March 25, 2013

Honorable Michael Bloomberg
Mayor, City of New York
City Hall
New York, New York 10007

Honorable Christine Quinn
Speaker, New York City Council
City Hall
New York, New York 10007

Honorable John C. Liu
One Centre Street – Municipal Building
Room 530
New York, New York 10007

Re: 2012 Report on DSNY’s Alternative Fuel Program

Dear Mayor Bloomberg, Speaker Quinn, and Comptroller Liu:

I am pleased to submit to you the enclosed annual report on the Department of Sanitation’s alternative fuel program, as required by Local Law 38 of 2005, Section 24-163.2 of the Administrative Code.

The Department’s fleet continues to be among the cleanest and “greenest” in the world. Since 2005 we have reduced our fleet’s overall particulate matter (PM) emissions by 85%, and cut Nitrogen Oxide (NOx) emissions by greater than 50%. In fact, the new DSNY trucks delivered since late 2006 meet PM emissions standards that are 98% cleaner than the unregulated diesels of old, and are as clean as trucks fueled by natural gas. Similarly, the new trucks delivered this year meet the 2010 NOx standard that is 98% cleaner than the old diesels. In addition, all diesel fuel used by the Department is ultra-low sulfur diesel (ULSD), with a maximum of just 15 parts per million (ppm) of sulfur, compared to the 2500 ppm of sulfur fuel that was the average content of highway fuel prior to 1993. The use of ULSD enables DSNY to implement our highly effective emissions retrofit program for pre-2007 model year trucks with best available retrofit technology (BART) such as diesel particulate filters.

In an effort to further lower fleet emissions, including greenhouse gases, the Department currently uses B20 (20% Biodiesel made of soybeans) for its trucks in two districts, and we will be expanding the pilot study to 12 more districts in CY 2013, for a total of 14 districts. The Department uses B5 (5% Biodiesel) for all of its diesel trucks in the remaining districts.
In addition, we have 21 compressed natural gas (CNG)-powered street sweepers, 21 CNG-powered collection trucks, 190 light-duty vehicles powered by E85 ethanol, 648 light-duty vehicles that are hybrid-electric, 21 plug-in hybrid-electric Chevrolet Volt sedans, 19 hybrid-hydraulic diesel collection trucks, one CNG-powered hybrid-hydraulic collection truck, eight hybrid-electric diesel collection trucks, and seven hybrid-electric street sweepers. As all of DSNY’s diesel street sweepers now have BART retrofits or equivalent, CNG-fueled street sweepers offer minimal emissions advantages over our Clean Diesel sweeper fleet.

The Department remains committed to making its fleet as environmentally sustainable as possible consistent with our operational needs and cost constraints and will continue our active research and development efforts concerning alternative fuels and technologies for our fleet.

Sincerely,

[Signature]

John F. Doherty

c: Hon. Caswell Holloway, Deputy Mayor of Operations
City Hall

Haeda Mihaltses, Director
Office of Intergovernmental Affairs, City Hall

Sergej Mahnovski, Director
Office of Long Term Planning & Sustainability, City Hall

Hon. Letitia James, Councilmember
Chair, Committee on Sanitation & Solid Waste

Hon. James Gennaro, Councilmember
Chair, Committee on Environmental Protection

Rocco DiRico, Deputy Commissioner, Support Services
New York City Department of Sanitation

Ron Gonen, Deputy Commissioner, Sustainability and Recycling
New York City Department of Sanitation

Encl.
The City of New York
Department of Sanitation

2012 Annual Report on Alternative Fuel Vehicle Programs
Pursuant to Local Law 38 of 2005

2009: First Hybrid Hydraulic Collection Truck in North America

John J. Doherty, Commissioner
March 2013
DSNY Annual Report on Alternative Fuel Vehicle Programs Pursuant to LL38/2005

Introduction

The Department of Sanitation (DSNY) operates a sizeable fleet of trucks and other vehicles to carry out its assigned tasks under the City Charter of refuse and recyclables collection, street cleaning and snow removal. Such vehicle use necessarily produces air emissions, which have raised health concerns by members of the public. These concerns, in part, led to the enactment of Local Law 38 of 2005 (LL38/2005), which, among other things, directs DSNY to test alternative fuel street sweeping vehicles, and report annually on its use and testing of alternative fuel vehicles. This report, which is submitted to the Mayor, the Comptroller and the City Council in accordance with LL38/2005, discusses the testing, analyses and assessments of DSNY’s alternative fuel sanitation collection vehicles and street sweepers, and the feasibility of incorporating new alternative fuel sanitation vehicles and technology into DSNY’s fleet. It also reviews the results of DSNY’s pilot that used alternative fuel street sweeping vehicles in four sanitation districts, with one district in an area with high rates of asthma among residents.

DSNY endeavors to operate its fleet in the most environmentally friendly manner, consistent with available resources, and therefore seeks to minimize emissions of concern from such operations, notably particulate matter (PM), nitrogen oxides (NOx), and greenhouse gases such as carbon dioxide. New York City’s air quality has improved and in 2012 met federal standards for fine particulate matter (PM_{2.5}), but it remains out of compliance with standards for ozone. The USEPA proposed a new, more restrictive annual standard for PM_{2.5} in June 2012, which took effect in December 2012. The new annual standard declined from 15 micrograms per cubic meter to 12 micrograms per cubic meter. The “design value” based on 2009-2011 measurements indicates that New York City’s air meets the new standard.

