessed it for his bold schemes of malfeasance and racketeering.

In the Department of Public Works Annual Report of 1870/71 Commissioner Tweed wrote that, "The very large amount of labor which has fallen to the charge of the Chief Engineer of the Croton Aqueduct is apparent upon reference to his voluminous report."²¹ In fact, the "voluminous report" written by Chief Engineer Edward H. Tracey had only about ten pages that vaguely described the works currently underway along with twenty-nine pages of filler, which consisted of a thirty-year-old description of the system written by Jervis. This filler was inserted abruptly and awkwardly in Tracey's text, most likely at the insistence of Tweed. While the Annual Report looks like a normal, orderly bureaucratic document, it glosses over a binge of spending that drew the city to the verge of insolvency.

Tweed relied on the reputation of the Croton Aqueduct Department and its engineering feats. For example, he recalled their 1869 work on the regrading of 5th Avenue in Manhattan, where they lowered two 36-inch iron mains four feet into a rock-cut while water was flowing through them, to avoid interrupting service.²²

The corrupt administration of the Croton Waterworks under Tweed fundamentally shook the faith of the public; this damage has never been fully erased. It ended an era of innocence during which there had been absolute confidence in the motives and honesty of the administrators and engineers of the system, who were entrusted with decisions concerning the vast works and huge outlays of public money that are inherent to the supply of water for great cities. It also began a schism between the engineers of the former Croton Aqueduct Department and their new masters, whose primary interest was in controlling the flow of money rather than water.

Boyd's Corners Reservoir (Reservoir E) was the first of the storage reservoirs to be constructed in the watershed. Located in Putnam County it was built between 1866 and 1874 on the West Branch of the Croton River near Fahnestock State Park. It was in the midst of this project that the Department of Public Works took over the Croton Waterworks.

The distaste for the new regime was often expressed subtly, as in the statement by J.J.R. Croes, the Resident Engineer for the construction of Boyd's Corners Reservoir, criticizing the workmanship of an embankment, "It was built by

²² Tweed, p. 9
contract, and not rolled or thoroughly rammed, but merely carted over.'...In stating 'it was built by contract,' Croes is alluding to the fact that...the city's engineers had little or no discretionary power over contractors to insure good work. Under Tweed rule, contracts were awarded subject to stipulated kickbacks or commissions; contractors could slight their work with impunity...”

The Middle Branch Reservoir (Reservoir G) (Illustration 15), also in Putnam County, was the next to be constructed, from 1874 to 1879. Twenty years after the initial storage reservoir plan, only two of the reservoirs along the Croton River had been completed, and both of those had relatively small watersheds. Still, it was the aqueduct conduit itself that became the critical bottleneck in the system. By the mid-1870’s it was clear that the Old Croton Aqueduct could not continue for long to provide a sufficient water supply for the rapidly growing city.

The Old Croton Aqueduct was already operating well beyond its planned capacity. The aqueduct was modified in 1875 to allow a higher water level by the addition of one or more rings of brick over the top arch. Tests of the aqueduct at 103 million gallons per day (mgd) had “disastrous results” and it was decided that 95 mgd was the maximum allowable capacity. It was felt that conservation measures to curtail waste, such as metering, would only postpone the inevitable. Additional supply would be required as the aqueduct had finally reached its limit.

Debate over the future of the water supply system was vigorous in the late-1870’s and early 1880’s. Benjamin S. Church, who had been in charge of the Old Croton Aqueduct since 1861, presented a paper before the American Society of Civil Engineers (ASCE) in 1876. He pointed out design flaws in the Old Croton Aqueduct that were leading to settlement of stone foundations, structural failures and leaking at the embankments (sloping stone-clad earthworks that braced the aqueduct at valley crossings and hillside) of which there were about five miles total. While he had great admiration for the work of Jervis and Douglass, Church believed that the aqueduct had yet to be perfected, and that, with no other large scale source of water, shutdowns for repair work would inevitably become disastrous interruptions of the city’s water supply.