In 2012, DSNY’s fleet included 2230 collection trucks, 450 street sweepers, 275 specialized collection trucks, 365 salt/sand spreaders, 298 front end loaders and 2360 various other support vehicles. Based on Fiscal Year 2011 figures, the entire diesel fleet travels approximately 25 million miles and required approximately 11 million gallons of diesel fuel. On average, a standard DSNY collection truck travelled approximately 6,900 miles, a DSNY dual-bin recycling collection truck: 9,000 miles, and a DSNY street sweeper: 3,400 miles. As discussed below, thanks to new technologies DSNY has achieved great success in minimizing emissions of PM and NOx from its fleet.

1 NYC Administrative Code § 24-163.2(c)(1) & (2).
2 This pilot was required by LL38/2005. Id.
3 While not known to cause asthma, PM, especially fine PM 2.5 microns in diameter or smaller (PM_{2.5}) is associated with increased respiratory symptoms, while NOx can be a precursor in the formation of ground-level ozone (regional smog) which is associated with exacerbation of asthma-related symptoms. Control of Air Pollution from New Motor Vehicles: Heavy-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur Control Requirements, 66 Federal Register at 5012 (Jan. 18, 2001); “Public Health” chapter in New York City Comprehensive Solid Waste Management Plan Final Environmental Impact Statement (April 2005), available at http://www.nyc.gov/html/dsny/downloads/pdf/swmp/swmp-swmp-5apr-feis/feis/chapter33.pdf.
This report includes the total number of alternative fuel “sanitation vehicles” owned or operated by DSNY by type of alternative fuel used, discusses the notable advances in DSNY’s clean diesel fleet, and provides information regarding DSNY efforts to further incorporate alternative fuel vehicles into its fleet. “Sanitation vehicles” are defined by LL38/2005 as vehicles used by DSNY “for street cleaning purposes or for the collection of solid waste or recyclable materials.”

Dramatic Improvements in DSNY’s Fleet Emissions

DSNY’s fleet is already achieving an estimated 85% reduction in PM and a greater than 50% reduction in NOx emissions fleet-wide compared with DSNY’s fleet in 2005, while the newest trucks achieve 98% reductions in each pollutant as compared with pre-1988 diesel engines.

ULSD Fuel, New Vehicle Standards, Diesel Particulate Filters, and Retrofits

Currently all of the Department’s light, medium and heavy-duty diesel vehicles utilize the industry’s latest computer-controlled and regulated clean-diesel engines for their respective engine model years. DSNY has gone even further: its Clean Fleet Program of testing and development of state-of-the-art technology and alternative fuels helped pioneer the improvements in heavy duty diesel emissions that are now taking place nationwide. This Program includes obtaining research grants, partnering with industry to test vehicles under real world conditions, and operating a vehicle testing facility for heavy duty trucks.

- The Department pioneered the use of ultra-low sulfur diesel fuel (ULSD)—limited to 15 parts per million (ppm) of sulfur—a decade ago in certain districts and expanded its use to its entire fleet in 2004 in advance of the USEPA June 2006 nationwide ULSD mandate. The new standard represents a reduction of 97% from the previous low sulfur standard for on-road diesel fuel of 500 ppm that took effect in 1993. Prior to 1993, the average sulfur content for on-road diesel fuel was 2500 ppm.

- ULSD allowed DSNY to expand its use of various advanced emission-control after-treatment technologies, such as diesel particulate filters and diesel oxidation catalysts. Previously, higher sulfur content fuel would have clogged these devices. These controls reduce particulate matter by 90% or better, as verified in DSNY testing.

- Since mid-2006, all of DSNY’s new diesel truck purchases have met the stringent 2007 USEPA new-truck standards limiting particulate matter to 0.01 grams per brake horsepower-hour (g/bhp-hr), a reduction of 90% from the 2006 model year limit of 0.1 g/bhp-hr. As of 2010 NOx is limited to 0.2 g/bhp-hr, compared to 2.0 g/bhp-hr in the

4 NYC Admin. Code § 24-163.2(a)(6).
5 Reduction in non-methane hydrocarbons is comparable, with 2012 standard of 0.14 g/bhp-hr, down from 0.5 g/bhp-hr in 2006 and 1.3 g/bhp-hr in 2003.
6 66 Fed. Reg 5001, 5005 (Jan. 18, 2001). By comparison, the 1990 federal standard for particulate matter for heavy duty diesel highway engines was 0.60 g/bhp-hr. NOx standards have been reduced over time from 10.7 g/bhp-hr in 1988 to 0.2 g/bhp-hr starting in 2007, with a phase-in allowed until 2010, yielding an effective limit of 1.2 g/bhp-hr for 2007-2009 model years.
2006 model year and 4.0 g/bhp-hr in the 2003 model year. As DSNY’s collection trucks have a useful life of approximately seven years, fleet turnover results in the purchase of approximately 250 new trucks per year meeting these new-truck standards.

- To address the legacy of emissions from older trucks, DSNY mechanics have been installing Best Available Retrofit Technology (BART) devices such as particulate filters on pre-2007 trucks, as mandated by LL39/2005. These devices achieve reductions of up to 90% in PM and up to 25% in NOx. Including both factory-installed equipment and retrofits, by January 1, 2013 DSNY had particulate filters on 290 diesel-powered street sweepers and 2,163 collection vehicles. By July 1, 2012, all of DSNY’s pre-2007 diesel collection truck fleet had the required BART retrofits or similar after-market clean diesel technology. As of January 1, 2013, DSNY has approximately 400 diesel vehicles left to retrofit, however about one-third are slated to be replaced within the next year with clean diesel models with factory-installed controls; therefore, retrofits are not required. The remaining trucks are not standard rear-loading collection vehicles or street sweepers but have specialized uses and are more complex to retrofit; they are currently being evaluated for appropriate retrofits as per the latest BART rules.

The benefit of Clean Diesel technology in reducing emissions from DSNY’s fleet has been profound, as recognized by the City’s air quality experts at the Department of Environmental Protection (DEP), who oversee the review of air quality impacts of proposed actions. For example, DEP staff have determined that if an action resulted in fewer than 90 DSNY truck trips per hour with BART or 2007-compliant equipment on principal and minor arterials, expressways and limited access roads, then no further air analysis would be warranted to conclude that an action’s impact to neighborhood PM$_{2.5}$ levels along such roadways would be deemed insignificant for purposes of environmental review. The changes and improvements made to DSNY’s Clean Diesel fleet have greatly reduced air quality concerns from mobile-source PM$_{2.5}$.

Alternative Fuel Vehicles

Despite the clear success of DSNY’s Clean Diesel Program in minimizing fleet emissions, DSNY believes further improvements are possible as technology advances. DSNY therefore continues an active program of testing other kinds of fuels and technologies to determine whether further improvements in emissions and fuel mileage may be achieved at an acceptable cost. Under LL38/2005, “alternative fuels” include natural gas, liquefied petroleum gas, hydrogen, electricity, and any other fuel which is at least eighty-five percent, singly or in combination, methanol, ethanol, any other alcohol or ether. DSNY currently has 901 vehicles that operate on various alternative fuels.

Compressed Natural Gas (CNG)

DSNY has 42 CNG vehicles in its active heavy-duty fleet, including collection trucks and street sweepers. DSNY has no light-duty CNG vehicles.

7 DEP communication, based on DSNY fleet in 2012.
8 NYC Administrative Code § 24-163.1(a)(1). Other types of fuels, such as B5 Biodiesel, do not qualify as alternative fuels.
CNG Street Sweepers

DSNY operates 21 CNG street sweepers (see Appendix 1). As explained in last year’s report, DSNY has discontinued the evaluation pilot study of CNG sweepers. Since 2007 DSNY has performed evaluations and assessments on the operation and reliability of CNG street sweepers versus conventional clean diesel street sweepers equipped with BART pursuant to local law. Based on the results, clean diesel street sweepers with BART appeared to be more reliable than CNG sweepers. As discussed below, CNG sweepers no longer offer a significant emissions advantage over new Clean Diesel sweepers. Furthermore, in the late fourth quarter of 2009, Cummins announced that it would no longer offer the current CNG engine for street sweepers because it does not meet the USEPA 2010 air emission standard for NOx. No other manufacturer makes a CNG engine of the size needed for DSNY’s street sweepers. As DSNY has no viable option for new CNG street sweepers, DSNY ended the evaluation pilot study of CNG sweepers. The 21 CNG sweepers in the fleet will continue in service until they reach the end of their operational life of approximately 5 years.

Currently, Cummins is developing a 6.7 Liter CNG engine (ISB Gas). This engine is applicable to the CNG street sweeper and will be available in 2015.

CNG Collection Trucks

DSNY currently owns 21 dedicated CNG sanitation collection trucks (see Appendix 2). DSNY phased out its older fleet (2001-2003 vintage) of CNG collection trucks that were problematic. CNG-fueled trucks are longer than conventional sanitation vehicles, making it more difficult to access certain narrower streets because of their wider turning radius. In Calendar Year 2008, DSNY put into service 10 new CNG collection trucks from Crane Carrier Corporation equipped with the new generation of the Cummins ISL-gas CNG engines to replace 10 of the oldest CNG trucks in the fleet. In Calendar Year 2009, DSNY put into service one front-loading Crane Carrier Corporation CNG collection truck equipped with a Cummins ISL-gas CNG engine. Also in Calendar Year 2009, DSNY ordered 10 additional CNG trucks from Crane Carrier Corporation, which were delivered in November/December 2009. In order to address the repeated failed cold starts of the fleet of Crane Carrier CNG trucks, at DSNY’s request Cummins made improvements to the engine calibration software. With the problem corrected, DSNY formally added the last 10 Crane Carrier CNG trucks to the fleet in the third quarter of Calendar Year 2010. The cold-weather operation of the newest CNG trucks with the Cummins ISL-Gas CNG engines so far has been satisfactory.

In an agreement with National Grid, DSNY also put into service one hybrid-hydraulic CNG collection truck in October 2010. The reliability of this truck so far has been acceptable; testing is on-going. Hybrid-hydraulic technology, which can be employed with any kind of fuel, is further discussed below.
CNG Fueling Facility

Under a federal consent order, DSNY built a fully-operational, heavy-duty vehicle CNG fueling station in Woodside, Queens, at a cost of approximately $2,950,000. This station went into service in May 2007 and provides shorter fueling times than other CNG fueling facilities.