At the ASCE meeting, one of Jervis’s former students questioned Church’s structural analysis and staunchly defended the original design, but there was no disputing Church’s records and observations. In his many years at the helm,

23 Weidner, p. 62
24 Wegmann, p. 82, 108
25 Benjamin S. Church, C.E., “Notes and Suggestions on the Croton Water Works and Supply for the Future” with Discussions and Transactions of the American Society of Civil Engineers, 1876
Church had overseen a huge volume of work in maintaining and restoring the Old Croton Aqueduct. Routine, minor leaks were remedied with a mixture of sawdust, sand and clay that was poured into the water upstream of the leak, and flowed down and plugged the leak from the inside. There were also many conditions that required substantial masonry repairs. In 1866 alone, for example, Church supervised the reconstruction of an arched culvert over a roadway north of Tarrytown and the repair of more than 4,800 feet of fissures in stone retaining walls.26

There had also been a nearly catastrophic breach of the aqueduct in Fordham, approximately two miles north of the High Bridge in what was then southern Westchester, and some sections of berm washed out near Ossining in storms.

One of Church’s concerns was that every time repairs were necessary, the water supply had to be shut off at the dam at Croton Lake, and the whole length of the aqueduct drained, because the original valve system in the weir buildings did not allow the flow of the aqueduct to be diverted at an individual weir. The weirs as originally built could only drain the water passively through side openings, a design that some critics in the 1870’s denounced as short-sighted and even perceived as the Achilles’ heel of Jervis’s design. The draining and refilling of the whole aqueduct added about 48 hours to the time required for repairs, so that even a small amount of masonry work inside the conduit would impact service. This was especially true because, by the late 1870’s, only the top few feet of water in the city’s reservoirs had sufficient head to provide adequate pressure to the increasing stock of taller buildings.

Church planned improvements in the design of the Old Croton Aqueduct. One was the provision of cross-valves at each of the waste weirs to divert water so that individual divisions of the aqueduct could be drained for repairs without shutting down and refilling the whole system. Starting in 1881, the waste weirs were modified (it may have surprised the neighbors to realize that the quiet streams in their back yards could be transformed instantly into 95 mgd torrents). The waste weir in Ossining was reconstructed at a new location, rather than being modified like the others, so that the water could drain more directly into the Sing-Sing Kill. The Ossining weir retained the architectural style of the existing weirs of the Old Croton Aqueduct.27

Another issue was providing a water supply for the 23rd and 24th Wards of New York City, territory annexed from Westchester in 1874 that would later become part of the Borough of the Bronx. Under the jurisdiction of the Department of Public

26 \textit{Annual Report of the Croton Aqueduct Department ... for the Year 1866, 1867}, pp. 8,9

27 Wegmann, p. 83
Parks, Frederick Law Olmsted and J. J. R. Croes were retained to create a comprehensive city plan for the new wards.\footnote{Kenneth Jackson ed., \textit{The Encyclopedia of the City of New York}, Yale University Press, 1995, p. 864} While some groups felt that water from the Bronx River should be tapped for the new wards, reserving the Croton water for Manhattan, the Common Council passed an act, in May, 1875, calling for the distribution of Croton water in the areas to be developed in the newly acquired territory. Within a year mains were being laid from the Croton Aqueduct in the new wards.\footnote{George B. Butler, Esq., \textit{"Croton-Water Supply for the City of New York"}, New York Municipal Society, 1876} This was the same year that it was first decided that a reservoir should be constructed at Jerome Park at the junction of the Old Croton Aqueduct and a new aqueduct. Work on this project was postponed indefinitely due to the condition of the city’s finances, which had been weakened by the spending spree of Tweed and his cronies.\footnote{Wegmann, p. 90}

In 1879 work began on a new aqueduct, unrelated to the Croton: the Bronx and Byram water system. In 1884 the Bronx River Pipeline went into service, and the new Williams Bridge Reservoir in the Bronx was completed in 1889.\footnote{Cook and Taber, p. 11}

The Bronx and Byram water system is reported to have been a product of ongoing Tammany Hall influence, constructed by the Department of Public Works under a revived Tweed Act. The project was attacked repeatedly by the Union League Club (of which Church and Olmsted were members). An 1882 report stated that if a new aqueduct was required, "...one from the Croton would doubtless have been selected in lieu of the one from the Bronx. The selection of the latter must now be regarded as an official mistake not likely to have been made by a body of intelligent Commissioners."\footnote{Union League Club, \textit{"The Water Supply of New York. The Club Favors a Comprehensive System, and the Construction by a Commission to be Appointed by the Governor and Senate, of such Additional Works as may be needed."} January, 1882, p.9}