Discussion: CNG vs. Clean Diesel

From an operational perspective, preliminary results on testing the latest generation of CNG collection trucks indicate they have improved in reliability from earlier model CNG trucks, but they are still not as reliable as clean diesel trucks. From an air emissions/public health perspective, CNG no longer offers a significant advantage over clean diesel. As a result of the use of ULSD and new emissions control technologies, heavy duty diesel truck particulate matter emissions are very low, and are comparable to those from CNG-fueled heavy duty vehicles. Nitrogen oxide emissions from the two technologies are also comparable, with CNG truck NOx emissions slightly lower than the NOx emissions from diesel trucks with advanced after-treatment technologies. On the other hand, greenhouse gas emissions from CNG trucks are reportedly 20-23% lower than those from diesel trucks. It has been noted that CNG trucks are somewhat quieter than diesel trucks, but compaction noise from CNG collection trucks and diesel collection trucks seems generally comparable. CNG trucks emit more methane (a significant greenhouse gas) and carbon monoxide than conventional clean diesel vehicles.

From an economic perspective, with increased recoverable domestic natural gas prices have fallen below current diesel prices and may offer stability advantages. As of February 1, 2013, a gallon of diesel fuel cost $3.34 while a gallon-equivalent of CNG cost approximately $2.54, offering a potential savings in fuel costs for CNG trucks at such prices. However, CNG-fueled vehicles have lower fuel efficiency. In addition, a CNG-fueled collection truck costs approximately $35,000 more per unit than a diesel collection truck. DSNY has only one CNG fueling station for its 59 district garages, and the handful of private CNG filling stations in the City are generally not equipped for rapid filling of heavy duty trucks. Thus any move to significantly expand DSNY’s CNG truck fleet would likely require additional investment in capital funds to build CNG fueling infrastructure and in facility modifications as required by the building code.

9 This project was undertaken as part of a settlement of a lawsuit brought against the City and DSNY by the United States for violations of the Clean Air Act. United States v. City of New York, 99 Civ. 2207 (LAK) (S.D.N.Y.).
13 DSNY Commercial Waste Management Study, Vol. VI, at ES-5, 23 (March 2004); Ayala, et al., Diesel and CNG Heavy-Duty Transit Bus Emissions over Multiple Driving Schedules (indicating CNG buses emit more carbon monoxide than retrofitted diesel buses).
E85 Ethanol Blend Vehicles

Currently, 190 DSNY light-duty “flex fuel” vehicles run on E85, which is a mixture of 85% corn-based ethanol and 15% gasoline. These consist of Ford Taurus sedans and Ford Explorer sport utility vehicles. They are able to run on either E85 ethanol or gasoline, unlike “bi-fuel” vehicles which operate on either natural gas or gasoline. There are five E85 fueling facilities citywide. DSNY was the first city agency to use E85 ethanol fuel in its fleet. While the operation of these vehicles has generally been satisfactory, they do not achieve significant emissions savings over gasoline vehicles, although NOx emissions are somewhat lower. Fuel mileage is less than with gasoline. In cold weather, these vehicles have used a blend of 70% ethanol and 30% gasoline, to improve operation. Some studies suggest that production of ethanol consumes more energy than it produces, while others indicate a positive energy balance of about 35%. Therefore, greenhouse gas reductions with the use of corn-based E85 as compared to gasoline do not appear to be compelling on a life-cycle basis. Consistent with the prohibition on purchasing new bi-fuel vehicles in LL38/2005, DSNY does not plan to expand its fleet of E85 vehicles, but will operate them until they complete their useful life.

Hybrid-Electric Light-Duty Vehicles and Sweepers

DSNY has 648 hybrid-electric light-duty vehicles, with such models as the Toyota Prius sedan and Ford Hybrid Escape sport utility vehicle (SUV). These vehicles operate on gasoline assisted by battery technology, and can convert and store energy captured from braking. The performance of these vehicles has been good, with significantly improved gas mileage and lower emissions than standard gasoline vehicles, despite higher initial vehicle costs than a comparably-
sized gasoline model. Consistent with LL38/2005, DSNY expects to increase its fleet of these vehicles.

DSNY is currently testing seven diesel-powered hybrid-electric street sweepers in six districts (see photo above). These vehicles have the potential of even lower emissions and better fuel mileage than the latest Clean Diesel engines.

Hybrid-Electric and Hybrid-Hydraulic Diesel Collection Trucks

DSNY ordered two experimental hybrid-hydraulic diesel trucks and three experimental hybrid-electric diesel trucks from Crane Carrier Corporation in 2008, which were put into service in October 2009 and June 2010, respectively (see photo on cover and Appendix 3). This initiative was sponsored by the New York State Energy Research and Development Authority and the Hybrid Truck Users Forum. The hybrid-hydraulic diesel trucks are made with technology from Bosch Rexroth, called the Hydrostatic Regenerative Braking (HRB) System. These are the first such trucks in North America; they have also been tested in Germany. These two different hybrid technologies have the potential to reduce fuel use and related emissions by capturing and reusing energy that is otherwise wasted during the frequent braking of collection vehicles. As noted above, DSNY also put into service one hybrid-hydraulic CNG collection truck in October 2010.

Thus far, the hybrid-hydraulic diesel collection trucks have outperformed the hybrid-electric diesel collection trucks, with less downtime. DSNY’s testing of this first generation hybrid-hydraulic technology indicated a fuel savings of approximately 10% and a savings in brake replacement frequency and associated labor. DSNY mechanics are already familiar with servicing hydraulic technology from standard rear-loading collection trucks that have hydraulic compaction systems, which helps minimize retraining needed for the new technology. The trucks were also found to result in less braking “squeal” noise than from conventional diesel collection trucks. Following successful testing in 10 European cities and New York City, the manufacturer put the hybrid-hydraulic technology into mass production in October 2010. As a result, the incremental cost of hybrid-hydraulic technology has dropped to $47,000 when applied to a diesel truck, compared to $35,000 for CNG trucks. In CY2013, DSNY will have 17 additional next-generation Bosch Rexroth hybrid-hydraulic trucks. DSNY applied for and obtained federal Congestion Mitigation and Air Quality grant funds for 80% of the cost of these new purchases.