Construction of the Bronx and Byram system was ordered by Commissioner of Public Works Allan Campbell, whom the Union League Club report called an unqualified "party politician" whose confirmation to office allegedly had been secured by payments from construction interests in anticipation of lucrative city contracts.\footnote{Union League Club, pp. 4,5} According to Campbell, his decision was based on estimated costs for the Bronx and Byram system of $3 million as compared to $12 million for a new
aqueduct from the Croton. In the end, the Bronx and Byram project cost about $5 million34 and contributed a meager 15 mgd.35

The Old Croton Aqueduct, which was originally intended to have a capacity of 72 mgd, was operating at its maximum of 95 mgd. The New Croton Aqueduct, when complete, could operate at a maximum of 300 mgd.

D. **Works of the Aqueduct Commissioners**

Even before the small contribution of the Bronx River Pipe Line of the Bronx and Byram system was brought on-line, it was obvious that plans for a new aqueduct from the Croton could not be delayed for long. What was less clear was who would design and build it, the Department of Public Works or a new organization, perhaps guided by an old Croton hand such as Benjamin S. Church.

In April, 1881, Isaac Newton, Chief Engineer of Water Works for the Department of Public Works, presented a special report to the Commissioner of Public Works, Hubert O. Thompson, supporting the case for an additional aqueduct from the Croton River.36

Cynicism prevailed among the city's elite, and it was said of the proposed New Croton Aqueduct that, "...such a work would greatly exceed the expense of the one we have, and besides that its construction would not be controlled by the faithful engineers who were on the work originally, and still remain with it, but it would come into modern hands. The present aqueduct was built long before frauds were common in city affairs."37 Groups such as the Union League Club lobbied to limit the authority of the Department of Public Works, and to have the new works planned comprehensively, designed and constructed by a newly formed commission appointed by the Governor.

Several years of severe drought spurred action on a comprehensive plan. Criticism was leveled at the choice of storage reservoirs constructed to date in the Croton Valley, and the pace of the program. More than twenty years after the 1858 plan, only two storage reservoirs had been constructed in the watershed. It was felt that the East Branch and Bog Brook (Double Reservoir I) should be started immediately.

34 Wegmann, pp. 90, 91, 93
35 Aqueduct Commission, *Report to the Aqueduct Commissioners, 1895 - 1907*, 1907, p 7.
36 Wegmann, p. 108
37 Butler
Advocates of an additional aqueduct from the Croton River cited the tremendous volume of water passing over the Croton Dam unused.

In 1883 the Aqueduct Commissioners were appointed, and they immediately undertook the design and construction of the new aqueduct and other additions to the Croton system. Church was appointed as Chief Engineer. With his immense knowledge of the existing system, he was the mastermind of the New Croton Aqueduct. This link partly explains the family resemblance between the structures of the two Croton Aqueducts.

The Aqueduct Commissioners’ plan generally called for additional storage reservoirs and dams in the watershed, a new Croton Dam that would raise the water level, increasing the size and capacity of the Croton Reservoir, a new receiving and distributing reservoir located along the Old Croton Aqueduct in northern New York City (Jerome Park), and a new aqueduct conduit from the existing Croton Reservoir more-or-less due south to Jerome Park and then on to Central Park. This differed from Newton’s proposed plan: Newton also proposed a new dam, but the proposed new aqueduct would start at the new dam and parallel the route of the Old Croton Aqueduct near the Hudson River. Also, the Newton plan did not include additional new storage reservoirs outside of the enlarged Croton Reservoir.

Department of Public Works Commissioner Thompson, an ex officio Aqueduct Commissioner, supported the building of Newton’s version, and wrote that the plan, “was submitted for examination to Mr. John B. Jervis, the designer and builder of the Croton Aqueduct…(who) examined the whole subject for himself and approved of the plans proposed by the Department as the best system.”

Thompson was critical of the concepts put forward by reformers, and stated that construction of the East Branch/Bog Brook Reservoir, a rallying point of DPW critics, would be unnecessary if the new Croton Dam were built.

Thompson also claimed that a new design was not necessary for the East Branch dam, because it was almost a facsimile of the Middle Branch dam, and went on to point out that the construction of Reservoir I was recommended by the department many years earlier (this reference to the 1858 survey fails to distinguish that it had been performed prior to the takeover by the Department of Public Works). It is clear that Thompson was not pleased to have control of the work taken away from his department.

38 Hubert O. Thompson, “Report of Commissioner of Public Works to the Aqueduct Commission upon Plans, etc. for New Aqueduct, etc. Aug. 8, 1883”, from Aqueduct Commission, Report to the Aqueduct Commissioners, 1887, p. 56
Many issues were discussed at public hearings, including whether to follow the Hudson or the inland route, where land acquisition costs would be lower, as Church wanted. Another subject was whether to run the New Croton Aqueduct across the High Bridge, a new bridge or bridges, or through a tunnel. In most matters Church prevailed, and his vision shaped the future of the Croton system, although he apparently compromised his position in respects to achieve consensus. For example, he agreed that the East Branch Reservoir was not necessary immediately if the New Croton Dam was to be built.

After his many years of faithful service as Resident Engineer of the Old Croton Aqueduct, Church’s career and renown surged. In 1886, for example, when the offices of the Aqueduct Commissioners were closed, “…in honor of the celebration of the inauguration and unveiling of the Bartholdi Statue of Liberty…the Chief Engineer was directed to extend to the engineers, artists and guests from France attending the inauguration…an invitation to examine the plans and visit the works of the New Croton Aqueduct.”

The New Croton Aqueduct began construction in 1885 and went into service in 1890 (Illustration 16). It is a remarkable structure, a vintage stone and brick masonry aqueduct, still intact, and fully operational today. The New Croton Aqueduct is similar to the old in many respects, and its design can be seen as Church’s perfection of the technology of the Old Croton Aqueduct. It is a masonry conduit with a horseshoe-shaped section, although it has about three times the area and capacity of the Old Croton Aqueduct (Illustration 17). It is a gravity tunnel for approximately twenty-four miles from the Croton Lake Gate House, which is adjacent to the Old Croton Dam, to Gate House No. 1 of the Jerome Park Reservoir, which is located a short distance north of the reservoir in Van Cortlandt Park.

Although the Jerome Park Reservoir was indicated as “proposed” on the 1887 map of the system, it was part of the original design and the New Croton Aqueduct was configured to anticipate its construction. South of Gate House No. 1, the New Croton Aqueduct drops beneath the Jerome Park Reservoir and continues as a round masonry tunnel under pressure beneath the Harlem River (Illustration 18) to the Terminal Gate House at 135th Street in Manhattan.

To maximize the amount of water available to the system, the designers included weep holes in portions of the horseshoe tunnel to allow ground water to enter the system. The holes, termed “weepers” were 4 inch x 8 inch openings through the

brick tunnel wall, spaced 20 feet on center. At the time, the "weepers" provided an additional 4 mgd to the water flowing from the Croton Lake Gate House.40

Whereas the Old Croton Aqueduct had been built predominantly at grade by the cut and cover method, with tunnels or tall embankments used where necessary to maintain the required gradient, the New Croton Aqueduct was tunneled for most of its length, giving it much greater protection from frost damage and other sources of weathering and damage. At those areas where the hydraulic grade met the surface grade, such as Pocantico, Ardsley, and South Yonkers, the Aqueduct Commissioners designed blow-off and waste weir structures reminiscent of those of the Old Croton Aqueduct (Illustration 19). At the Harlem river an impressive complex was created at Shaft No. 25, on the Manhattan side of the aqueduct tunnel, overlooking the Speedway (now the Harlem River Drive), a few hundred yards north of the High Bridge. Still remaining at Shaft No. 25 is a monumental retaining wall and stair, with a symbolic horseshoe-arched portal (Illustration 20).

Aqueduct Commissioners Reports were issued covering the periods from 1883 to 1887, 1887 to 1895, and 1895 to 1907. The reports were lavishly illustrated by the Draughting Bureau. Under the direction of Frederick S. Cook, C.E., Assistant Engineer, the Drafting Bureau designed and produced working drawings for the New Croton Aqueduct, the storage reservoirs and dams, the New Croton Dam, and the Jerome Park Reservoir. Cook has been attributed as designer of the Terminal Gate House at 135th Street, a New York City Landmark, by the Landmarks Preservation Commission.41 He was equally the designer of the other works of the Aqueduct Commissioners.