In December 2011, Mack delivered five second-generation hybrid-electric diesel trucks for DSNY to test in CY2012. All five are currently in service. The reliability of these trucks so far has been acceptable; testing is on-going.

Electric Vehicles

Plug-In Electric Vehicles

DSNY anticipates that both plug-in hybrid electric vehicles (with a gasoline engine) and pure electric (battery only) vehicles have a role to play in helping the City achieve PlaNYC2030’s goals of conserving energy, making local air quality the best of any big American city, and reducing the greenhouse gas emissions from City operations 30% below
FY2006 levels by 2017. Accordingly, in FY2012 DSNY purchased and received delivery of 14 state-of-the-art plug-in hybrid-electric Chevrolet Volt sedans, which are capable of running entirely on battery power for an extended range of up to 40 miles before a gasoline engine starts up to charge the battery. In total, DSNY has 21 plug-in hybrid-electric Chevrolet Volt sedans in service. DSNY does not plan to purchase any new Chevy Volts in FY 2013.

Volt vs. Prius

The Chevrolet Volt is now a commercially available model with the same California Air Resources Board (CARB) emissions rating (Alternate Technology Partial Zero Emission Vehicle, or AT-PZEV) as the 2011 Toyota Prius. As such, both the Volt and the Prius are capable of zero emissions when running only on battery power, but the Toyota Prius battery-only range is rated by the USEPA at under one mile. As a DSNY sedan on average travels approximately 33 miles in a day, in practice a 2011 Toyota Prius will utilize its internal combustion engine and have higher direct emissions than a Volt for a DSNY shift that does not exceed 35-40 miles of driving. (The 2012 Plug-in Prius has a USEPA rating of 11 miles in electric-only mode, which is a substantial improvement; DSNY did not have this model in 2011, however.)

The Chevrolet Volts have performed well in the field. The primary advantage of the Volt over the 2011 Toyota Prius is the Volt’s ability to run on pure electric battery mode for an extended range, therefore emitting fewer direct air emissions during a typical duty cycle than a Prius. According to the USEPA, a 2011 Volt gets the equivalent of 93 miles per gallon when operating in all-electric mode (MPGe), and 37 mpg when operating in gasoline mode, for an overall rating of 60 mpg. The USEPA rated the Volt as capable of being driven an estimated 35 miles in all-electric mode. The USEPA rated the 2011 Toyota Prius as achieving 50 mpg combined/51 mpg City/48 mpg highway; the 2012 Plug-in Prius has a USEPA mileage rating of 95 MPGe in electric mode, but still 50 mpg combined. (The 2013 Volt achieves a USEPA rating of 101 MPGe city/93 MPGe highway/98 MPGe combined, and reportedly travels 38 miles in EV mode.) If used with premium gasoline, as recommended by the manufacturer, the Volt fuel cost per gallon increases by 21 cents over regular gasoline. The fuel use and emissions of a Volt will vary depending on the amount driven between charges. In addition to fuel costs, other costs to be considered include depreciation and maintenance. As the City self-insures, any differential cost in insurances rates for these vehicles is not relevant.

In evaluating the environmental performance of plug-in electric vehicles such as the Volt, indirect pollution associated with the generation of electricity used to charge the vehicle’s

14 As DSNY fueling facilities lack premium gasoline, DSNY uses regular gasoline in the Volt, which reduces its fuel efficiency somewhat when operating in non-electric mode.
15 One recent study noted that for short trips of under 16 miles, the 2013 Plug-in Prius cost less per mile than a 2012 Volt (based only on fuel or electric use), due to the Volt’s heavier battery. Ray Iannuzzelli, Cost Per Mile Comparison: 2012 Volt vs 2013 Prius Plug-In (April 13, 2012), using electricity costs of $0.12/KWh and $3.79 for regular gasoline, and $4.00 for premium gasoline. http://gm-volt.com/2012/04/13/cost-per-mile-comparison-2012-volt-vs-2013-prius-plug-in. For trips between 16 and 65 miles, powering the Volt costs less per mile, and for trips over 65 miles, the Plug-In Prius has the fuel cost advantage over the Volt. Id. DSNY electricity and gasoline costs differ from these figures, with electricity about $0.09/KWh and gasoline $2.94/gallon as of March 11, 2013, but the study’s basic conclusions appear valid for DSNY.
batteries should also be considered. Thus determining the carbon footprint of the Chevrolet Volt on a life cycle basis should take into account the source of the electricity used to charge the vehicle and whether it is from high-carbon fuels or from cleaner sources. The electric grid in New York City relies on natural gas (56%), nuclear (38%), other fossil fuels (5%). Therefore, a recent study found that the carbon footprint of a pure plug-in electric vehicle, or EV (similar to the Chevrolet Volt when operating in all-electric mode) driven and charged in New York City is lower than in parts of the country that rely mainly on higher-carbon coal for electricity. According to this study, charging an EV in the New York City yields global warming emissions equivalent to that of a gasoline-powered vehicle achieving 74 mpg, better than the best hybrid.