The drawings included in the 1887 and 1895 reports were of exceptional quality (Illustrations 21 and 22), and were signed by the delineators. The finest were by Charles Gustafson, Charles Manning, and Giuseppe Bonanno, draftsmen, and Jean Genthon, topographical draftsman. These draftsmen were also the designers of the system, under the direction of the Chief Engineer, Consulting Engineers and F. S. Cook.

Church, as Chief Engineer, wrote in 1887, "Mr. F. S. Cook, Special Assistant, in charge of the draughting bureau, has not only directed the execution of accurate drawing for the dams and contract plans for the Aqueduct and designs for the Gate

40 Wegmann, p 126
41 Andrew S. Dolkart, Guide to New York City Landmarks, New York City Landmarks Preservation Commission, 1992, p.141
House Superstructures, but he supervised the numerous detailed working plans required with marked ability.\(^{42}\)

Work from 1883 to 1887 consisted largely of the top priority item, creating the new aqueduct and its ancillary structures. Storage reservoirs in the watershed were designed, but not yet constructed. Two large, complex projects, the New Croton Dam and the Jerome Park Reservoir, were planned at this time, but were not constructed. The dam was bogged down from the start in a myriad of hearings and special commissions, and the reservoir had not yet been funded.

Both the dam and Jerome Park were suited for construction after the New Croton Aqueduct was in service, because they both involved reconstructing and realigning portions of the Old Croton Aqueduct. At the New Croton Dam, the Old Croton Aqueduct would be realigned to pass through Gate House No. 1 of the new dam. At Jerome Park, the Old Croton Aqueduct would be incorporated into the original dividing wall, which is now the east basin wall along Goulden Avenue, and the principal gate houses.

Church’s star began to fade during the construction of the New Croton Aqueduct. In 1886 he was charged with improprieties by a construction inspector. A panel acquitted him on all counts.\(^{43}\) It seems that Church was making spontaneous field decisions to expedite the project rather than engaging in corruption. It also appears that he was overwhelmed by the unprecedented scale of the project, and the lack of honest and qualified inspectors. He was also unprepared for the brazen deceptiveness of the contractors, who did such things as concealing giant voids behind false walls before inspectors arrived. In 1888 rumors of extensive defective work proved true and caused major headlines. Church resigned as Chief Engineer.

Church was replaced by Alphonse Fteley, who had been Consulting Engineer. Church assumed the title of Consulting Engineer until 1889, when that position was abolished. Church, by this time had lost the support of reformist critics as well, and a group called the Committee of Twenty-One from the Union League Club railed against him for having signed on to Newton’s Quaker Bridge (New Croton Dam) plan at the expense of building the East Branch storage reservoir. They also ridiculed the endorsement of Jervis (then in his late 80’s) and others, pointing out that they had no experience with high masonry dams.

\(^{42}\) Aqueduct Commission, Report to the Aqueduct Commissioners, 1883 - 1887, 1887, p 54

\(^{43}\) Charges against Chief Engineer 1886 - Report of Examining Engineers John Newton, George S. Greene and Q.A. Gilmore on the Charges Preferred against the Chief Engineer of the Aqueduct Commission, 1886
The work of the period from 1887 to 1895 included completion of the new aqueduct, which went into service in 1890, and accelerated design and construction of dams and storage reservoirs in the watershed. Construction began on the East Branch dam in 1888 (Illustration 23), followed soon by the Carmel, Amawalk and Titicus (Illustration 24) dams. The Titicus was a precursor of the New Croton Dam. Design work on the New Croton Dam and Jerome Park Reservoir were intensive during this period.

Construction began on the New Croton Dam in the early 1890's. It would be ready to go into service in 1906 (Illustrations 25 and 26), more than thirty years after the initial proposal. The dam was the largest masonry dam in the world when it was built. It had undergone a long design process for both social and technical reasons. An expert panel, consisting of J. J. R. Croes, J. P. Davis and William F. Shunk, was assembled in 1888 to study the size, shape and location of the dam. Local activism challenged the original siting of the dam at Quaker Bridge.