Chevrolet Volts (at $39,475) would cost the City significantly more than the Toyota Prius (at $21,977), absent subsidies. As a public agency that does not pay income tax, DSNY is not eligible for the $7500 federal tax credit available to federal income tax payers per Volt for the first 200,000 vehicles sold. Accordingly, DSNY has used Federal Congestion Mitigation and Air Quality grant funding and 2009 American Recovery and Reinvestment Act stimulus funding to cover the incremental cost of the Volts over the cost of a Prius. The price of Chevrolet Volts is expected to decline as production efficiencies are realized. As for operational costs, at current rates, a Prius that is driven 10,000 miles annually (the average for a DSNY sedan) for 10 years (the useful vehicle life for a DSNY sedan) will require 192 gallons of gasoline per year at a cost of $2.94 per gallon, for a total of $5645 in fuel costs (excluding oil changes, etc). A Volt that is driven the same daily distances in pure electric mode (by not exceeding 35 miles per day) would in theory require no gasoline over the 10 years, and save much of the $5645, minus the cost of electricity consumed (0.36 kWh/mile at $0.09/kWh), which comes to well under the equivalent cost of gasoline. Even so, however, over this period the Volt’s savings in fuel would not compensate for the higher initial cost of the Volt, absent subsidies. (Even with the $7500 tax credit, various studies have noted that the cost premium for a Volt over a Prius will not be recovered by fuel savings over the life of the vehicle.) As for durability, the battery life of a 2012 Volt is warrantied for 100,000 miles and 8 years, whichever comes first. The mileage would generally be adequate for the useful service life of a DSNY sedan, although failure after 8 years and prior to achieving 100,000 miles would be a disadvantage, given the substantial battery replacement cost for a Volt. The 2013 Volt battery is warrantied for 10 years or 150,000 miles, whichever comes first, which alleviates this concern for DSNY operations.

DSNY has observed no significant difference in performance in the field between the Volt and the Prius. A Prius has more cargo space than a Volt and seats five, while the Volt seats only four, but these differences are not material for typical DSNY sedan operations.

16Don Anair & Amine Mahmassani, State of Charge, Electric Vehicles’ Global Warming Emissions and Fuel-Cost Savings across the United States, (Union of Concerned Scientists April 2012) Technical Appendix, p. 8, Table A.1, citing USEPA 2010a, and assuming an EV efficiency of a Nissan Leaf, 0.34kWh/mile.
requirement of charging the Volt creates certain operational issues not posed by the Prius, including a comparatively long charge time (about three hours at 240V), the limited number of parking spots with charging equipment at DSNY facilities, and the need for electrical upgrades at certain DSNY facilities to accommodate the required amperage for vehicle charging. The environmental benefits of operating a Volt over the Prius for DSNY’s fleet can only be obtained via an adequate infrastructure and flexibility in charging time. As agency resources are limited, it must be determined whether such benefits of the Volt are worth the cost premium compared to the Prius absent subsidy support, or whether, for example, greater Agency carbon emissions reductions can be achieved at lower cost by other measures, such as converting certain DSNY facilities to natural gas heat from fuel oil.

The Department continues to assess the technological advances of hybrid electric vehicles and plug-in hybrid electric vehicles.

Zero Emission Vehicles.

Under Local Law 38/2005, DSNY is obligated to purchase light and medium duty vehicles with the lowest emissions category (“highest vehicle rating”), provided such vehicle does not cost more than fifty percent more than the second-best emissions category. DSNY has been meeting its obligations under Local Law 38 by purchasing either Chevrolet Volts or Toyota Priuses, which have identical emissions ratings, as noted above. There are now various commercially available zero emission, all-electric sedans that cost less than 50% more than the Volts and Priuses. Consequently, DSNY may start purchasing zero emission vehicles for its fleet under the mandate of LL 38/2005. Zero emission vehicles have the potential to bring further benefits to local air quality, as well as fuel cost savings and greenhouse gas reduction, compared to DSNY’s current hybrid fleet. The improvement over the 2013 Plug-in Hybrid Prius will be relatively small, however, and may be insignificant over the Volt, when DSNY sedan usage stays under 35 miles per day, as it generally does, so that the Volt operates primarily in electric mode, as noted above. Moreover, such all-electric vehicles will require additional charging infrastructure, and may limit DSNY’s operational flexibility for such sedans in winter emergency snow situations due to relatively slow charging times. DSNY currently has 31 charging stations for electric vehicles (generally 1 station per garage).

DSNY also purchased and is testing two Ford Transit Connects (pure plug-in electric). Also, in CY 2013, DSNY plans to acquire eight all-electric Nissan Leaf, and 93 Fusion Hybrids. Also in FY2010, DSNY put into service one Navistar eStar all electric Class 4 truck, which is currently being tested in fleet service. Finally, DSNY plans to purchase eight more charging stations for electric vehicles in CY 2013.

19 For example, the 2012 Nissan Leaf EV achieves a USEPA rating of 99 MPGe and an electricity consumption rating of 0.34 kilowatt hours (kWh) per mile. Other EVs that are now available are the 2012 Mitsubishi i-MiEV (112MPGe), and 2012 Ford Focus Electric (105 MPGe). In 2013, the Honda Fit EV is scheduled to be commercially available, with a leading USEPA rating of 118 MPGe, and a consumption rating of just 0.29 kWh per mile.

20 EPA mileage estimates for the Fusion are 47 mpg highway and 47 mpg city. The mpg rating is currently under review by EPA.
DSNY intends to conduct further studies on the economic and operational feasibility of incorporating more alternative fuel sanitation vehicles into its fleet.