Numerous dam sites were studied (Illustration 27), and the Cornell site further upstream was finally selected in 1891. Technical issues also lengthened the design time for the enormous dam, particularly as the deadly collapse of the first Croton Dam in 1841 was still within living memory. Completed sections of masonry-core earthen dam (the type of construction that had failed in 1841) were removed and replaced with solid masonry, partly to reassure local communities. Sections of porous masonry and improper work, which made local headlines, were also replaced.

The New Croton Dam and the Jerome Park Reservoir were both subject to labor disputes, and work on both projects ground to a halt during a union-led strike in 1900. There had been labor unrest during the construction of both aqueducts, but this strike caused great concern. According to local lore in Croton, Teddy Roosevelt, who was then Governor of New York, led his Rough Riders to Croton. The Cavalry was established at the dam site in “Camp Roosevelt”. Fifteen hundred National Guardsman of the 7th Regiment commanded by Major General Charles Roe rode to Croton Station by train and marched to the dam.44

In spite of all the delays and struggles, the works of the Aqueduct Commissioners are distinctive in appearance. The dams of the Croton Watershed and the New Croton Dam, along with the the Jerome Park Reservoir and the New Croton Aqueduct, are architectural siblings. In 1846, Schramke had called the Old Croton Aqueduct, “...that noble monument of hydraulic architecture,”45 and the works of the Aqueduct Commissioners continued and built on that tradition.

44 D’Alvia, pp. 127 - 135
45 Schramke, Dedication
E. The Jerome Park Reservoir

The engineers, such as Church, who operated the Old Croton Aqueduct, had always known the topography of the entire route, and when they considered sites for a storage reservoir on the mainland near Manhattan Island, Jerome Park was an obvious choice. When that portion of southern Westchester was annexed to the city and became part of the 24th Ward, Jerome Park was clearly the most suitable site for a large new reservoir along the Old Croton Aqueduct, within the city limits, particularly in light of a second aqueduct conduit.

The Jerome Park Reservoir was first formally recommended in 1875, when Commissioner of Public Works Gen. Fitz John Porter ordered a survey. According to Edward Wegmann, “Two routes... were surveyed, commencing a quarter of a mile below the head of Croton Lake and terminating near Jerome Park, where it was proposed to construct a large receiving reservoir. Nothing more was done towards constructing this work.”\(^{46}\) (It was after this that the next Commissioner decided that the Bronx and Byram System should be constructed instead.)

The planning of the Jerome Park Reservoir began simultaneously with the comprehensive city plan of the 23rd and 24th Wards designed by Frederick Law Olmsted, Landscape Architect and J. J. R Croes, Civil and Topographical Engineer, who performed this design work for the Department of Public Parks. Their street plans were adopted by the city in 1877 and 1878, and subsequently constructed in large part.\(^{47}\)

An Olmsted job number has been assigned to Jerome Park by the editors of the Frederick Law Olmsted Papers. There are also numerous sketches and studies of the 23rd and 24th Wards that may be relevant to the design of the reservoir and the surrounding community. The Jerome Park Conservancy is currently researching this data to determine if Olmsted actually created the schematic design of the reservoir in addition to designing the adjacent streets. We do not yet know what role Olmsted or Croes played in the design of the reservoir.

The plans of the reservoir (prepared by the Aqueduct Commissioners in the 1880’s and 90’s) show the unmistakable influence of Olmsted, and may have been based on a preliminary design by him. Olmsted and Croes were surely aware that a reservoir would eventually be built on the site.

Croes had an extensive engineering career in the Croton Aqueduct Department; he took over preparation of drawings for the New Central Park Receiving Reservoir in

\(^{46}\) Wegmann, p. 90

\(^{47}\) Refer to Section II.C of this report for a more extensive discussion of the Olmsted and Croes plan.
1860, was Resident Engineer for the High Bridge improvements starting in 1862, and was in charge of construction of the Boyd’s Corners Reservoir and dam, which was completed in 1874.

Croes had recently overseen the completion of the Boyd’s Corners Reservoir when he and Olmsted began the surveys and studies for their comprehensive plan of the 23rd and 24th Wards. The start of their survey work was roughly contemporary with the water supply survey that identified Jerome Park as the intended reservoir location in 1875.