Testing of Biodiesel Blends

DSNY is further developing its clean air efforts by implementing advanced technologies to reduce emissions and utilizing clean diesel fuel with a renewable alternative biofuel component. For example, in March 2007, DSNY launched a biodiesel (B5) initiative citywide on all diesel-powered equipment (on-highway and off-highway), utilizing 5% biodiesel (made from soybeans) and 95% (petroleum-based) ULSD. To date, the B5 initiative resulted in no change in vehicle performance, no operator or mechanic complaints, no increase in down rate, and good winter operability. In August 2007, DSNY implemented its B20 (20% biodiesel) pilot study in the Queens 6 district and based on those encouraging results, in July 2010 DSNY expanded the study to the Brooklyn 5 district. Testing in both districts is on-going. DSNY will expand the pilot study to 12 more districts in CY 2013, for a total of 14 districts. B5 biodiesel costs about the same as standard ULSD, while B20 biodiesel costs somewhat more.

Conclusion

As a result of dramatic improvements in clean diesel technology, federal mandates for ultra-low sulfur diesel fuel, much stricter new vehicle emission standards, local law BART requirements for pre-2007 trucks, and DSNY’s efforts, DSNY has already cut its overall diesel fleet PM emissions by approximately 85% and NOx emissions by more than half since LL38/2005 was passed, with further reductions expected as the fleet turns over. Furthermore, in accordance with PlaNYC2030’s goal of a 30% reduction below FY2005 levels by 2017, DSNY has already achieved a 20% reduction in greenhouse gas emissions from fleet operations.

DSNY will continue participating in research and development of new technologies and evaluate the mechanical reliability and operability of CNG and other alternative fuel collection trucks to assess their respective environmental and economic performances. DSNY is currently testing seven diesel-powered hybrid-electric street sweepers in six districts and is committed to exploring fully the costs and benefits of incorporating hybrid collection trucks into its fleet. DSNY’s B5 initiative citywide has met with positive results and testing of the B20 initiative is ongoing and will expand to a total of 14 districts. This initiative has the potential to further reduce truck emissions, including greenhouse gases.

Appendix 1: DSNY CNG Fuel Street Sweepers as of January 1, 2013

<table>
<thead>
<tr>
<th>VehicleID</th>
<th>VIN #</th>
<th>Vehicle Type</th>
<th>Make / Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>20CNG-501</td>
<td>1J9VM4L903C172001</td>
<td>Street Sweeper</td>
<td>Johnston 4000</td>
</tr>
<tr>
<td>20CNG-601</td>
<td>1J9VM4L956C172001</td>
<td>Street Sweeper</td>
<td>Johnston 4000</td>
</tr>
<tr>
<td>20CNG-602</td>
<td>1J9VM4L976C172002</td>
<td>Street Sweeper</td>
<td>Johnston 4000</td>
</tr>
<tr>
<td>20CNG-603</td>
<td>1J9VM4L996C172003</td>
<td>Street Sweeper</td>
<td>Johnston 4000</td>
</tr>
<tr>
<td>20CNG-604</td>
<td>1J9VM4L906C172004</td>
<td>Street Sweeper</td>
<td>Johnston 4000</td>
</tr>
<tr>
<td>20CNG-605</td>
<td>1J9VM4L926C172005</td>
<td>Street Sweeper</td>
<td>Johnston 4000</td>
</tr>
<tr>
<td>20CNG-606</td>
<td>1J9VM4L946C172006</td>
<td>Street Sweeper</td>
<td>Johnston 4000</td>
</tr>
<tr>
<td>20CNG-607</td>
<td>1J9VM4L966C172007</td>
<td>Street Sweeper</td>
<td>Johnston 4000</td>
</tr>
<tr>
<td>20CNG-608</td>
<td>1J9VM4L986C172008</td>
<td>Street Sweeper</td>
<td>Johnston 4000</td>
</tr>
<tr>
<td>20CNG-609</td>
<td>1J9VM4L9X6C172009</td>
<td>Street Sweeper</td>
<td>Johnston 4000</td>
</tr>
<tr>
<td>20CNG-610</td>
<td>1J9VM4L966C172010</td>
<td>Street Sweeper</td>
<td>Johnston 4000</td>
</tr>
<tr>
<td>20CNG-701</td>
<td>1J9VM4L988C172111</td>
<td>Street Sweeper</td>
<td>Johnston 4000</td>
</tr>
<tr>
<td>20CNG-702</td>
<td>1J9VM4L9X8C172112</td>
<td>Street Sweeper</td>
<td>Johnston 4000</td>
</tr>
<tr>
<td>20CNG-703</td>
<td>1J9VM4L918C172113</td>
<td>Street Sweeper</td>
<td>Johnston 4000</td>
</tr>
<tr>
<td>20CNG-704</td>
<td>1J9VM4L938C172114</td>
<td>Street Sweeper</td>
<td>Johnston 4000</td>
</tr>
<tr>
<td>20CNG-705</td>
<td>1J9VM4L958C172115</td>
<td>Street Sweeper</td>
<td>Johnston 4000</td>
</tr>
<tr>
<td>20CNG-706</td>
<td>1J9VM4L978C172116</td>
<td>Street Sweeper</td>
<td>Johnston 4000</td>
</tr>
<tr>
<td>20CNG-707</td>
<td>1J9VM4L998C172117</td>
<td>Street Sweeper</td>
<td>Johnston 4000</td>
</tr>
<tr>
<td>20CNG-708</td>
<td>1J9VM4L908C172118</td>
<td>Street Sweeper</td>
<td>Johnston 4000</td>
</tr>
<tr>
<td>20CNG-709</td>
<td>1J9VM4L9X8C172109</td>
<td>Street Sweeper</td>
<td>Johnston 4000</td>
</tr>
<tr>
<td>20CNG-710</td>
<td>1J9VM4L968C172110</td>
<td>Street Sweeper</td>
<td>Johnston 4000</td>
</tr>
</tbody>
</table>

Appendix 2: DSNY’s CNG Collection Trucks

<table>
<thead>
<tr>
<th>Vehicle ID</th>
<th>Make / Model</th>
<th>Vehicle Type</th>
<th>VIN #</th>
</tr>
</thead>
<tbody>
<tr>
<td>24CNG-001</td>
<td>Crane Carrier LET2</td>
<td>Front Loading</td>
<td>1CYCCZ4848T048392</td>
</tr>
<tr>
<td>25CNG-501</td>
<td>Crane Carrier LET2</td>
<td>Rear Loading</td>
<td>1CYCCZ4868T048393</td>
</tr>
<tr>
<td>25CNG-502</td>
<td>Crane Carrier LET2</td>
<td>Rear Loading</td>
<td>1CYCCZ4868T048569</td>
</tr>
<tr>
<td>25CNG-503</td>
<td>Crane Carrier LET2</td>
<td>Rear Loading</td>
<td>1CYCCZ4828T048570</td>
</tr>
<tr>
<td>25CNG-504</td>
<td>Crane Carrier LET2</td>
<td>Rear Loading</td>
<td>1CYCCZ4848T048571</td>
</tr>
<tr>
<td>25CNG-505</td>
<td>Crane Carrier LET2</td>
<td>Rear Loading</td>
<td>1CYCCZ4868T048572</td>
</tr>
<tr>
<td>25CNG-506</td>
<td>Crane Carrier LET2</td>
<td>Rear Loading</td>
<td>1CYCCZ4888T048573</td>
</tr>
<tr>
<td>25CNG-507</td>
<td>Crane Carrier LET2</td>
<td>Rear Loading</td>
<td>1CYCCZ48X8T048574</td>
</tr>
<tr>
<td>25CNG-508</td>
<td>Crane Carrier LET2</td>
<td>Rear Loading</td>
<td>1CYCCZ4818T048575</td>
</tr>
<tr>
<td>25CNG-509</td>
<td>Crane Carrier LET2</td>
<td>Rear Loading</td>
<td>1CYCCZ4838T048576</td>
</tr>
<tr>
<td>25CNG-510</td>
<td>Crane Carrier LET2</td>
<td>Rear Loading</td>
<td>1CYCCZ4858T048577</td>
</tr>
<tr>
<td>25CNG-601</td>
<td>Crane Carrier LET2</td>
<td>Rear Loading</td>
<td>1CYCCZ4819T049419</td>
</tr>
<tr>
<td>25CNG-602</td>
<td>Crane Carrier LET2</td>
<td>Rear Loading</td>
<td>1CYCCZ4889T049420</td>
</tr>
<tr>
<td>25CNG-603</td>
<td>Crane Carrier LET2</td>
<td>Rear Loading</td>
<td>1CYCCZ48X9T049421</td>
</tr>
<tr>
<td>25CNG-604</td>
<td>Crane Carrier LET2</td>
<td>Rear Loading</td>
<td>1CYCCZ4819T049422</td>
</tr>
<tr>
<td>25CNG-605</td>
<td>Crane Carrier LET2</td>
<td>Rear Loading</td>
<td>1CYCCZ4839T049423</td>
</tr>
<tr>
<td>25CNG-606</td>
<td>Crane Carrier LET2</td>
<td>Rear Loading</td>
<td>1CYCCZ4859T049424</td>
</tr>
<tr>
<td>25CNG-607</td>
<td>Crane Carrier LET2</td>
<td>Rear Loading</td>
<td>1CYCCZ4879T049425</td>
</tr>
<tr>
<td>25CNG-608</td>
<td>Crane Carrier LET2</td>
<td>Rear Loading</td>
<td>1CYCCZ4899T049426</td>
</tr>
<tr>
<td>25CNG-609</td>
<td>Crane Carrier LET2</td>
<td>Rear Loading</td>
<td>1CYCCZ4809T049427</td>
</tr>
<tr>
<td>25XG-001</td>
<td>Crane Carrier LET2</td>
<td>Rear Loading</td>
<td>1CYCCZ48X9T049418</td>
</tr>
</tbody>
</table>
Appendix 3: DSNY’s Hybrid Collection Trucks

<table>
<thead>
<tr>
<th>Chassis Mfg</th>
<th>Fuel</th>
<th>Hybrid Sys</th>
<th>Series/Parallel</th>
<th># of Units in Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crane Carrier Corp</td>
<td>Diesel</td>
<td>Electric</td>
<td>Series</td>
<td>3</td>
</tr>
<tr>
<td>Crane Carrier Corp</td>
<td>Diesel</td>
<td>Hydraulic</td>
<td>Parallel</td>
<td>2</td>
</tr>
<tr>
<td>Crane Carrier Corp</td>
<td>CNG</td>
<td>Hydraulic</td>
<td>Parallel</td>
<td>1</td>
</tr>
<tr>
<td>Mack</td>
<td>Diesel</td>
<td>Electric</td>
<td>Parallel</td>
<td>5</td>
</tr>
<tr>
<td>Mack</td>
<td>Diesel</td>
<td>Hydraulic</td>
<td>Parallel</td>
<td>17</td>
</tr>
</tbody>
</table>