Church was a familiar figure to both Croes and Olmsted because of their work in Central Park. Olmsted and Church were club-mates at the Union League Club. Croes was a colleague and admirer of Church’s: the copy of Church’s Notes and Suggestions on the Croton Water Works and Supply for the Future, from 1876, in the collection of the New York Public Library, was donated by Croes, with a note, “With the compliments of J. James R. Croes, Civil and Topographical Engineer Department of Public Parks, NYC.” Croes would also go on to join a committee of experts to review the design issues of the New Croton Aqueduct, particularly with regard to design of the new dam.

The Olmsted and Croes 1877 plan of the Jerome Park Reservoir vicinity shows the race track but does not indicate the reservoir. Being an adopted plan for construction, it could not indicate proposed or future elements. However, the plan essentially blocks out territory for the reservoir, bounded by Sedgwick Avenue to the west, Kingsbridge Road to the south, Jerome Avenue to the East, and what would become Moshulu Parkway and Van Cortlandt Park to the north. They also removed the existing Old Boston Road from across the site. This open area is reflected in the Map of Location and Environs published by the Aqueduct Commissioners in 1895 (Illustration 28). The detailed design of the reservoir was produced by the Aqueduct Commissioners during the years that the Olmsted and Croes street plan was under construction all around it, and it is likely that their guidance was sought.

The Jerome Park Reservoir was not included in the recommendations for a new aqueduct in the report of Isaac Newton, Chief Engineer of the Croton Aqueduct (under the Department of Public Works) in 1882. Its necessity was supported in the

48 Wegmann, p. 71
49 Wegmann, p. 73
50 Wegmann, p. 79
51 Adopted Map D No. 23, Dept. Of Public Parks, Plan of Streets, Roads and Avenues Lying West of Jerome Avenue and South of the Road from Moshulu to Williams-Bridge, in the Twenty-fourth Ward, 1877
report of W. E. Worthen, C. E., who was subpoenaed by the Aqueduct Commissioners to testify at a public hearing in early 1884. Worthen wrote that, "No provision has been made in the Quaker Bridge plans for additional storage reservoirs within the city limits...This is the fundamental error of the project." 52

The decision to build the Jerome Park Reservoir was reached by the Aqueduct Commissioners in early 1884, soon after their appointment. It was not yet known when the site would be obtained or the funding approved. 53 The first objective was the completion of the New Croton Aqueduct conduit.

The purpose in constructing the Jerome Park Reservoir was to create a storage and distributing reservoir along both the Old and New Aqueducts. It would provide water to the city if either or both of the Aqueducts had to be shut off for repairs. Also, it would provide local supply in the area of the 23rd and 24th Wards. According to Church, "80 to 100 million gallons were reserved for the Twenty-third and Twenty-fourth Wards," 54 a more generous plan than the 15 million delivered by the Bronx River Pipe Line. An examination and surveys for a Receiving and Distributing Reservoir at Jerome Park were performed in 1885. 55

Church pushed for immediate construction of the Jerome Park Reservoir, believing that the city's water supply was in danger of serious interruption until it was completed. The project was delayed due to the opinion of Newton that it would not be needed for at least ten years. 56

The schematic representation of the Jerome Park Reservoir shown in the system map of 1887 shows a curvilinear form reminiscent of the New Central Park Reservoir. The location and environs plan published by the Aqueduct Commissioners in the 1895 report (Illustration 28) has a similar but revised form, and is completely integrated with the Olmsted and Croes street plan, including two "Proposed New Avenues", Reservoir Avenue (from Sedgwick Avenue east and south to Kingsbridge Road) and the Sedgwick Avenue North (from Van Cortlandt Avenue West northeast to Goulden Avenue).

52 W. E. Worthen, "Report of W. E. Worthen, C. E. on the Projected Reservoir and Aqueduct for 'The Additional Water-Supply of New York City.'", 1884
53 Wegmann, p. 209
54 Benjamin S. Church, Report of Chief Engineer, Aqueduct Commission, Report to the Aqueduct Commissioners, 1887, p. 43
55 Benjamin S. Church, Report of Chief Engineer, Aqueduct Commission, Report to the Aqueduct Commissioners, 1887, p. 48, 49
56 Aqueduct Commission, Report to the Aqueduct Commissioners, 1887 - 1895, 1895, pp. 37, 38

19